文档库 最新最全的文档下载
当前位置:文档库 › 配电系统电力电子变压器理论与应用

配电系统电力电子变压器理论与应用

配电系统电力电子变压器理论与应用
配电系统电力电子变压器理论与应用

电网配电自动化系统技术规范

广东电网配电自动化系统技术规范

前言 为规范广东电网配电自动化的建设及改造工作,提高配电自动化水平,促进配网安全、稳定、可靠、经济运行,实现配电自动化建设的规范化、标准化,特制定本规范。 本规范在国家和行业有关标准和规范的基础上,结合广东配网的现状、运行管理需求及发展需求,提出了广东电网配电自动化系统的功能及性能指标要求,适用于广东电网各级供电局进行配电自动化系统设计、建设及改造工作。 本规范由广东电网公司生技部提出、归口并解释。 主要起草人员:黄邵远、段新辉、余兆荣、赵永发、高新华、谢善益、吴国沛、陶文伟、邹国惠、张喜平、黄剑眉、孙浩、化振谦、曲毅、吴强、陈家桐 审核:马辉、温柏坚 审定:张文峰 批准:徐达明

广东电网配电自动化系统技术规范 1适用范围 本规范描述了配电自动化系统体系结构、应用功能、性能指标、系统配置及与其他系统数据接口等。本规范适用于广东电网所辖各级供电局的配电自动化系统建设及改造项目。 2 规范性引用文件 下列文件中的条款通过本规范的引用而构成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 1) 配电自动化功能规范DL/T 814-2002 2) 地区电网调度自动化系统GB/T 13730-2002 3) 《电力二次系统安全防护规定》(电监会5号令) 4) 《配电二次系统安全防护方案》(电监安全〔2006〕34号) 5) IEC61970 能量管理系统应用程序接口 6) IEC61968 电力企业应用集成-配电管理的系统接口 7) 配电网自动化系统远方终端DL/T 721-2000 8) 远动终端设备GB/T13729-2002 9) 《广东电网规划设计技术原则》 10) 《广东电网10千伏及以下配网自动化规划技术原则》 11) 《广东电网二次防护方案实施细则》

低压配电系统的供电方式

低压配电系统的供电方式 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下: 第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关; N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 1低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种

是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。TT系统在确保安全用电方面还存在有不足之处,主要表现在: ①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。 ②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。 因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。 (3)TN系统: 在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即:过去称三相四线制供电系统中的保护接零。 当电气设备发生单相碰壳时,故障电流经设备的金属外壳形成相线对保护线的单相短路。这将产生较大的短路电流,令线路上的保护装置立即动作,将故障部分迅速切除,从而保证人身安全和其他设备或线路的正常运行。 1)IT系统:

发电厂及电力系统专业的毕业论文

大学 毕业论文 电力系统短期负荷预测 姓名: 学号: 专 年级: 指导教师: 目录 中文摘要: (1)

英文摘要: (2) 1绪论 (3) 1.1 短期负荷预测的目的和意义 (3) 1.2电力系统负荷预测的特点和基本原理 (4) 1.2.1电力负荷预测的特点 (4) 1.2.2电力负荷预测的基本原理 (4) 1.3 国内外研究的现状 (5) 1.3.1 传统负荷预测方法 (6) 1.3.2 现代负荷预测方法 (6) 1.4 神经网络应用于短期负荷预报的现状 (8) 1.5 本文的主要工作 (8) 2最小二乘法 (10) 2.1 最小二乘法原理 (10) 2.2 多项式拟合具体算法 (10) 2.3多项式拟合的步骤 (11) 2.4 电力系统短期负荷预测误差 (12) 2.4.1 误差产生的原因 (12) 2.4.2 误差表示和分析方法 (12) 2.4.3 拟合精度分析 (13) 3基于神经网络的短期负荷预测 (15) 3.1 人工神经网络 (15) 3.1.1 人工神经网络的基本特点 (15) 3.2 BP网络的原理、结构 (15) 3.2.1网络基本原理 (15) 3.2.2 BP神经网络的模型和结构 (16) 3.2.3 BP网络的学习规则 (16) 3.3 BP算法的数学描述 (17) 3.3.1信息的正向传递 (17) 3.3.2 利用梯度下降法求权值变化及误差的反向传播 (17) 3.4 BP网络学习具体步骤 (18) 3.5 标准BP神经网络模型的建立 (19) 3.5.1 输入输出变量 (19) 3.5.2 网络结构的确定 (19) 3.5.3 传输函数 (20) 3.5.4 初始权值的选取 (21) 3.5.5 学习数率 (22) 3.5.6 预测前、后数据的归一化处理 (22)

供配电系统

第二节 供配电系统 一、电力负荷分级 (一)一级负荷 (二)二级负荷 (三)三级负荷 二、导线、电缆的选择 导线、电缆的型号应根据它们所处的电压等级和使用场所来选择。导线、电缆的截面应按下列原则进行选择: 1. 按发热条件选择 在最大允许连续负荷电流下,导线发热不超过线芯所允许的温度,不会因过热而引起导线绝缘损坏或加速老化。 2.按机械强度选择 在正常工作状态下,导线应有足够的机械强度,以防断线,能够保证系统安全可靠地运行。 3.按允许电压损失选择 导线上的电压损失应低于最大允许值,以保证供电质量。 (一)、 按允许温升选择导线截面 电流通过导线(包括电缆)时,要产生电能损耗,使导线发热。当绝缘导线和电缆的温度过高时,绝缘将加速老化,甚至引起火灾。裸导线的温度过高时,会使其接头处的氧化加剧,增大接头的接触电阻,使之进一步氧化,甚至发热到断线。因此,导线的发热温度不得超过允许值。 1.导线和电缆必须满足的发热条件 按发热条件选择导线截面时,应使其允许载流量(允许持续负荷电流)Ixu 大于线路的计算电流Ijs ,即: (2-11) 如果是选择降压变压器高压侧的导线和电缆截面,则上式中的Ijs 应取为变压器高压侧的额定电流I 1n 。如果是选择成组电容器的引入线截面,则应考虑电容器充电时引起的过电流,一般式中的Ijs 取为电容器额定电流的1.3倍。 必须注意:导线的允许载流量与环境温度有关。因此当敷设地点的环境温度与导线允许载流量所对应的环境温度不同时,导线的允许载流量应乘以温度校正系数K : 式中t l ——导线、电缆线芯长期允许工作温度℃; t 0——导线敷设地点实际的环境温度℃; t n ——导线、电缆线芯允许载流量所对应的环境温度℃。 这里要说明,导线和电缆敷设地点的环境温度,应采用下列温度值: K t t t t n = --1 01 K xU jS I I ≥js xu I I ≥

供电系统的主要接线方式

1、供电系统的主要接线方式,各中接线方式的优缺点是什么? ①桥式接线:采用有两回电源线路受电和装设两台变压器的桥式主接线。桥式接线分为:外桥、 内桥和全桥三种。 外桥接线对变压器的切换方便,比内桥少两组隔离开关,继电保护简单,易于过渡到全桥或单母线分段的接线,且投资少,占地面积小。缺点是倒换线路时操作不方便,变电所一侧无线路保护。适用于进线短而倒闸次数少的变电所,或变压器采取经济运行需要经常切换的终端变电所,以及可能发展为有穿越负荷的变电所。 内桥接线一次侧可设线路保护,倒换线路操作方便,设备投资与占地面积均较全桥少。缺点是操作变压器和扩建成全桥或单母线分段不如外侨方便。适用于进线距离长,变压器切换少的终端变电所。 全桥接线适应性强,对线路、变压器的操作均方便,运行灵活,且易于扩展成单母线分段式的中间变电所。缺点是设备多,投资大,变电所占地面积大。 ②线路变压器组结线:其优点是简单,设备少,基建快,投资费用低,但供电设备可靠性差。 ③单母线:进出线均有短路器以及与母线相连的母线隔离开关,与负电线路的线隔离开关。一般 分为单母线不分段和单母线分段两种典型结线。 a、单母线不分段:结果简单,造价低,运行不够灵活,供电可靠性差,适用于小容量用户。 b、单母线分段的可靠性和灵活性比单母线不分段有所提高。 隔断开关分段(QS分段)—适用由双回路供电,允许短时间停电的二级负荷。 短路器分段(QF分段)—适用一级负荷较多的情况,可切断负荷和故障电流,也可在继电保护下实现自动分合闸,在其中一条路线故障或需要检修时,可以将负荷转到另外一条线路,避免全部停电,但它使电源只能通过一回路供进线供电,供电功率降低,从而使更多的用户停电。 2、无限大容量供电系统和有限大容量供电系统 答:所谓无限大容量供电系统是指电源内阻抗为零,在短路过程中电源端电压恒定不变,短路电流周期分量恒定不变的供电系统。事实上,真正无限大容量供电系统是不存在的,通常将电源内阻抗小于短路回路总阻抗10%的电源看做无限大容量供电系统。所谓的有限大容量供电系统是指电源的内阻抗不能忽略,且是变化的,在短路过程中电源的端电压是衰减的,短路电流的周期分量幅值是衰减的供电系统。通常将内阻抗大于短路回路总阻抗10%的供电系统称为有限大供电系统。 3、有名值和标准值得概念 有名值:电流(安培)等于电压(伏特)除以阻抗 有名值法:短路计算中的各物理量均采用有名值,实质是欧姆定律。 标幺值:用相对值表示元件的物理量 标幺值法:将实际值与所选定的基准值的比值来运算,其特点是在多电压等级系统中计算比较方便。 4、冲击电流值得概念及产生条件? 概念:短路电流可能的最大瞬时值得称为冲击电流,用itm表示。Itm=错误!未找到引用源。kimIpe 条件:①短路前为空载②假设短路回路的感抗比单电阻大得多③短路发生于某电压瞬时值过零时。 5、电流互感器常见接线方式,使用场合:

2019发电厂及电力系统专业就业方向与就业前景

2019发电厂及电力系统专业就业方向与就业 前景 1、发电厂及电力系统专业简介 发电厂及电力系统专业培养以控制理论和电力网理论为基础,以电力电子技术、计算机技术为主要技术手段,能够从事与电气工程有关的系统运行、自动控制、信息处理、试验分析、研制开发、经济管理等领域工作的高级工程技术人才。 2、发电厂及电力系统专业就业方向 本毕业生具有较宽的技术基础理论以及从事发电厂电气系统、电力网系统的保护及其自动化、高低压技术、电力网测控调度系统的设计、运行和研究和组织管理的实际工作能力,可到各类发电厂、电力系统供电部门、电力勘测设计研究单位、电力管理等部门工作。 从事行业: 毕业后主要在新能源、电气、电力等行业工作,大致如下: 1新能源 2电气/电力/水利 3电气/电气/电力/水利 4环保 5仪器仪表/工业自动化 工作城市:

毕业后,广州、南京、青岛等城市就业机会比较多,大致如下: 1广州 2南京 3青岛 4北京 5泉州 3、发电厂及电力系统专业就业前景怎么样 发电厂及电力系统专业毕业生具有较宽的技术基础理论以及从事发电厂电气系统、电力网系统的保护及其自动化、高低压技术、电力网测控调度系统的设计、运行和研究和组织管理的实际工作能力,可到各类发电厂、电力系统供电部门、电力勘测设计研究单位、电力管理等部门工作。发电厂及电力系统专业就业率不错。属于比较热门的行业。 2013年发电厂及电力系统专业高校毕业人数为6000-7000人,其中男80%、女20%,2013年发电厂及电力系统专业高校招生男女比例为文科19%、理科79%、文理综合2%,近几年发电厂及电力系统专业的就业率分别为2011(85%-90%)、2012(85%-90%)、2013(85%-90%)。 发电厂及电力系统专业涉及的工作岗位种类较多,归纳起来主要有电气运行操作、电气检修试验、电气安装调试、电力线路运行与维护等核心岗位。

配电自动化系统安全防护方案示范文本

配电自动化系统安全防护方案示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

配电自动化系统安全防护方案示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 摘要论文在描述配电自动化系统的功能和结构的 基础上,根据全国电力二次系统安全防护总体方案,提出了配 电自动化系统的安全防护方案。 关键词配电自动化;安全防护;二次系统 随着人民生活水平的不断提高和国民经济的持续发展, 我国对电能的需求量越来越大。电力用户对供电质量和供 电可靠性的要求也越来越高。电力系统能否安全、经济、 可靠地运行,直接关系到国计民生。近年来在美国、加拿大 和一些欧洲国家所发生的大面积停电事件,在国内也发生过 多种局部停电事件,这给国民生活和经济建设带来了巨大的 影响。因此,电力系统的安全问题目前是一个大家所重点关 注的问题。电力系统的安全问题,包括电力一次系统的安全

问题和二次系统的安全问题。其中,二次系统由于大量使用了通信技术、网络技术等新技术,使自身的安全问题变得更加复杂、更加紧迫。本文对二次系统中的配电自动化系统的安全问题进行了分析,提出一种利用电力专用安全隔离装置实现安全防护的方案。 1 配电自动化系统的功能 配电自动化系统是对配电网的设备进行远程实时监视、协调及控制的一个集成系统。它是近些年来发展起来的一门新兴技术,是现代计算机技术和通信技术在配电网监视与控制上的综合应用。实施配电自动化的主要意义有:在正常运行情况下,通过监视配电网的运行情况,优化配电网运行方式,最大限度地利用配电网的潜能;在配电网发生故障或出现异常运行情况时,能迅速查出故障区段及异常情况,快速隔离故障区段,及时恢复非故障区用户的供电,缩短用户的停电时间,减少停电面积;能根据配电网电压,合理控制无功负荷

配电自动化系统运维管理细则

临沂供电公司配电自动化主站系统 运维管理细则 山东电力集团公司临沂供电公司 二〇一三年四月

前言 为规范临沂供电公司配电自动化系统运维管理,提高配电自动化系统运行水平,确保配电自动化系统安全、稳定、可靠、高效运行,结合临沂供电公司配电网运维管理实际情况制定本规定。 本规定由临沂供电公司运维检修部提出并归口管理。 本规定主要起草人: 桑田李兆平郑大伟 审核: 李彪 审定: 黄振华 批准: 林凡勤

目录 1目的 (1) 2范围 (1) 3规范性引用文件 (1) 4术语和定义 (2) 5职责和权限 (2) 5.1总则 (2) 5.2运维检修部职责 (3) 5.3调度控制中心职责 (4) 6要求 (5) 6.1 配电自动化主站 (5) 6.2遥控操作 (9) 7缺陷管理 (10) 7.1缺陷分类 (10) 7.2 缺陷处理响应时间及要求 (11) 7.3缺陷的统计与分析 (12) 8配电自动化运行指标 (13) 8.1配电自动化系统运行指标 (13) 8.2配电自动化系统运行指标计算公式 (13) 9附则 (15)

1目的 为规范公司配电自动化及保护系统运维管理,提高配电自动化及保护系统运行水平,确保配电自动化及保护系统安全、稳定、可靠、高效运行,为配电网安全、优质、经济运行提供准确的信息和有效的手段,特制定本规定。 2范围 本规定适用于临沂供电公司投资的新建住宅小区配套、新扩建、改造、运行的以及用户投资建设移交临沂供电公司管理或接入临沂供电公司公备配电网络的配电自动化及保护系统的建设、验收、投运、运维等全过程的管理工作。 3规范性引用文件 DL/T721 配电网自动化系统远方终端 DL/T814 配电自动化系统功能规范 Q/GDW370-2009城市配电网技术导则 Q/GDW382-2009配电自动化技术导则 Q/GDW513-2010配电自动化主站系统功能规范 Q/GDW514配电自动化终端/子站功能规范 Q/GDW567-2010配电自动化系统验收技术规范 Q/GDW626-2011配电自动化系统运行维护管理规范 DB 37/T 2216-2012 10kV及以下电力用户受电工程技术规范山东电力集团公司配电自动化系统运维管理办法 山东电力集团公司配电自动化建设与改造管理办法

电力供电系统最常用的几种供电方式

单相也就是220V家用电路一般适用于照明电力电路; 三相也就是工厂设备用电力电路也可称工程电路,它根据场合需要有3线,4线和5线几种方式: 三线----------3根火线(没有零线N和接地线PE) 四线----------3根火线+1根零线N (TN-C系统) 五线----------3根火线+1根零线N+1根接地线PE (TN-S系统) TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT 系统的5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。 3 )TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE 表示 4 )TN-S 方式供电系统它是把工作零线N 和专用保护线PE 严格分开的供电系统,称作TN-S 供电系统, TN-S 供电系统的特点如下。 1 )系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。PE 线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE 上,安全可靠。 2 )工作零线只用作单相照明负载回路。 3 )专用保护线PE 不许断线,也不许进入漏电开关。 4 )干线上使用漏电保护器,工作零线不得有重复接地,而PE 线有重复接地,但是不经过漏电保护器,所以TN-S 系统供电干线上也可以安装漏电保护器。 5 )TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。在建筑工程工工前的“三通一平”(电通、水通、路通和地平——必须采用TN-S 方式供电系统。 5 )TN-C-S 方式供电系统在建筑施工临时供电中,如果前部分是TN-C 方式供电,而施工规范规定施工现场必须采用TN-S 方式供电系统,则可以在系统后部分现场总配电箱分出PE 线, TN-C-S 系统的特点如下。 1 )工作零线N 与专用保护线PE 相联通,如图1-5ND 这段线路不平衡电流比较大时,电气设备的接零保护受到零线电位的影响。D 点至后面PE 线上没有电流,即该段导线上没有电压降,因此,TN-C-S 系统可以降低电动机外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决于ND 线的负

配电系统图

配电系统图 先从后面说起: 一、回路额定功率:指在同一回路中所有负载(用电设备)的额 定功率的总和,这个回路的额定功率设计师通过了解负载的功率和设计回来得出来的,对预算没有直接联系。 二、线管、线槽的规格以及敷设方式:常用管线有镀锌电线管 (TC)、聚氯乙烯硬质管(PC)、塑料线槽(PR)、镀锌线槽(SR); 常用敷设方式有吊顶内敷设(SCE)、墙内暗敷设(WC)、地板内暗敷设(FC)、沿天棚面或顶板面敷设(CE)、沿墙面敷设(WE)。 例:上面系统图的TC20-WC/SCE指穿内径为20的镀锌电线管沿墙内暗敷设和吊顶内敷设。

这上面的字母代表符号仅仅是一部分,还有很多的敷设方式以及套线方式!为此,我特意在网上收集了更多关于图纸字母代表符号供大家学习参考: 1、导线穿管 SC:焊接钢管 RC:镀锌钢管 JDG:套接紧定式镀锌钢导管 KBG:扣压式薄壁镀锌钢管 PC-PVC:硬质塑料管 FPC:阻燃硬塑料管 CT:桥架 MR:金属线槽 M:钢索 CP:金属软管 2、导线敷设部位 AB :沿或跨梁(屋架)敷设 BC:暗敷在梁内

AC :沿或跨柱敷设 CLC:暗敷设在柱内 WS:沿墙面敷设 WC:暗敷设在墙内 CE:沿天棚或顶板面敷设CC:暗敷设在屋面或顶板内SCE:吊顶内敷设 FC:地板或地面下敷设 3、灯具安装 CS:链吊 DS:管吊 W:墙壁安装 C:吸顶 R:嵌入 S:支架 CL:柱上

三、电线电缆规格、型号:常用的电线电缆有ZR-BV、ZR-BVV、NH-VV、NH-YJV。ZR-BV是指阻燃型铜芯聚氯乙烯绝缘线, ZR-BVV是指阻燃型铜芯聚氯乙烯绝缘聚氯乙烯护套线, NH-VV是指耐火型铜芯聚氯乙烯绝燃聚氯乙烯护套电力电缆,电压等级1~6KV; YJV是指铜芯交联聚氯乙烯绝燃聚氯乙烯护套电力电缆,电压等级6~500KV。 例:上面系统图中ZR-BVV,3X2.5中的3表示导线根数,2.5表示一根导线的截面积,我们就读成:3根截面积为2.5mm2的阻燃型铜芯聚氯乙烯绝燃聚氯乙烯护套线。电线电缆常用标称截面mm2 BV铜芯聚氯乙烯绝缘电线 BLV铝芯聚氯乙烯绝缘电线 BVR铜芯聚氯乙烯绝缘软电线 一般来说,当电网电压是220V的时候,每平方电线的载电量是1KW 左右。 铜线每个平方可以载电1-1.5KW

供电系统

供电系统 电力系统是指发电、送电、变电、和用电组成的整体。 电力系统被发电厂的汽轮机、锅炉、水电厂的水轮机、水库等动力部分包括进来,统称为动力系统。 国家规定电网额定电压分别为(KV)750、500、330、220、110、60、35、10、6等级。 变电所出具变换电压的作用外,还具有集中电能、分配电能和控制电路以及调整电压的作用。 一般把变电所分为以下3种:(1).枢纽变电所;(2).地区变电所;(3).用户变电所; 牵引供电系统的电流制:直流制、低频单相交流制、三相交流制、工频单相交流制。 工频单相交流制的主要优点如下:1牵引供电系统结构简单;2牵引供电电压增高,保证机车的正常运行,可使变电所之间距离延长,线截面减小,建设投资和运营费用降低。3交流电力机车的粘着性能合牵引性能良好。 工频单相交流制存在的主要问题如下:1单相牵引负荷会使电力系统中出现负序电流;2电力机车感性负荷,功率因数低,相控整流出现较大的谐波电流,将使功率因数更低;3.牵引网中单相工频电流将对通讯线路造成较大的电磁干扰; 根据采用的变压器的类型不同,牵引变电所通常可分为:单相牵引变电所(包括纯单相变电所、单相V,V结和三相V,V结变电所);三

相变电所;三相-两相变电所(包括斯科特接线变电所和阻抗匹配与非阻抗匹配变电所) 纯单相接线的主要优点是变压器的容量可以充分利用,容量利用率100%,且变电所的主接线简单,设备少,占地面积小,投资小;缺点:三相系统形成较大的负序电流,不对称系数为1,为减小负序电流对系统的影响,各变电所变压器组成所按相序依次轮换,即所谓换相连接。 纯单相接线主要适用于电力系统容量大,地方电网较发达的地区。单相V,V接线变电所的优点是容量利用率为100%,而且可以供给所内及地区的三相负荷,对牵引网还可实现双边供电。与单相接线相比对系统的负序影响减小,变电所的设备也相对较小,投资较省。缺点:当一台牵引变电器故障时,另一台进行跨相供电,兼供左右两臂的牵引网负荷,这就要一个倒闸过程,把故障变压器原来承担的的任务转移到正常运行的变压器,在这个过程完成前,故障变压器原来供电的牵引负荷将中断。而且变电所得三相电源中断,变电所的三相自用电如同纯单相接线变压器一样,依靠其他方式供电,对电力系统的负序影响也随着增大。 三相牵引变压器均为双绕组油侵变压器,三相钱银变压器为同一起见,国家规定Y,d11;Y,yn12;YN,d11三种形式作为标准结线。牵引变电所采用其中的YN,d11结线,原边电压110KV,副边27.5KV, YN,d11结线的优点1.变压器原边采用YN结线,中性点引出接地方式与高压电网相适应;2.变压器结构简单,又因中性点接地,绕组采用分级绝

发电厂及电力系统的主要电气设备和作用

发电厂及电力系统的主要电气设备和作用 一、发电厂生产过程简介 (一)、发电厂的分类 发电厂是把其他形式的能量转换为电能的特殊工厂,根据利用能量的形式的不同,分为以下几类: 1、火力发电厂 2、水力发电厂 3、原子能发电厂 4、风力发电厂 5、其他,如太阳能、地热、潮汐发电等 目前,我国电力系统中主要以火力发电厂和水力发电厂为主 (二)火力发电厂的能量转换过程 燃料的化学能→蒸汽的热能→汽轮机发电机转子的动能(机械能)→电能↑↑↑ 锅炉(吸热)汽轮机(膨胀做功)发电机(电磁转换) 二、火力发电厂的主要电气设备及作用 1、一次设备 1)、发电机:将机械能转换为电能 参数 2)、变压器:将发电机输出的电能的电压升高或降低 参数 3)、高低压配电装置:它是按主接线的要求,由断路器、隔离开关、自动开关、接触器、熔断器、母线和必要的辅助设备如避雷器、电压互感器、电流互感器等构成的主体,其作用是接受和分配电能 4)、电力电缆:向用电设备输送电能 5)、电动机:厂用附属设备的拖动设备、原动机,主要包括交流电动机与直流电动机两种,交流电动机又分为三相鼠笼式、绕线式两种 参数 2、二次设备 对一次设备进行控制、测量、监察以及在发生故障时能迅速切除故障的继电保护装置、自动控制与信号装置等设备,如:继电器、测量仪表、控制、自动、信号装置、控制电缆等,称为二次设备 三、继电保护装置 (一)电气设备的故障

1、造成故障的原因 (1)外力破坏 (2)内部绝缘击穿 (3)误操作 2故障种类 (1)三相短路 (2)两相短路 (3)大电流接地系统的单相接地短路 (4)电气设备内部线圈的匝间短路 3故障的后果 (1)短路——短路电流——强电弧或导电回路的严重过热——烧毁电气设备(2)短路——短路电流——强大的电动力——机械破坏 (3)短路——系统电压下降——破坏正常生产——设备停产、停车 (4)破坏系统稳定——发电厂解裂——系统瓦解——巨大损失 (5)人身伤亡 4、继电保护的作用 迅速切除故障设备,针对各种不正常运行状态发出信号,通知运行人员,限制事故范围,投入备用电源,使重要设备迅速获得供电 5、对继电保护的要求 1)选择性 2)快速性 3)灵敏性 4)可靠性 5、常用继电保护种类 1)过电流保护 2)电流速断保护 3)限时电流速断保护 4)低电压保护 5)过负荷保护 6)差动保护 7)方向过流保护 8)距离保护 9)瓦斯保护 10)零序电流保护 6、自动装置 1)自动调节励磁装置

电力配电系统

电力配电系统 IT配电系统,实质就是三相三线制配电系统,其只引出三根火线,而没有中性线引出。故其不能作为单相电使用,无法提供220V的低压。从这里也可以看出,用电设备是可以只有火险而没有零线的。当然这里的三相电会彼此消融而达到平衡的。IT配电系统中的字母I 代表其中性点不接地,也就是三相三线制;字母T代表用电设备的外壳接地,也只能接地。因为IT配电系统没有引出中性线。而此接地与配电系统无任何电气连接,也就与配电系统没有任何关系了。而也正是这一小小的接地,使得这一配电系统安全了许多。此配电系统在正常情况下是没有任何问题的。但总有意外发生的时候,就比如,这三根火线中的某一根因为某种原因如绝缘皮老化或者接线端松动而使之与用电设备的外壳相接触了,那么此时用电设备的外壳也就带电了。而且是220V的“高压”电,如若人体与之接触,必会发生人身触电伤害事故,而如果此时用电设备的外壳是接地的,接地电阻相对于人体电阻来说是很小的,故此时这个地线就将人体短路了,流经人体的电流大大减少,达到人体所能承受的电流,从而避免电击伤害事故。 TT配电系统,是一种中性点接地有中性线引出的三相四线制配电系统,不过这个三相四线制配电系统与TN-C这个三相四线制是有区别的,也正因为是有区别的,所以TT配电系统比TN-C配电系统危险的多,可以说这是一种存在潜在危险的配电系统。至于为什么会有这

种配电系统,它是因何产生的就不得而知了。也许它是某一历史时期科技发展的过渡产物。至今在某些地方还能够看到这种配电系统、这种接线方式。不过相比于IT系统,TT系统又有了长足的进步。因为TT系统有了中性点接地引出的中性线,进而使得零线产生,单相电也应运而生了。TT系统不仅提供380V的工业用电,还提供了220V 的家用用电。为单相用电设备的普及提供了前提。TT配电系统的第一个字母T就表示中性点接地。第二个字母T则表示用电设备的金属外壳接地。不过此处的接地与中性点的接地是分开的。它们各接各的地,互不连接、互不相干。这也是TT系统区别于TN-C系统的地方,也是它的安全隐患所在。 隐患一:因为TT系统的用电设备的金属外壳只接地而没有与零线相接,使得火线碰触用电设备的金属外壳,经过金属外壳再接地,而没有与原零线再次构成回路,即单相短路的情况没有发生,而使得各种断路保护装置很可能没有动作。即保护装置不能启到及时的保护作用,没有及时断开电路。 隐患二:TT系统的金属外壳接地并不能像IT系统那样起到完全短路保护触电者的作用,它只是降低了用电设备外壳的对地电压,虽然这个电压降低了,但还是能达到110V左右的高压,显然这还不是人体能承受的起的。所以就有了故障持续时间的概念。但因为隐患一的存在使得这个故障持续时间并不是很短。 TN-C配电系统,是在TT配电系统的基础上加以改进而得来的。也

电力配电系统自动化存在的问题与解决

电力配电系统自动化存在的问题与解决 摘要:进入21世纪以来,我国的社会和经济取得了快速发展,人们的生活水平 得到逐渐提高,用电量正在逐年递增,这对电力企业而言既是机遇也是挑战,不 断攀高的用电负荷给电力系统正常运行带来极大挑战,也影响了电网的供电质量。先进的电子及通信技术应用到配电系统中,实现了电力配电系统的自动化,不仅 提高了配电效率,同时也可以很好的解决用电与供电之间的矛盾。因此,电力配 电系统自动化有助于提高电力系统供电可靠性和供电质量,提升电力企业效益, 促进我国电力行业取得快速发展。 关键词:电力;配电系统自动化;问题;解决 1电力配电系统自动化的内容 1.1馈电线路的自动化 馈电线路的自动化水平是配电系统自动化的重要组成部分,只有实现了检测、控制、诊断相关事故诊断,处理馈电路的自动化,才能及时检测配电系统自动化 的运行情况,通过遥感技术从而达到智能化控制。自动化系统可以智能的诊断配 电系统中的故障,如果有故障发生,可以立即进行远程的隔离,并进行智能的处理。 1.2配电系统管理自动化 在配电系统的信息采集,传输以及处理的过程中配电系统管理自动化占有重 要的地位。配电系统自动化能够实现将配电的相关信息传输到监控中心,从而能 够智能配电系统的信息向监控中心传输,还可以智能的高效分析处理传来的信息。根据计算机技术,通讯技术等相关的技术,能够实现配电系统的自动化管理。 2电力系统配电自动化现状分析 电力配电系统的自动化模式多种多样,我国在配电系统线路建设上已经形成 了树状布局,并借助重合器及分段器来实现对电压的制动转变,实现高电压向日 常所需电压的转换。通过重合器和分段器自身具有的变压功能可以实现配电系统 的自动化配电,当电力系统有故障出现情况下,可以实现自动隔离,并保证供电 的稳定和持续性。树状的配电系统在整个配电系统中还可以达到简化相关设置的 效果,使整个配电工作更加便捷,并有效降低电力企业的配电成本。此外,供电 环境也是电力企业必须要重视的因素,乡村和城市就应该采取不同形式的供电, 城市对于电能的需求要远远高于乡村,并且存在交通拥堵等现象,这就要求供电 企业借助多环网络线路,满足用电需求的同时保证供电的合理化。 3配电系统自动化存在问题 3.1技术研发不到位 配电系统自动化在实际运行过程中,为了使得电力系统得到高效稳定的运行,该技术必须具备高效性与科学性,同时要求不断加大资金及人力投入力度,确保 整个系统的完善。但是,当前还面临着很大的资金及人力问题,由于资金投入不 到位,导致技术研发不到位,同时,相关技术人才的缺乏,也对研发进展产生影响,从而限制了配电系统自动化技术的不断完善,这也给电力系统的正常运行带 来极大阻碍。 3.2配电工作人员素质低 随着配电系统逐渐实现自动化,这就对工作人员的专业素质提出了更高的要求。但是,在电力企业还存在着人员综合素质较低的情况,电力企业没有对工作 人员进行必备的专业技能培训,导致部分员工不具备操作配电系统自动化的能力,

供电系统的分类

什么是TT、TN-C、TN-S、TN-C-S、IT系统? 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。 (1)TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。 图1 TT方式供电系统 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。

图2 带专用保护线的TT方式供电系统 图中点画线框内是施工用电总配电箱,把新增加的专用保护线PE线和工作零线N分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。 (2)TN方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2)TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT系统优点多。TN系统根据其保护零线是否与工作零线分开而划分为TN-C和TN-S等两种。 (3)TN-C方式供电系统 它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。这种供电系统的特点如下。 图3 TN-C方式供电系统

发电厂及电力系统专业简介

发电厂及电力系统专业简介 专业代码530101 专业名称发电厂及电力系统 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握电工、电子、电机、电力系统分析基本知识,具备发电厂、变电站电气设备运行、安装、检修、维护及进行预防性试验和定检能力,从事发电厂及电力系统运行、安装、检修、调试及管理工作的高素质技术技能人才。 就业面向 主要面向各类发电、电网、电力建设、电力设备制造企业,在电力系统运维岗位群,从事发电厂、变电站的运行,电气设备的试验、检修、安装与调试等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备安全生产与防护能力; 3.具备电工操作和维护能力; 4.具备发电厂、变电站运行维护以及事故分析和处理能力; 5.具备电气设备施工、安装、调试能力; 6.初步具备电气系统技术改造能力; 7.具备一定的电气技术生产管理能力。

核心课程与实习实训 1.核心课程 电路、电子应用技术、电机运行技术、发电厂变电站电气设备、发电厂动力设备、电力安全生产技术、电力系统分析、继电保护与自动装置、高电压技术、变电站综合自动化、电气运行等。 2.实习实训 在校内进行金工工艺、电工工艺、电子工艺、发电厂(变电站)仿真、电气二次接线、电气设备安装与检修、电机检修、继电保护调试、电气运行仿真等实训。 在发电厂、变电站进行实习。 职业资格证书举例 电气值班员变电站值班员变电检修工电气试验工电气设备安装工 衔接中职专业举例 发电厂及变电站电气设备供用电技术继电保护及自动装置调试维护 接续本科专业举例 电气工程及其自动化

发电厂及电力系统实习心得

发电厂及电力系统实习心得 发电厂及电力系统实习心得1 一、前言 进入大学的第一个寒假,为了更好的认识与了解专业知识,并拓展实际的知识面。于是,我就来到了广西来宾电厂参观实习,虽然只经过短短的参观认识,但是经过各电厂的介绍得知,在新中国成立之后的半个世纪中,中国的电力工业取得了迅速的发展,平均每年以10%以上的速度在增长,到12月底,全国装机容量以突破5亿千瓦,无论在装机容量还是在发电量上都跃居世界第二位,仅次于美国。特别是进入上个世纪90年代以来,我国的电力平均每年新增装机容量超过17gw,使长期严重缺电的局面得到了基本缓解,国民经济和社会发展对电力的需求得到了基本满足。 二、火力发电厂的生产过程 火力发电厂的生产过程实质上是四个能量形态的转换过程,首先化石燃料的化学能经过燃烧转变为热能,这个过程在蒸汽锅炉或燃汽机的燃烧室内完成;再是热能转变为机械能,这个过程在蒸汽机或燃汽轮机完成;最后通过发电机将机械能转变成电能。

火力发电厂的原料就是原煤。原煤一般用火车运送到发电厂的储煤场,再用输煤皮带输送到煤斗。原煤从煤都落下由给煤机送入磨煤机磨成煤粉,并同时送入热空气来干燥和输送煤粉。形成的煤粉空气混合物经分离器分离后,合格的煤粉经过排粉机送入输粉管,通过燃烧器喷入锅炉的炉膛中燃烧。 料燃烧所需要的热空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道一部分送入磨煤机作干燥以及送粉之外,另一部分直接引至燃烧器进入炉膛。 燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的倒“u”形烟道依次流过炉膛,水冷壁管,过热器,省煤器,空气预热器,同时逐步将烟气的热能传给工质以及空气,自身变成低温烟气,经除尘器净化后的烟气由引风机抽出,经烟囱排入大气。如电厂燃用高硫煤,则烟气经脱硫装置的净化后在排入大气。 煤燃烧后生成的灰渣,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态渣,最后由排渣装置排入灰渣沟,再由灰渣泵送到灰渣场。大量的细小的灰粒(飞灰)则随烟气带走,经除尘器分离后也送到灰渣沟。 锅炉给水先进入省煤器预热到接近饱和温度,后经蒸发器受热面加热为饱和蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽。

供配电系统技术论文

供配电系统心得体会 在任何给定时刻,世界上都有1800场雷电在发生,每秒大约有100次雷击。在美国,雷电每年会造成大约150人死亡和250人受伤。全世界每年有4000多人惨遭雷击。在雷电发生频率呈现平均水平的平坦地形上,每座300英尺高的建筑物平均每年会被击中一次。每座1200英尺的建筑物,比如广播或者电视塔,每年会被击中20次,每次雷击通常会产生6亿伏的高压。 每个从云层到地面的闪电实际上包含了在60毫秒间隔内发生的3到5次独立的雷击,第一次雷击的峰值电流大约为2万安培,后续雷击的峰值电流减半。最后一次雷击之后,可能会有大约150安培的连续电流,持续时间达100毫秒。 经测量,这些雷击的上升时间大约为200纳秒或者更快。通过2万安培和200纳秒,不难计算得到dI/dt的值是每秒10^11安培。可见雷电是不可阻止的其危害也是无穷大的,所以我们要不但提高防雷技术,提高防雷意识并曾加防雷措施。 一、雷电的基本知识 1.雷电的分类 雷电分直击雷、电磁脉冲、球形雷、云闪四种。其中直击雷和球形雷都会对人和建筑造成危害,而电磁脉冲主要影响电子设备,主要是受感应作用所致;云闪由于是在两块云之间或一块云的两边发生,所以对人类危害最小。 直击雷就是在云体上聚集很多电荷,大量电荷要找到一个通道来泄放,有的时候是一个建筑物,有的时候是一个铁塔,有的时候是空旷地方的一个人,所以这些人或物体都变成电荷泄放的一个通道,就把人或者建筑物给击伤了。直击雷是威力最大的雷电,而球形雷的威力比直击雷小。 2、雷电对电气系统的危害 雷电对电力系统的伤害分为:直击,绕击,反击,感应,侵入等几类。雷成的过电压具有波峰陡,波幅大的特点,对系统中绝缘最薄弱的设备(如变压器等)威胁最大,户外架空线及开关闸刀互感器的绝缘瓷瓶都会受到威胁,甚至室内的电气设备也会受到雷电波的侵害。除了设备的直接损失,线路跳闸,局部停电,所造成的间接损失更大。 二、防雷装置和措施 1避雷器 避雷器并联在被保护设备或设施上,正常时装置与地绝缘,当出现雷击过电压时,装置与地由绝缘变成导通,并击穿放电,将雷电流或过电压引入大地,起到保护作用。过电压终止后,避雷器迅速恢复不通状态,恢复正常工作。避雷器主要用来保护电力设备和电力线路,也用作防止高电压侵入室内的安全措施。避雷器有保护间隙、管型避雷器和阀型避雷器和氧化锌避雷器 2、接地装置 现代高层建筑的防雷接地、电气设备的保护接地和工作接地都是合在一起的,组成综合接地系统,接地电阻通常要求小于4Ω(鉴于目前高层建筑智能化设施日益增加,设计时接地电阻不宜大于1Ω)。因为高层建筑的钢筋混凝土基础埋地深,与大地的接触面积大,其

相关文档