文档库 最新最全的文档下载
当前位置:文档库 › FC总线技术简介(二)

FC总线技术简介(二)

FC总线技术简介(二)
FC总线技术简介(二)

FC总线技术简介(二)

在上一期中我们了解到光纤通道(FC)是高吞吐量、低延时、低误码率的网络技术。整个标准系列还在不断的发展,其中用于航空领域-航空电子系统环境工程(FC-AE)的协议规范已经定制了5种,分别是:

MIL-STD-1553高层协议(FC-AE-1553)、无签名的匿名消息传输(FC-AE-ASM)、FC轻量协议(FC-AE-FCLP)、远程直接存储器访问协议(FC-AE-RDMA)及虚拟接口(FC-AE-VI)。因此,本期我们将对FC-AE的系列标准进行介绍。

1. 简介

FC-AE 标准是Fiber Channel-Avionics Environment 的简称,即光纤通道在航空电子领域的应用,它是由美国国家信息委员会(ANSI)组织制订的一组草案。FC-AE定义的是一组协议集,这些协议主要用于航空电子的控制工作、命令指示、信号处理、仪表检测、仿真验证和视频信号或者传感器数据的分配。FC-AE 标准所涉及的应用协议都有着许多相同的特点,如它们都具有实时性、高可靠性、可确定性带宽和可确定性延迟。FC-AE 规范中定义的在航电系统中采用光纤通道的环路拓扑与交换网络来连接设备的选择,已经得到了广泛的应用。具体的FC-AE规范如下。

FC-AE-1553:FC-AE-1553 协议是MIL-STD-1553B 协议在带宽,地址空间和数据传输量上的扩展,其

目的是更好地支持航电系统中各元素之间的通信。FC-AE-1553 的主要特性在于它的命令/响应式,消息的ACK 选择,RDMA 传输,文件传输,以及兼容MIL-STD-1553B 终端的能力。

FC-AE-ASM:ASM 是Anonymous Subscriber Messaging 的缩写,即匿名订制信息传输协议。该协议用于支持航空电子应用的处理器、传感器和显示器之间确定、安全、低延迟的通信。

FC-AE-FCLP:FCLP 是Fiber Channel Lightweight Protocol 的缩写,即轻量协议传输。FCLP 协议是以FCP 协议为基础的,由INCITS 制定的SCSI-FCP 协议进行具体规范。FCP 协议工作于FC-4 层以下的各层协议中,主要是对高层协议SCSI 的映射机制。而SCSI 协议是在I/O 设备(特别是存储设备)通信领域所广泛使用的通信协议。

FC-AE-RDMA:RDMA 是Remote Direct Memory Access 的缩写,即远程直接存储器访问传输。该协议底层服务部分遵循于FCP 协议,其主要特点在于允许信息发起者对远程目标存储器进行低延迟的数据读写操作。

FC-AE-VI:VI 是Virtual Interface 的缩写,即基于光纤通道的航空电子环境中的虚拟接口。该协议遵循FC-VI 协议和FC-FS 协议。FC-VI 是在光纤通道上实现VI 架构,它允许数据在光纤通道节点的内存地址之间快速转移。FC-FS 则是光纤通道信号与信令协议,用于定义FC-1 和FC-2 层的内容。

FC-AE 协议集的每一部分都支持一个或多个高层协议和拓扑结构,能共同使用并实现实时光纤通道网络的特征,具备了支持不同航空电子系统需求的网络能力。因此,FC-AE 协议集将凭借其卓越的性能为新一代高性能航空电子系统做出巨大的贡献。

2. FC-AE-1553

FC-AE-1553 是Fiber Channel-Avionics Environment-Upper Layer Protocol MIL-STD-1553B Notice 2 的简称,是在光纤通道的FC-4 层实现对传统MIL-STD-1553B Notice 2 总线协议的映射,以实现在实时的航空应用中,以命令/响应的模式进行具有确定性的通信。由于FC-AE-1553采用了光纤通道技术,所以

FC-AE-1553的性能较之MIL-STD-1553B 总线有了很大的扩展,远远超过传统MIL-STD-1553B 总线的功能。这些扩展功能包括足够多的终端数(支持224个)、消息长度(232个32 位字)和子地址个数(232个)。

一个典型的FC-AE-1553 网络组成为:网络控制器(NC)、网络终端(NT)、光纤通道网络自身、FC-AE-1553 总线桥、MIL-STD-1553B 总线。FC-AE-1553 总线与MIL-STD-1553B 总线有着诸多的相同点和不同点。控

制器方面,MIL-STD-1553B 总线内只有一个BC,而在FC-AE-1553 网络中可能有一个或多个激活的NC。NC 主要的作用在于安排FC-AE-1553 的数据传输。终端方面,MIL-STD-1553B 总线的RT 始终是被动的,而FC-AE-1553 网络中的一些节点可以通过动态网络控制功能同时作为NC 和NT 来工作。传输格式方面,与传统的MIL-STD-1553B 总线类似,FC-AE-1553 总线也有十种传输方式。但在NT-to-NT和NT-to-NTs 的交换上,FC-AE-1553 总线有了NC是否监控的选项。

FC-AE-1553网络可以对现有的MIL-STD-1553网络设计、软件和硬件进行平滑升级。FC-AE-1553 网络既具有MIL-STD-1553B 网络的基本特性,又具有光纤通道的良好网络性能,是对MIL-STD-1553B 很好的传承。

3. FC-AE-ASM

FC-AE-ASM (Fiber Channel Avionics Environment Anonymous Subscriber Message:光纤通道-航空电子环境-匿名用户消息)协议作为上层协议遵循支持航空电子系统中确定、安全、低负载以及低开销的通信要求,可轻易映射到其它的物理层上进行传输,并将标记FC-AE-ASM协议的头部字段独立并恰当放到光纤通道各类数据域上。

FC-AE-ASM 中的每一条消息都源于一个单一序列的单向交换。接收方希望消息是按照预先确定的速率到达,而不需要知道消息的物理源头在哪里。从多消息源发出的一个单一消息应是一个单一的帧序列,多帧消息需只来源于单一源头,多帧序列应该基于消息ID 和相对偏移而被重新组合,所有帧的ASM 帧头在重组发生前被去掉。

根据FC-AE-ASM协议的特点以及帧的基本工作方式,通过发送消息端口的ID号以及应用类型完成对

FC-AE-ASM帧的消息ID的定义以及区分,并在FC-2层完成对消息帧的分段以及重组。

FC-AE-ASM协议只支持第三类服务,该类服务提供N端口之间没有确认的无连接服务。该类帧的传送与路由和第二类服务一样,即每个帧通过交换结构独立路由,所以一个N端口可以发送连续的帧到不同的目的端口,也可以从不同的端口接收连续的帧。在这种情况下,消息ID的设计变的尤为重要。考虑这种情况,在系统设计时,每个网络节点都应该有自己的ID号,用于唯一标识该节点,并且该节点作为网络节点的地址将用于定义FC 网络数据帧头中的消息源和消息目的域。根据协议要求,该号码由3个字节组成,其中高位字节为域标识,次高为字节为区标识,最后一个字节为节点编号。

同时需要注意的是N端口传送FC-AE-ASM帧之间没有确认,所以除通过帧中已定义的偏移量进行差错检测外,在某些情况下须用ULP(upper level protocol)完成差错检测与恢复。协议规定,在交换式网络中,每条FC-AE-ASM数据都是节点主动发出的,没有触发数据,接收节点只要接收数据即可,无须知道数据的发送节点地址,接收节点将根据数据的标识符来确定是否是自己需要的数据和该条数据的含义。

FC-AE-ASM协议底层遵循FC-FS和FC-AL-2标准,具有消息传输安全性高、延时低等特点,适应于航空电子中处理器与传感器、测试设备和显示器间通信的应用模式。

4. FC-AE-FCLP

FCLP 是Fiber Channel Lightweight Protocol 的缩写,即轻量协议。FC-AE-FCLP是FC-AE提出的5种高层协议之一, 该协议用于航空电子系统各部分之间的通信服务。FC-AE-FCLP该协议是在FCP, FC-FS和

FC-AL-2标准基础上, 依赖上述协议标准支持的各种服务定义的。针对航空电子环境中高可靠性、高传输效率的要求, 将FCP的SCSI命令简化, 增加通道建立、关闭等命令类型, 去除多余命令, 简化协议接口而形成的, 以此提供低延迟、低开销的航空电子系统各部分间的通信服务。

FCLP协议作为FCP基础上的高速轻载通信协议,属于端到端协议。该协议通信系统为用户提供了简单的应用程序接口来实现数据的高速传输。FCLP协议通信主要使用三个FCP I/O命令,分别是FCP读命令、FCP写命令和FCP控制命令。因此FCLP协议允许一个物理连接建立多个通道。在建立好的通道上,通信两端可以互相发送数据。

FCLP协议通信原型系统从功能上进行划分4大功能管理模块,分别是设备管理功能模块、任务管理功能模块、通信连接管理功能模块和错误处理功能模块。

在FCP协议中,支持光纤通道处理并完成SCSI initiator功能和SCSI target功能的N端口或者NL端口被统一称之为FCP端口。此时光纤通道协议的FC-2层被用来看作支持信息组和几种服务类型的底层高性能传输服务机制,位于FC-4层次的FCP协议映射层使用底层光纤通道提供的服务来执行具体操作步骤,从而实现FC-4层所要求的各项功能。具体来说FCLP协议层根据已定义好的协议规则,实现FCP网络通信功能并构造典型的端到端网络通信模式,从而为上层应用提供应用接口。

5. FC-AE-RDMA

FC-AE-RDMA:RDMA 是Remote Direct Memory Access 的缩写,即远程直接数据存储。该协议底层服务部分遵循于FCP 协议,其主要特点在于允许信息发起者对远程目标存储器进行低延迟的数据读写操作。RDMA 通过网络把数据直接从一端的计算机存储空间传入另一端的计算机的存储区,这种快速的数据转移,不需要经过处理器耗时的传输和繁杂的复制操作。这种技术消除了大量冗余的数据复制操作,减少了数据跨层转移的时延,使系统能够腾出总线空间和CPU 周期用于改进应用系统性能,节省了大量的内存带宽,提高了CPU 的利用率,显著降低了时延。

FC-AE-RDMA 的关键性质是其允许一个发起端(Initiator)以P2P(peer-to-peer)(类似于SCSI-3 的处理器设备类型)模式从一个远程目标的内存中读数据或向其写数据。所有FC-AE-RDMA 设备能够既作为发起端操作,也能作为目标端工作。

FC-AE-RDMA 的工作原理为两个设备节点分为客户端和服务器端,中间链路由光纤链路连接,两个节点主要完成数据迁移任务,即一个节点可以直接将数据从内存中通过网络传送到另一个节点的内存中,而不对操作系统造成任何影响。从节点的内部组成来说,由于FC-AE-RDMA 节点是利用FCP 协议进行传输,所以节点应具有FCP协议处理功能,并且从RDMA 技术角度出发,数据的移动过程中应消除冗余数据复制操作,减轻CPU 负担,使系统能够充分利用总线带宽和CPU 周期等系统资源来改善应用系统性能,减少对带宽和处理器开销的需要,降低时延。节点间的数据迁移主要是FC-AE-RDMA 的读或写,根据协议标准,在节点间进行

FC-AE-RDMA的读写动作前,系统间应完成节点的发现和注册,登录过程。所以在上层应用中,我们应该实现系统注册登录控制,应用能够利用底层提供的接口进行数据的读写操作。

FC-AE-RDMA 作为FC-AE 的子协议,定义了FC-AE 对RDMA 的上层协议映射,作为基于FC 技术的一种轻量级协议,其目的就是允许利用FCP 协议,通过建立映射而使用熟悉的RDMA 概念,能够在航空系统的节点所提供的服务中支持低延迟,低通信消耗,适合于航空电子系统中紧急和关键数据的传输。

6. FC-AE-VI

FC-AE-VI 是Virtual Interface 的缩写,即基于光纤通道的航空电子环境中的虚拟接口。该协议遵循FC-VI 协议和FC-FS 协议。FC-VI 是在光纤通道上实现VI 架构,它允许数据在光纤通道节点的内存地址之间快速转移。FC-FS 则是光纤通道信号与信令协议,用于定义FC-1 和FC-2 层的内容。

FC-AE-VI的拓扑结构与FC-VI的拓扑结构一致,即采用仲裁环和交换式结构,并支持点对点和双冗余的连接模式。FC-VI的设计初衷是为了达到集群计算机之间通信等待减少和高带宽的效果。

VI提供面向连接的网络协议,与传统网络协议如TCP、UDP不同,在VI中,控制数据与消息数据时分开传输的。因此,在FC-VI中,也借鉴了VI的通信机制,实现VI消息和VI连接在FC-PH上的映射。

由于FC-VI使用了特殊的通信协议,在数据的传输速度上远远高于普通的交换设备,大大减少了CPU资源的占用。FC-VI对高速低延迟的网络数据进行优化,可有效的消除系统中节点之间通信的瓶颈。

7. 总结

本期对FC-AE系列标准进行了简单介绍分析,通过对FC-AE系列标准进行对比,我们认为FC-AE-1553总线由于其高实时、高带宽、高可靠、低损耗、与MIL-STD-1553兼容等优势是满足未来航空航天发展需求的数据总线之一。关于FC-AE-1553总线的详细内容,我们将在下一期的“FC总线技术简介(三)”中进行详细介绍。

现场总线郭琼习题答案

《现场总线及其应用第2版主编郭琼课后习题答案》 机电职业技术学院电气工程系 作者:卡尔二毛第一章: 1.过程控制系统的发展经历了那几代控制系统? 答:共5代。1.基地式仪表控制系统2.模拟式仪表控制系统3.直接式数字控制系统(DDC)4.集散控制系统(DCS)5.现场总线控制系统(FCS) 2.阐述DDC控制系统的结构及工作过程? 答:结构由:计算机控制系统和生产过程的输入、输出设备组成。 工作过程:计算机通过过程输入通道对生产现场的变量进行巡回检测,然后根据变量,按照一定的控制规律进行运算,最后将运算结果通过输出通道输出,并作用于执行器,使被控变量符合系统要求性能指标。 3.计算机在DDC控制系统中起什么作用? 答:完成对生产过程的自动控制、运行参数监视等。 4.DDC控制系统的输入、输出通道各起什么作用? 答:输入通道作用:用于向计算机输入生产过程的模拟信号、开关量信号或数字信号。 输出通道作用:用于将计算机的运算结果输出并作用于控制对象。 5.计算机的软件包括哪两大类?各起什么作用? 答:用户软件和系统软件。用户软件供用户使用处理一些相关工作;系统软件是用户软件的操作平台,具有开发性。 6.什么是集散控制系统?其基本设计思想是什么? 答:集散控制系统:由过程控制级和过程监控级组成的、以通信网络为纽带的多级计算机控制系统。核心思想:集中管理、分散控制。 7.简述集散控制系统的层次结构及各层次所起的作用? 答:层次结构:分散过程控制级、集中操作监控级、综合信息管理级; 分散过程控制级作用:完成生产过程的数据采集、闭环调节控制和顺序控制等功能。 集中操作监控级作用:了解系统操作、组态、工艺流程图显示、监控过程对象和控制装置的运行情况,并可通过通信网络向过程级设备发出控制和干预指令。 综合信息管理级作用:监视企业各部门的运行情况,实现生产管理和经营管理等功能。 8.生产过程包括哪些装置? 答:PLC、智能调节器、现场控制站和其他测控装置。

CAN总线接口

CAN总线接口 1.CAN模块简介 控制器局域网(CAN)模块是用于与其他外围设备或单片机 进行通信的模块,这种接口协议能在较大的噪声环境中进行通信,具有良好的扰干扰性能。 CAN模块是一个通信控制器,执行的是Bosch公司的CAN2.0A/B协议。它能支持CAN1.2、CAN 2.0A、CAN 2.OB 协议的旧版本和CAN2.OB现行版本,此控制器模块包含完整的CAN系统。 CAN模块由协议驱动和信息缓冲及控制组成,CAN协议驱动CAN总线 上接收和发送信息的所有功能。信息装载到某个相应的数据寄存器后再发送,通过读相应的寄存器可检查状态与错误信息。在CAN总线 上检测到的任何信息都要进行错误检查,然后与过滤器进行比较,判断是否被接收和存储到两个接收寄存器之一。 2.CAN模块支持的帧类型 CAN模块支持以下帧类型:标准数据帧、扩展数据帧、远程帧、出错帧、过载帧和空闲帧。 (1)数据帧。 用于各节点之间传送数据消息,由7个不同的位场组成:帧起始、仲裁场、控制场、数据场、CRC场、应答场和帧结束。数据帧结构如图1所示。 图1 数据帧组成

(2)远程帧。 当CAN网络上一个节点需要其他节点所拥有的数据信息时,可以通过发送远程帧来请求另一节点发送。该远程帧的标识符标识了所需数据的类型,因此,被送回的数据信息的标识符和远程帧的标识符完全一致。数据源节点在接收到远程帧后,根据远程帧的标识符判断所需数据信`患类型,并在总线空闲时将相应数据送出。远程帧由6个位场组成:帧起始、仲裁场、控制场、CRC场、应答场和帧结束。除了没有数据场和RTR为隐性外,远程帧结构和数据帧完全相同,远程帧结构如图2所示。 图2 远程帧结构 (3)错误帧。 为进行错误界定,每个CAN控制器均设有两个错误计数器 :发送错误计数器 (te C)和接收错误计数器(REC)。CAN总线上的所有节点按其错误计数器数值情况可分为3个状态:错误活动状态、错误认可状态和总线关闭状态。节点状态转换如图3所示。

总线的接口电路设计

PCI-Express总线的接口电路设计 王福泽 (天津工业大学) 一、 课题背景 计算机I/O技术在高性能计算发展中始终是一个关键技术。其技术特性决定 了计算机I/O的处理能力,进而决定了计算机的整体性能以及应用环境。从根本 上来说,无论现在还是将来,I/O技术都将制约着计算机技术的应用与发展,尤 其在高端计算领域。近年来随着高端计算市场的日益活跃,高性能I/O技术之争 也愈演愈烈。当计算机运算处理能力与总线数据传输速度的矛盾日益突出时,新 的总线技术便应运而生。在过去的十几年间,PCI(Peripheral component Interconnect)总线是成功的,它的平行总线执行机制现在看来依然具有很高的 先进性,但其带宽却早已露出疲态。PCI总线分有六种规格(表1所示),能提供133MBps到2131MBps的数据传输速率,而对于现有高性能产品例如万兆以太网 或者光纤通信,传统的PCI的数据传输速率早已入不敷出[4]。 表1 PCI总线六种规格 总线类型 总线形式 时钟频率 峰值带宽 每条总线上板卡插槽数 PCI32位 并行 33MHz 133MB/s 4-5 PCI32位 并行 66MHz 266MB/s 1-2 PCI-X 32位 并行 66MHz 266MB/s 4 PCI-X 32位 并行 133MHz 533MB/s 1-2 PCI-X 32位 并行 266MHz 1066MB/s 1 PCI-X 32位 并行 533MHz 2131MB/s 1 对于64位总线实现,上述所有带宽加倍 对于64位总线实现,上述所有带宽加倍仔细分析传统的PCI信号技术,可 发现并行式总线已逐渐走近其性能的极限,该种总线已经无法轻易地提升频率或 降低电压以提高数据传输率:其时钟和数据的同步传输方式受到信号偏移及PCB 布局的限制。高速串行总线的提出,成功的解决了这些问题,其代表应用就是PCI Express。PCI Express采用的串行方式,并且真正使用“电压差分传输” 即是两条信号线,以相互间的电压差作为逻辑“0”,“1”的表示,以此方式传输 可以将传输频率作极高的提升,使信号容易读取,噪声影响降低。由于是差分传输,所以每两条信号线才能单向传送1比特,即一根信号线为正、另一根信号线 为负,发送互为反相的信号,每一个“1比特”的两条信号线称为一个差分对。 按PCI Express技术规范规定,一个差分对的传输速率为2.5Gbps。实际使用中,

微机原理与接口技术部分复习题3(佳木斯大学)

〔习题1.1〕简答题 (1)计算机字长(Word)指的是什么? (2)总线信号分成哪三组信号? (3)PC机主存采用DRAM组成还是SRAM组成? (6)中断是什么? 〔解答〕 ①处理器每个单位时间可以处理的二进制数据位数称计算机字长。 ②总线信号分成三组,分别是数据总线、地址总线和控制总线。 ③ PC机主存采用DRAM组成。 ⑥中断是CPU正常执行程序的流程被某种原因打断、并暂时停止,转向执行事先安排好的一段处理程序,待该处理程序结束后仍返回被中断的指令继续执行的过程。 〔习题1.2〕判断题 (3)8086的数据总线为16位,也就是说8086的数据总线的个数、或说条数、位数是16。 (4)微机主存只要使用RAM芯片就可以了。 (5)处理器并不直接连接外设,而是通过I/O接口电路与外设连接。 ( 〔解答〕 ③对④错⑤对 〔习题1.3〕填空题 (2)Intel 8086支持___________容量主存空间,80486支持___________容量主存空间。 (3)二进制16位共有___________个编码组合,如果一位对应处理器一个地址信号,16位地址信号共能寻址___________容量主存空间。 〔解答〕 ② 1MB,4GB ③ 216,64KB 〔习题1.4〕说明微型计算机系统的硬件组成及各部分作用。 〔解答〕 CPU:CPU也称处理器,是微机的核心。它采用大规模集成电路芯片,芯片集成了控制器、运算器和若干高速存储单元(即寄存器)。处理器及其支持电路构成了微机系统的控制中心,对系统的各个部件进行统一的协调和控制。 存储器:存储器是存放程序和数据的部件。 外部设备:外部设备是指可与微机进行交互的输入(Input)设备和输出(Output)设备,也称I/O 设备。I/O设备通过I/O接口与主机连接。 总线:互连各个部件的共用通道,主要含数据总线、地址总线和控制总线信号。 〔习题1.7〕区别如下概念:助记符、汇编语言、汇编语言程序和汇编程序。 〔解答〕 助记符:人们采用便于记忆、并能描述指令功能的符号来表示机器指令操作码,该符号称为指令助记符。 汇编语言:用助记符表示的指令以及使用它们编写程序的规则就形成汇编语言。 汇编语言程序:用汇编语言书写的程序就是汇编语言程序,或称汇编语言源程序。 汇编程序:汇编语言源程序要翻译成机器语言程序才可以由处理器执行。这个翻译的过程称为“汇编”,完成汇编工作的程序就是汇编程序(Assembler)。

CAN总线应用电路

涡流量计CAN总线接口电路图 快速瓶劲识别-更好的负载测试方法 CAN总线是一种串行数据通信协议,在CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可以完成对通信数据成帧处理。涡流量计CAN总线接口的具体电路如图1所示。 笔者用SJA1000作为流量计的CAN控制器,与CPU(单片机)的I/O口直接相连,再通过PCA82C250组成CAN总线。这种结构很容易实现CAN网络节点中的信息收发,从而实现对现场的控制。 SJA1000的AD0~AD7连接到MSP420F149的P0口,INT接到P1.0,/CS接到P1.1,/RD连接到P1.2,/WR连到P1.3,ALE连到P1.4,SJA1000的RX0与TX0分别通过两个高速光耦CNW137与PCA82C250相连后,连到CAN总线上。 PCA82C250为CAN总线收发器,是CAN控制器与CAN总线的接口器件,对CAN 总线差分方式发送,其RS引脚用于选择PCA82C250的工作方式:高速方式、斜率方式。

RS接地为高速,RS引脚串接一个电阻后再接地,用于控制上升和下降斜率,从而减小射频干扰。RS引脚接高电平,PCA82C250处于等待状态。此时,发送器关闭,接收器处于低电流工作,可以对CAN总线上的显性位做出反应,通知CPU。实验数据表明15~200K 为较理想的取值范围,在这种情况下,可以使用平行线或双绞线作总线,本文中PCA82C250的斜率电阻为取30K。 CNW137为高速光耦,最高速度为10Mbps,用于保护CAN总控制器SJA1000。CAN 总线的终端匹配电阻起相当重要的作用,不合适的电阻会使数据通信的抗干扰性及可靠性大大降低,甚至无法通信,范围为108~132Ω,本文使用的电阻为124Ω。 SJA1000的功能简介 CAN通信协议主要由CAN控制器完成。SJA1000是适用于汽车和一般工业环境控制器局域网(CAN)的高集成度独立控制器,具有完成高性能通信协议所要求的全部必要特性,具有简单总线连接的SJA1000可完成物理层和数据链路层的所有功能,应用层功能可由微控制器完成,SJA1000为其提供了一个多用途的接口。 SJA1000是一个独立的CAN控制器,它是Philips公司另一个CAN控制器PCA82C200的后继产品,在软件和引脚上均与PCA82C200兼容。但它不仅仅是PCA82C200的一个简单替代产品,它增加了许多新的功能,使得其性能更佳,尤其适用于对系统优化、诊断和维护要求比较高的场合。 SJA1000的功能框图如图2所示,由以下几部分构成:接口管理逻辑;发送缓冲器,能够存储1个完整的报文(扩展的或标准的);验收滤波器;接收FIFO;CAN核心模块。

现场总线综述及应用实例.

现场总线技术综述 一.概述 现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。现场总线控制系统(FCS)的出现引起了传统的PLC 和DCS控制系统基本结构的革命性变化。现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。现场总线控制系统技术已成为工业控制领域中的一个热点。 1.现场总线的特点 现场总线技术实际上是采用串行数据传输和连接方式代替传统的并联信号传输和连接方式的方法,它依次实现了控制层和现场总线设备层之间的数据传输,同时在保证传输实时性的情况下实现信息的可靠性和开放性。一般的现场总线具有以下几个特点:(1)布线简单(2)开放性(3)实时性(4)可靠性2.现场总线的优点 由于现场总线以上的特点,特别是现场总线系统结构的简化,使控制系统的设计,安装,投运到正常生产运行以及检修维护,都体现出优越性。 1.节省硬件数量与投资, 2.节省安装费用 3.节省维护开销 4.用户具有高度的系统集成主动权 5.提高了系统的准确性与可靠性 3.现场总线的应用领域 目前现场总线技术的应用主要集中在冶金、电力、水处理、乳品饮料、烟草、水泥、石化、矿山以及OEM用户等各个行业,同时还有道路无人监控、楼宇自动化、智能家居等新技术领域。

二.现场总线的标准 1.IEC61158的制定 1984年IEC提出现场总线国际标准的草案。1993年才通过了物理层的标准IEC1158-2,并且在数据链路层的投票过程中几经反复。 发展61158现场总线的本意是“排他的和联合的”,各自独立的“现场总线”将给用户带来许多头疼的技术问题,牺牲的是用户的利益。在现场总线领域里,德国派(ISP,Interoperable System Project,可互操作系统规划,是一个以Profibus 为基础制定的现场总线国际组织)和法国派(WORLD FIP)的对持十分激烈,互不相让,以至于IEC无法通过国际标准。1994年6月在国际上要求联合强烈的呼声和用户的压力下,ISP 和World FIP成立了FF(Fieldbus Foundation,现场总线基金会), 推出了FF现场总线。IEC投票的文本就是以FF为蓝本的方案。这是现场总线发展的主流方向。 由于FF的目标是致力于建立统一的国际标准,它的成立实质上意味着工业界将摒弃ISP(含PROFIBUS)和WORLD FIP。它的成立导致了德国派ISP 立即解散;法国派(WORLD FIP)已经明确表示不反对IEC的方案,并且可以友好地与IEC方案互联,甚至提出了与FF“无缝连接”方案;而剩下的德国派PROFIBUS因为与FF的方案和技术途径不同,过渡将是非常困难,因此强烈反对IEC方案以保住市场份额。但是PROFIBUS提出的技术理由仅仅是一些支节问题,于是一些评论认为它是出于商业利益的驱动去反对FF,国际上的现场总线之争已经演变成为PROFIBUS的德国派与以FF为代表的“联合派”竞争。有趣的是工业国家的大公司往往“脚踏几条船”加入各种现场总线以获得更多的商业 利益,如最能说明问题的是最主要的反对者西门子公司(PROFIBUS主要成员)也参加了FF。这种具有特殊意义事实已经说明了PROFIBUS要与FF对抗在技术上处于明显的劣势。 在现场总线国际标准IEC61158中,采用了一带七的类型,即: 类型1 原IEC61158技术报告(即FF -H1) 类型2 Control Net(美国Rockwell)公司支持 类型3 Profibus(德国SIEMENS公司支持) 类型4 P-Net(丹麦Process Data公司支持)

7总线与接口

总线与接口部分 09-20.假设某系统总线在一个总线周期中并行传输4字节信息,一个总线周期占用2个时钟周期,总线时钟频率为10 MHz,则总线带宽是 A.10 MB/s B.20 MB/s C.40 MB/s D.80 MB/s 10-20.下列选项中的英文缩写均为总线标准的是 A.PCI、CRT、USB、EISA B.ISA、CPI、VESA、EISA C.ISA、SCSI、RAM、MIPS D.ISA、EISA、PCI、PCI-Express 11-20.在系统总线的数据线上,不可能传输的是 A.指令B.操作数C.握手(应答)信号D.中断类型号 12-19.某同步总线的时钟频率为100MHz,宽度为32位,地址/数据线复用,每传输一个地址或数据占用一个时钟周期。若该总线支持突发(猝发)传输方式,则一次“主存写”总线事务传输128位数据所需要的时间至少是()。 A.20ns B.40ns C.50ns D.80ns 12-20. 下列关于USB总线特性的描述中,错误的是()。 A.可实现外设的即插即用和热插拔 B.可通过级联方式连接多台外设 C.是一种通信总线,可连接不同外设 D.同时可传输2位数据,数据传输率高 12-21.下列选项中,在I/O总线的数据线上传输的信息包括()。 Ⅰ、I/O接口中的命令字Ⅱ、I/O接口中的状态字Ⅲ、中断类型号 A. 仅Ⅰ、Ⅱ B. 仅Ⅰ、Ⅲ C. 仅Ⅱ、Ⅲ D.Ⅰ、Ⅱ、Ⅲ 13-19、下列选项中,用于设备和设备控制器(I/O接口)之间互连的接口标准是 PCI B、USB C、AGP D、PCI-Express 14-19. 某同步总线采用数据线和地址线复用方式。其中数据线有32根,总线时钟频率为66MHZ,每个时钟周期传送两次数据。(上升沿和下降沿各传送一次数据)该总线的最大数据传输率是(总线带宽):() A. 132MB/S B. 264 MB/S C.528 MB/S D. 1056 MB/S 14- 20.一次总线事务中,主设备只需给出一个首地址,从设备就能从首地址开始的若干连续单元中读出或写入多个数,这种总线事务方式称为() A. 并行传输 B.串行传输 C.突发传输 D.同步传输 14-21.下列有关I/O借口的叙述中错误的是: A.状态端口和控制端口可以合用同一寄存器 B. I/O接口中CPU可访问寄存器,称为I/O端口 C.采用独立编址方式时,I/O端口地址和主存地址可能相同 D.采用统一编址方式时,CPU不能用访存指令访问I/O端口 15-19.下列有关总线定时的叙述中,错误的是() A.异步通信方式中,全互锁协议最慢 B.异步通信方式中,非互锁协议的可靠性最差 C.同步通信方式中,同步时钟信号可由多设备提供 D.半同步通信方式中,握手信号的采样由同步时钟控制 15-21.在采用中断I/O方式控制打印输出的情况下,CPU和打印控制接口中的I/O端口之间交换的信息不可能是( )

接口概念和总线技术

接口和总线 接口:是微型计算机的基本内容,是计算机与外部交换信息的桥梁。 总线:是计算机各种功能部件之间进行信息传输的公共通道。 微机接口 接口的基本概念 为了解决CPU和外设之间的速度差异以及外设各不相同的信息格式的问题,出现了带缓冲器的I/O装置,这里的缓冲器是指通过一个或几个单独的寄存器,实现主机和外设之间的数据传送。这里的缓冲器被发展为功能更强的I/O接口电路。 总结:I/O接口是微处理器与“外部世界”之间的连接电路,是主机与外设之间数据的“转接站”,同时提供主机和外设之间传送数据所需的状态信息,并能接受和执行主机发来的各种控制命令。 接口的基本功能 接口的基本功能有:数据缓冲,提供联络信息,信号与信息格式的转换,设备选择,中断管理,可编程功能。 接口的基本结构 接口一方面数据总线、地址总线以及控制总线和CPU进行联系,另一方面同响应的外设连接。接口内部都包含一组寄存器,通常有数据输入寄存器、数据输出寄存器、状态寄存器和控制寄存器,有的接口还包含中断逻辑寄存器。 数据输入寄存器用于暂存外设送往主机的数据。 数据输出寄存器用于暂存主机送往外设的数据。 状态寄存器用于保存I/O接口的状态信息。 控制寄存器用于存放CPU发出的控制命令。 中断控制逻辑电路用于实现外设准备就绪时向CPU发出中断请求信号。 与接口传输数据的方式 主机与外设之间传输数据的方式一般有三种:程序控制方式,中断控制方式,DMA方式。 程序控制方式:是指在程序控制下进行数据传送,又分为无条件传输方式和程序查询传送方式。 中断控制方式:是指CPU在执行当前程序时,若出现了紧急事件,CPU必须终止现在

现场总线概述

现场总线概述 现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。现场总线控制系统(FCS)的出现引起了传统的PLC和DCS控制系统基本结构的革命性变化。现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。现场总线控制系统技术已成为工业控制领域中的一个热点。 1 现场总线的发展 计算机控制系统的早期,采用一台小型机控制几十条控制回路,目的是降低每条回路的成本。但由于计算机的故障将导致所有控制回路失效,所以后来发展成分布式控制(DCS),即由多台微机进行数据采集和控制,微机间用局域网(LAN)连接起来成为一个统一系统。DCS沿用了二十多年,其优点和缺点均充分显露。最主要的问题仍然是可靠性:一台微机坏了,该微机管辖下的所有功能都失效;一块AD板上的模/数转换器坏了,该板上的所有通道(8或16个)全部失效。曾有过采用双机双I/O等冗余设计,但这又增加了成本,增加了系统的复杂性。为了克服系统可靠性、成本和复杂性之间的矛盾,更为了适应广大用户要求的系统开放性、互操作性要求,实现控制系统的网络化,一种新型控制技术──现场总线控制系统(FCS)正迅速发展起来。 1.1 什么是现场总线 从名词定义来讲,现场总线是用于现场电器、现场仪表及现场设备与控制室主机系统之间的一种开放的、全数字化、双向、多站的通信系统。而现场总线标准规定某个控制系统中一定数量的现场设备之间如何交换数据。数据的传输介质可以是电线电缆、光缆、电话线、无线电等等。 通俗地讲,现场总线是用在现场的总线技术。传统控制系统的接线方式是一种并联接线方式,从PLC控制各个电器元件,对应每一个元件有一个I/O口,两者之间需用两根线进行连接,作为控制和/或电源。当PLC所控制的电器元件数量达到数十个甚至数百个时,整个系统的接线就显得十分复杂,容易搞错,施工和维护都十分不便。为此,人们考虑怎样把那么多的导线合并到一起,用一根导线来连接所有设备,所有的数据和信号都在这根线上流通,同时设备之间的控制和通信可任意设置。因而这根线自然而然地称为了总线,就如计算机内部的总线概念一样。由于控制对象都在工矿现场,不同于计算机通常用于室内,所以这种总线被称为现场的总线,简称现场总线。

系统总线和具有基本输入输出功能的总线接口实验报告

实验报告 课程名称:计算机组成原理 实验项目名称:系统总线和具有基本输入输出功能的总线接口实验 一、实 验 目 的 1.理解总线的概念及其特性。 2.掌握控制总线的功能和应用。 二、实验设备与器件 PC 机一台,TD-CMA 实验系统一套。 三、实 验 原 理 由于存储器和输入、输出设备最终是要挂接到外部总线上,所以需要外部总线提供数据信号、地址信号以及控制信号。在该实验平台中,外部总线分为数据总线、地址总线、和控制总线,分别为外设提供上述信号。外部总线和CPU 内总线之间通过三态门连接,同时实现了内外总线的分离和对于数据流向的控制。地址总线可以为外部设备提供地址信号和片选信号。由地址总线的高位进行译码,系统的I/O 地址译码原理见图4-1-1(在地址总线单元)。由于使用A6、A7进行译码, I/O 地址空间被分为四个区,如表4-1-1所示: A1B1A2B2G1N G2N Y10N Y20N Y13N Y12N Y11N Y23N Y22N Y21N 74L S 139 G N D A6A7 IOY0IOY1IOY2IOY3 图4-1-1 I/O 地址译码原理图 表4-1-1 I/O 地址空间分配 为了实现对于MEM 和外设的读写操作,还需要一个读写控制逻辑,使得CPU 能控制MEM 和I/O 设备的读写,实验中的读写控制逻辑如图4-1-2所示,由于T3的参与,可以保证写脉宽与T3一致,T3由时序单元的TS3给出(时序单元的介绍见附录2)。IOM 用来选择是对I/O 设备还是对MEM 进行读写操作,IOM=1时对I/O 设备进行读写操作,IOM=0时对MEM 进行读写操作。RD=1时为读,WR=1时为写。

现场总线技术阶段练习二答案

现场总线技术阶段练习2 一、填充题 1.一个LonWorks控制节点主要包含、、、。 2.Neuron芯片内部装有三个微处理器,分别为、、。3.神经元芯片的11个I/O有种I/O对象,分别为、、、。 3.双绞线是使用最广泛的一种介质,对双绞线的支持主要有三类收发器:、、。 4.在LonWorks控制网络中,路由器的作用是:、、。 5.LonWorks控制网络中的路由器有四种路由算法可供选择,依次为、、、。 6.LonTalk协议的网络地址结构为三层,依次为、、。7.LonTalk协议使用改进的CSMA介质访问控制协议,称为。 8.LonTalk协议提供四种类型的报文服务,依次为、、、。 9.LonWorks控制网络提供有两种通信手段,依次为、。 10.和是LonWorks的开发工具。 11.LNS包括三类设备, 依次为、、。11.Isochronous Real time表示。 12.CIP采用来实现实时I/O报文传输或者内部报文传输;采用来实现信息报文交换或者外部报文传输。 13.PROFInet = + + 。 二、简答题 1.什么是工业以太网? 2.以太网进入工控领域有什么优势? 3.简述Tunneling的含义。

4.在工控领域,以太网技术应用受限的原因是什么? 5.说出任意4种工业以太网技术。 现场总线技术阶段练习2答案 一、填充题 1.应用CPU、I/O处理单元、通信处理器、收发器和电源。 2.MAC处理器、网络处理器、应用处理器。 3.34,直接I/O对象、并行I/O对象、串行I/O对象、定时/计数器对象。 3.直接驱动、EIA-485、变压器耦合。 4.扩展通道的容量、连接不同的通信介质或波待率、提高LON总线可靠性、全面提高网络性能。 5.配置型路由器、学习型路由器、桥接器、中继器。 6.域(Domain)、子网(Subnet)和节点(Node)。 7.带预测的P-坚持CSMA(Predictive P-persistent CSMA)。 8.应答方式、请求/响应方式、非应答重发方式、非应答方式。 9.网络变量、显式报文。 10.LonBuilder 、NodeBuilder。 11.路由器设备、应用节点、系统级设备。 11.等时同步实时通信 12.控制协议、信息协议。 13.PROFIBUS、Ethernet、COM/DCOM。 二、简答题 1.工业以太网是普通以太网技术在控制网络延伸的产物,是工业应用环境下信息网络与控制网络的结合体。 2.价格优势:由于信息网络的存在和以太网的大量使用,使得其具有价格明显低于控制网络相应软硬件的特点,如网卡。 技术优势:技术成熟、易于得到、技术深入人心,已为许多人掌握。 有利于企业网络的信息集成,便于与上层网络的连接,便于与外界沟通信息。 工业以太网沿用现有以太网技术可发挥其上述优势。 工业以太网的标准化工作目前一是集中在应用层,二是致力于在数据链路层实现实时以太网。 工业以太网目前还没有一致的定义与规范。 3.Tunneling指是网络隧道,它指的是利用一种网络协议来传输另一种网络协议,也就是将现有的透明网络信息进行再次封装,从而保证网络信息传输的安全性。 4.CSMA/CD的媒体访问控制方式不能满足一些控制场合的实时性要求;接插件、集线器、交换机等是为办公应用设计的,不适应工业现场恶劣环境的要求;抗电磁干扰能力;本质安全;总线供电。 5.HSE、EtherNet/IP、ProfiNet、Modbus-TCP、PowerLink、EtherCat、EPA等。

什么是计算机总线 总线和接口的区别

什么是计算机总线总线和接口的区别 什么是计算机总线这个和计算机主机的构造有关系,首先,我们都知道计算机的cpu由两个部分组成,一个是控制单元,另一个是算术逻辑单元,cpu的控制单元负责计算机各个组件的协调与沟通,什么是沟通?就是数据传输,比如输入设备将信息传输到主存储器中,主存储器将数据传输到cpu中,cpu计算结果输出到输出设备等等。而cpu 的算术逻辑主要是进行逻辑上的运作,判断等,比如加减乘除运算。cpu只负责运算和协调控制各个组件,那么它所需要的数据从哪里来呢?答案是从主存储器那里来,输入设备会将用户输入的数给cpu(这是Intel的构架,AMD直接将主存储器和cpu连接而不通过北桥),北桥通往cpu的总线,因为需要连接主存储器和显示适配器等,因此需要极高的速度,我们把这条总线称之为系统总线,总线一次能传输的数据一般是32bit和64bit两种,而这些连接北桥通往cpu的设备,又有一个用来衡量传输能力的标准,叫做外频,举个例子,如果外频是333MHz的话,就意味著这些连接北桥的设备,每秒进行3.33*10 次传输,计算机中还有一个被固定死的倍频,cpu的主频(及每秒运作多少次)=外频*倍频,据说这个概念是为了协调高速cpu与低速外部设备而设计的==。外部设备的每秒数据传输量=每秒传输多少次*总线宽度即可得之。 下面来说一下南桥,南桥和北桥一样,也是用来连接计算机设备的,主要是连接低速的网卡,USB设备,音频,硬盘等设备,连接这些设备也是由一条总线牵连,我们叫做I/O总线,至于PCI,PCI-Express是啥?我们就拿PCI-Express说事吧,PCI-Express就是总线接口,从主板表面上看,就是主存储器,显示适配器的插槽嘛,PCI-Express是新一代的总线接口,用来取代老式的PCI,AGP等,别小看这个东东,他影响着数据的传输速度哦,现在很多硬件都是往匹配PCI-Express方向发展,SATA是啥?和IDE插槽一样,是用来连接硬盘设备的,最后附上一张图: 总线和接口的区别CPU与外设设备、存储器的连接和数据交换都需要通过接口设备来实现,前者被称为I/O接口,后者称为储存器接口。存储器通常在CPU的同步控制下工作,

I2C总线接口电路设计..

FPGA与I2C总线器件接口电路设计 利用FPGA模拟I2C总线协议对I2C总线接口器件AT24C256 进行读写操作。利用按键输入读写命令和相应的地址、数据,对芯片进行读写操作,读写的数据用数码管显示。 一、I2C总线接口电路设计分析 1. I2C 总线协议 I2C 总线的两根通信线,一根是串行数据线SDA,另一根是串行时钟线SCL。多个符合I2C总线标准的器件都可以通过同一条I2C总线进行通信,而不需要额外的地址译码器。每个连接到总线上的器件都有一个唯一的地址作为识别的标志,都可以发送或接收数据。I2C 总线通信速率受主机控制,标准模式下可达100kbit/s。 一般具有I2C总线的器件其SDA、SCL引脚都为集电极(或漏极)开路结构。因此实际使用时,SDA 和SCL信号线必须加3~10K的上拉电阻。总线空闲时均保持高平。I2C总线接法如图1所示。 图1 I2C总线连接示意图 (1) I2C的主机和从机,发送器和接收器 产生I2C总线时钟信号和起始、停止控制信号的器件,称为主机,被主机寻址的器件称为从机。 任何将数据传送到I2C总线的器件称为发送器,任何从I2C总线接收数据的器件称为接收器。 主机和从机都可作为发送数据器件和接收数据器件。 (2) I2C 总线上数据的有效性: 时钟线SCL为高电平时,数据线SDA的任何电平变化将被看作总线的起始或停止信号; 在数据传送过程中,当时钟线SCL为高电平时,数据线SDA必须保持稳定状态,不允许有跳变;数据线SDA的状态只能在SCL低电平期间才能改变。即进行串行传送数据时,在SCL高电平期间传送位数据,低电平期间准备数据。 (3) 从机地址 I2C总线不需要额外的片选信号或地址译码。多个I2C总线接口器件可连接到一条I2C总线上,它们之间通过地址来区分。主机是主控制器件,只有一个主机的不需要地址。其它器件均为从机,均有器件地址,但必须保证同一条I2C总线上的器件地址不能重复。一般从机地址由7位地址位和1位读写位组成,地址位为高7位,读写位为最低位。读写位为0时,表示主机将向从机写入数据;读写位为1时,表示主机将要从从机读取数据。 (4) I2C 总线的通信时序

现场总线习题答案

现场总线习题答案 作者:张磊 第一章现场总线技术概述 1.自动控制系统的发展经历了哪几个阶段? 大致经历了四个发展阶段,具体如下:20世纪50年代以前是模拟仪表控制系统;直接数字控制系统;70年代中期出现集散控制系统;90年代后期现场总线控制系统。 2.DCS控制系统的结构包括哪几部分? 包括三部分:分散过程控制装置部分,操作管理装置部分,通信系统部分 3.现场总线的基本定义? 现场总线(Fieldbus):是用于过程自动化或制造自动化中的,实现智能化现场设备(例如,变送器、执行器、控制器)与高层设备(例如主机、网关、人机接口设备)之间互联的,全数字、串行、双向的通信系统。 5. 现场总线控制系统的技术特点。 1.开放性; 2.全数字化; 3.双向通信; 4.互可操作性与互用性; 5.现场设备的智能化与功能自治性 6.系统结构的高度分散性 7.对现场环境的适应性 6. FCS相对于DCS具有哪些优越性? 1.FCS实现全数字化通信2.FCS实现彻底的全分散式控制3.FCS实现不同厂商产品互联、互操作4.FCS增强系统的可靠性、可维护性5.FCS降低系统工程成本 7. 分析现场总线的现状,展望其发展前景。 第二章数据通信基础与网络互联 1.何谓现场总线的主设备、从设备? 可在总线上发起信息传输的设备叫做“总线主设备”,又称命令者。不能在总线上主动发起通信、只能挂接在总线上、对总线信息进行接收查询的设备称为总线从设备(bus slaver),也称基本设备。

2.总线操作过程的内容是什么? 总线上命令者与响应者之间的连结→数据传送→脱开,这一操作序列称为一次总线“交易”(transaction),或者叫做一次总线操作。 3.寻址方式有几种?物理寻址逻辑寻址广播寻址 4.通信系统由哪几部分组成?各自具有什么功能? 通信系统是传递信息所需的一切技术设备的总和。它一般由信息源和信息接收者,发送、接收设备,传输媒介几部分组成。 信息源和接收者是信息的产生者和使用者 发送设备的基本功能是将信息源和传输媒介匹配起来,即将信息源产生的消息信号经过编码,并变换为便于传送的信号形式,送往传输媒介。 传输介质指发送设备到接收设备之间信号传递所经媒介。它可以是无线的,也可以是有线的(包括光纤)。有线和无线均有多种传输媒介,如电磁波、红外线为无线传输介质,各种电缆、光缆、双绞线等为有线传输介质。 接收设备的基本功能是完成发送设备的反变换,即进行解调、译码、解密等。它的任务是从带有干扰的信号中正确恢复出原始信息来,对于多路复用信号,还包括解除多路复用,实现正确分路。 5.通信方式按照信息的传输方向分为哪几种? 单工(simplex)方式;半双工(Half duplex)方式;全双工(Full duplex)方式 6.通信的传输模式分为哪几种? 基带传输载波(带)传输宽带传输异步转移模式ATM 7.在载带传输中有哪几种常用的数据表示方法? 调幅方式、调频方式、调幅方式 8.在数据通讯系统中,通常采用哪几种数据交换方式? 线路交换方式报文交换方式报文分组交换方式 9.比较通信系统中的几种拓扑结构。 星型结构:在星形拓扑中,每个站通过点-点连接到中央节点,任何两站之间通信都通过中

实验四 系统总线和具有基本输入输出功能的总线接口实验

山西大学计算机与信息技术学院 实验报告 为了实现对于MEM 和外设的读写操作,还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如图 4-2 所示,由于 T3 的参与,可以保证写脉宽与 T3 时序单元的TS3 给出(时序单元的介绍见附录2)。IOM 用来选择是对I/O 设备还是对 MEM 作,IOM=1 时对 I/O 设备进行读写操作,IOM=0 时对 MEM 进行读写操作。RD=1 时为读,

④将R0 寄存器中的数用LED 数码管显示。 先将WR、RD、IOM 分别置为1、0、1,对OUT 单元进行写操作;再将K7 置为0,打开 R0 寄存器的输出;K6 置为 0,关闭 R0 寄存器的输入;LDAR 置为 0,不将数据总线的数打入地址寄存器。连续四次点击图形界面上的“单节拍运行”按扭,观察图形界面,在T3时刻完成对OUT 单元的写入操作。

三、实验总结: 1、存储器和输入、输出设备最终是要挂接到外部总线上,因此需要外部总线提供数据信 号以及控制信号。 2、外部总线和CPU 内总线之间通过三态门连接,同时实现了内外总线的分离和对于数据流向的控制。 而地址总线可以为外部设备提供地址信号和片选信号。 3.为了实现对于MEM 和外设的读写操作,还需要一个读写控制逻辑,使得CPU 能控制MEM和 I/O 读写 4、WR=0,RD=1,IOM=0时 E0 灭,表示存储器读功能信号有效。 WR=1,RD=0,IOM=0)连续按动开关ST,当指示灯显示为 T3 时刻时,E1 灭,表示存储器写功能信号有效。 WR=0,RD=1,IOM=1时,E2 灭,表示I/O 读功能信号有效。 WR=1,RD=0,IOM=1) 时,观察扩展单元数据指示灯,指示灯显示为T3 时刻时,E3 灭,表示功能信号有效。

单片机总线接口电路的设计

Yibin University EDA技术及应用期末设计报告 题目: 单片机总线接口电路的设计 专业: 电子信息科学与技术 2013 年 12月 19 日 摘要: 单片机具有性价比高,功能灵活,易于人机交换和良好的数据

处理能力等特点;FPGA具有高速,高可靠以及开发方便快捷规范等特点,以此两类器件相结合的电路结构在许多高性能仪器仪表和电子产品中被广泛运用。在目前的单片机与FPGA的接口电路实际设计中,重要的角色之一就是并串转换电路,并且在很多其它设计中是必不可少的,尤其是在数据量庞大的设计中,如果前级电路和后级电路直接通过并行传输数据,那么数据有多少位就得有多少根通信线,这必将导致通信的准确度的降低和通信成本的增加,当距离较长时这种方式更是不可采用的。这次设计是基于FPGA设计的51单片机与外围电路通信的并串转换电路,该转换电路在接到51单片发出的访问外部RAM 的时序时,自动接受并行数据,接受完毕后自动串行发送数据,并且产生输出时钟,提供给后级电路使用。该电路可以完成51单片机与串口外围电路的通信,扩展了51单片机的I/O端口,使得单片机可以带更多的负载。 关键字: (1)并串转换 (2)FPGA (3)VHDL (4)状态机 (5)单片机 目录

摘要------------------------------------------------------------------------2 关键字---------------------------------------------------------------------2 设计概述------------------------------------------------------------------4 总的系统框图------------------------------------------------------------4 设计思路------------------------------------------------------------------5 方案论证------------------------------------------------------------------5 设计程序------------------------------------------------------------------6 设计仿真图--------------------------------------------------------------16 仿真分析-----------------------------------------------------------------17 参考文献------------------------------------------------------------------17 设计概述: 本次设计用FPGA设计一个并串转换电路,完成的功能

现场总线的概述

现场总线的概述 [转贴] 现场总线的概念是随着微电子技术的发展,数字通信网络延伸到工业过程现场成为可能后,于1984年左右提出的。现场总线一般定义为:一种用于智能化现场设备和自动化系统的开放式,数字化,双向串行,多节点的通信总线。其主要特征: 1.数字式通信方式取代设备级的模拟量(如4-20mA,0-5V等信号)和开关量信号; 2.在车间级与设备级通信的数字化网络; 3.现场总线是工厂自动化过程中现场级通信的一次数字化革命; 4.现场总线使自控系统与设备加入工厂信息网络,成为企业信息网络底层。使企业信息沟通的覆盖范围一直延伸到生产现场; 5.在CIMS系统中,现场总线是工厂计算机网络到现场级设备的延伸,是支撑现场级与车间级信息集成的技术基础。 现场总线是工业控制系统的新型通讯标准,是基于现场总线的低成本自动化系统技术。现场总线技术的采用将带来工业控制系统技术的革命。采用现场总线技术可以促进现场仪表的智能化、控制功能分散化、控制系统开放化,符合工业控制系统领域的技术发展趋势。 作为连接生产现场的仪表、控制器等自动化装置的通讯网络,现场总线是九十年代在国际兴起的新一代全分布式控制系统的核心技术。伴随着数字化时代的来临,现场总线控制系统(Fieldbus Control System, FCS)必将成为工业自动化的主流 你的问题我来回答 编码器的工作原理及作用: 它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 它产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。 要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 具体使用还是要查找有关厂家的样本手册

相关文档