文档库 最新最全的文档下载
当前位置:文档库 › 2018年高考二项式定理十大典型问题及例题

2018年高考二项式定理十大典型问题及例题

2018年高考二项式定理十大典型问题及例题
2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义

1.二项式定理:

011

()()n n n r n r r

n n

n n n n a b C a C a b C a b C b n N --*+=++

++

+∈,

2.基本概念:

①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数r

n

C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式

④通项:展开式中的第1r +项r n r r

n C a b -叫做二项式展开式的通项。用1r n r r r n

T C a b -+=表示。 3.注意关键点:

①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n

b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n .

④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数

(包括二项式系数)。

4.常用的结论:

令1,,a b x == 0122(1)()n r r

n n

n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-

++

+-∈

5.性质:

①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)

k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r

n

n n n n n n C C C C C +++++

+=,

变形式1221r

n

n n n n n C C C C ++

++

+=-。

③奇数项的二项式系数和=偶数项的二项式系数和:

在二项式定理中,令1,1a b ==-,则0123

(1)(11)0n n

n n n n n n C C C C C -+-++-=-=,

从而得到:02421321

11222

r r n

n n n n n n n n C C C C C C C +-++???++???=++

++???=

?= ④奇数项的系数和与偶数项的系数和:

0011222

0120120011222021210

01230123()()1, (1)1,(1)n n n n n n

n

n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=+++

+=+

+++=++++=+---------=--+-++=-----令则①令则024135

(1)(1),()

2

(1)(1),()

2

n n

n n n

n a a a a a a a a a a a a ----++-++++=+---+++=②

①②得奇数项的系数和①②得偶数项的系数和

⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n

C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n

C

-,12n n

C

+同时取得最大值。

⑥系数的最大项:求()n

a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别

为121,,,n A A A +???,设第

1r +项系数最大,应有112

r r

r r A A A A +++≥??≥?,从而解出r 来。

题型一:二项式定理的逆用;

例:123

21666 .n

n n n n n C C C C -+?+?+

+?=

解:01223

3(16)6666n n

n n n n n n C C C C C +=+?+?+?+

+?与已知的有一些差距,

123

211221666(666)6

n

n n n n n n n n n n C C C C C C C -∴+?+?+

+?=

?+?++? 012

2111(6661)[(16)1](71)6

66

n

n n n n n n n C C C C =

+?+?++?-=+-=-

练:123

1393 .n n

n n n n C C C C -++++=

解:设123

1393n n

n n n n n

S C C C C -=+++

+,则12233

012233

3333333331(13)1

n n n n

n n n n n n n n n n n S C C C C C C C C C =+++

+=++++

+-=+-(13)141

33

n n n S +--∴==

题型二:利用通项公式求n

x 的系数; 例:在二项式324

1()n

x x

+的展开式中倒数第3项的系数为45,求含有3x 的项的系数?

解:由条件知245n n C -=,即2

45n C =,2

900n n ∴--=,解得9()10n n =-=舍去或,由

21021

10343

4110

10

()

()r r r

r

r

r r T C x x C x

--+-

-+==,由题意102

3,643

r r r --

+==解得, 则含有3x 的项是第7项63

36110210T C x x +==,系数为210。

练:求29

1()2x x

-

展开式中9x 的系数? 解:291821831999111()()()()222r r

r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r = 故9

x 的系数为339121()22

C -=-。

题型三:利用通项公式求常数项; 例:求二项式2101()2x x

+

的展开式中的常数项?

解:5202102110

10

1

1()

()()22r r r

r

r

r r T C x C x x

--+==,令52002r -=,得8r =,所以88

910145()2256T C == 练:求二项式6

1(2)2x x

-

的展开式中的常数项? 解:666216611(2)(1)()(1)2()22

r r r r r r r r r r T C x C x x ---+=-=-,令620r -=,得3r =,所以33

46(1)20T C =-=-

练:若21

()n x x +的二项展开式中第5项为常数项,则____.n =

解:42444212

51()()n n n n T C x C x x

--==,令2120n -=,得6n =.

题型四:利用通项公式,再讨论而确定有理数项; 例:求二项式93()x x -展开式中的有理项? 解:1271

936

219

9

()

()(1)r r r

r

r

r r T C x x C x

--+=-=-,令

276

r

Z -∈,(09r ≤≤)得39r r ==或, 所以当3r =时,

2746r -=,334

449(1)84T C x x =-=-, 当9r =时,2736

r -=,393

3109(1)T C x x =-=-。 题型五:奇数项的二项式系数和=偶数项的二项式系数和; 例:若23

2

1

()n x x -

展开式中偶数项系数和为256-,求n .

解:设23

2

1

()n x x -

展开式中各项系数依次设为01,,,n a a a ???

1x =-令,则有010,n a a a ++???=①,1x =令,则有0123(1)2,n n n a a a a a -+-+???+-=② 将①-②得:1352()2,n a a a +++???=-11352,n a a a -∴+++???=- 有题意得,1

822562n --=-=-,9n ∴=。

练:若35211()n

x x

+的展开式中,所有的奇数项的系数和为1024,求它的中间项。 解:

024213

21

12r r n n n n n n n n C C C C C C C +-++???++???=++

++???=,121024n -∴=,解得11n =

所以中间两个项分别为6,7n n ==,5654

3551211()()462n

T C x x x

-+==?,61

1561462T x -+=?

题型六:最大系数,最大项;

例:已知1(2)2

n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项

的系数是多少? 解:

46522,21980,n n n C C C n n +=∴-+=解出714n n ==或,当7n =时,展开式中二项式系数最大的项是

45T T 和34347

135()2,22T C ∴==的系数,434

571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,777

8141C ()234322

T ∴==的系数。

练:在2()n a b +的展开式中,二项式系数最大的项是多少?

解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即211

2n

n T T ++=,也就是第1n +项。

练:在31()2n

x x

-

的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少? 解:只有第5项的二项式最大,则

152n +=,即8n =,所以展开式中常数项为第七项等于6281

()72

C = 练:写出在7()a b -的展开式中,系数最大的项?系数最小的项?

解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有

34347T C a b =-的系数最小,434

57T C a b =系数最大。

练:若展开式前三项的二项式系数和等于79,求1(2)2

n

x +的展开式中系数最大的项?

解:由012

79,n n n C C C ++=解出12n =,假设1r T +项最大,

12121211

(2)()(14)22

x x +=+ 11

1121211

12121244

44

r r r r r r r r r r r r A A C C A A C C --+++++?≥≥??∴=??≥≥???,化简得到9.410.4r ≤≤,又012r ≤≤,10r ∴=,展开式中系数最大的项为11T ,有12101010

1011121

()4168962

T C x

x ==

练:在10(12)x +的展开式中系数最大的项是多少?

解:假设1r T +项最大,1102r

r r r T C x +=?

11

1010111

12101022

2(11)12(10)22,

r r r r r r r r r r r r C C A A r r A A r r C C --+++++?≥≥-≥???∴=???≥+≥-≥????解得,化简得到6.37.3k ≤≤,又010r ≤≤,7r ∴=,展开式中系数最大的项为7777810215360.T C x x ==

题型七:含有三项变两项;

例:求当25(32)x x ++的展开式中x 的一次项的系数?

解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r

r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x

的一次项,此时1

24125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。

解法②:255505145051455

555555(32)(1)(2)()(22)x x x x C x C x C C x C x C ++=++=++???+++???+

故展开式中含x 的项为4554455522240C xC C x x +=,故展开式中x 的系数为240.

练:求式子31

(2)x x

+

-的常数项? 解:3611(2)()x x x x

+

-=-,设第1r +项为常数项,则66261661(1)()(1)r r r r r r

r T C x C x x --+=-=-,得620r -=,3r =, 33

316(1)20T C +∴=-=-.

题型八:两个二项式相乘;

例:3

4

2

(12)(1)x x x +-求展开式中的系数. 解:

333(12)(2)2,m m m m m x x x +?=??的展开式的通项是C C

444(1)C ()C 1,0,1

,2,3,0,1,2,3,4,n n n n n x x x m n -?-=?-?==的展开式的通项是其中

342,02,11,20,(12)(1)m n m n m n m n x x +=======+-令则且且且因此

200221111220

03434342(1)2(1)2(1)6x C C C C C C ???-+???-+???-=-的展开式中的系数等于.

练:6

10

341(1)(1)x x

++

求展开式中的常数项. 解:436

103

3412

6106104

1(1)(1)m n m n

m n m n x C x C x C C x x

--++?=??展开式的通项为 0,3,6,

0,1,2,,6,0,1,2,,10,43,0,4,8,

m m m m n m n n n n ===???=???=???=???

===???其中当且仅当即或或 003468

6106106104246C C C C C C ?+?+?=时得展开式中的常数项为.

练:2

*31(1)(),28,______.n

x x x n N n n x

+++∈≤≤=已知的展开式中没有常数项且则 解:3431()C C ,n r n r r r n r n n x x x x x

---+

??=?展开式的通项为通项分别与前面的三项相乘可得 44142

C ,C ,C ,,28r n r r n r r n r n n n x x x

n --+-+???≤≤展开式中不含常数项 441424,83,72,6, 5.n r n r n r n n n n ∴≠≠+≠+≠≠≠∴=且且,即且且

题型九:奇数项的系数和与偶数项的系数和;

例:2006(2),,2,_____.x x S x S -==在的二项展开式中含的奇次幂的项之和为当时 解:2006123200601232006(2)x a a x a x a x a x -++++

+设=-------① 2006123200601232006(2)x a a x a x a x a x ---+-++=-------②

3520052006200613520052()(2)(2)a x a x a x a x x x -+++

+=--+①②得

2006200620061

(2)()[(2)(2)]2

x S x x x ∴-=--+展开式的奇次幂项之和为

32006

2

20062006300812

2,(2)[(22)(22)]222

x S ?==--+=-

=-当时

题型十:赋值法;

例:设二项式31(3)n

x x

+的展开式的各项系数的和为p ,所有二项式系数的和为s ,若

272p s +=,则n 等于多少?

解:若230121

(3)n n n x a a x a x a x x

+=+++???+,有01n P a a a =++???+,02n

n n n S C C =+??+=,

令1x =得4n

P =,又272p s +=,即42272(217)(216)0n n n n +=?+-=解得216217()n n ==-或舍去,

4n ∴=.

练:若n

x x ???? ?

?-13的展开式中各项系数之和为64,则展开式的常数项为多少?

解:令1x =,则n

x x ?

??? ?

?-13的展开式中各项系数之和为264n =,所以6n =,则展开式的常数项为3

33

61(3)()C x x

?-

540=-. 练:2009

1232009200912

0123200922009

(12)(),222a a a x a a x a x a x a x x R -=++++

+∈++???+若则

的值为 解:200920091212002200922009

1

,0,2222222a a a a a a x a a =

+++???+=∴++???+=-令可得 200912022009

01, 1.222

a a a x a ==++???+=-在令可得因而 练:55432154321012345(2),____.x a x a x a x a x a x a a a a a a -=+++++++++=若则 解:0012345032,11,x a x a a a a a a ==-=+++++=-令得令得

1234531.a a a a a ∴++++=

题型十一:整除性;

例:证明:22*389()n n n N +--∈能被64整除 证:22

113

89989(81)89n n n n n n +++--=--=+--

0111211

11111888889n n n n n n n n n n C C C C C n +-++++++=++???+++--

011121118888(1)189n n n n n n C C C n n +-+++=++???++++--01112111888n n n n n n C C C +-+++=++???+

由于各项均能被64整除22*389()64n n n N +∴--∈能被整除 1、(x -1)11

展开式中x 的偶次项系数之和是 1、设f(x)=(x-1)11

, 偶次项系数之和是

10242/)2(2

)

1(f )1(f 11-=-=-+

2、=++++n

n n

2

n 2

1

n 0

n C 3C 3C 3C 2、 2、4n

3、20

3)5

15(+

的展开式中的有理项是展开式的第 项 3、3,9,15,21

4、(2x-1)5

展开式中各项系数绝对值之和是

4、(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为35

5、求(1+x+x 2)(1-x)10展开式中x 4

的系数

5、93102)x 1)(x 1()x 1)(x x 1(--=-++,要得到含x 4

的项,必须第一个因式中的1与(1-x)9

展开式中的项4

4

9)x (C -作积,第一个因式中的-x 3

与(1-x)9

展开式中的项)x (C 19-作积,故x 4

的系数是135C C 4919=+

6、求(1+x)+(1+x)2+…+(1+x)10展开式中x 3

的系数

6、)

x 1(1])x 1(1)[x 1(x 1)x 1()x 1(1010

2

+-+-+=

+++++)( =x x x )1()1(11+-+,原式中x 3实为这分子中的x 4,则所求系数为7

11C

7、若)N n m ()x 1()x 1()x (f n m ∈?+++=展开式中,x 的系数为21,问m 、n 为何值时,x 2

的系数最小?

7、由条件得m+n=21,x 2

的项为22n 22m x C x C +,则.4

399

)221n (C C 22

n 2m +-

=+因n ∈N ,故当n=10或11时上式有最小值,也就是m=11和n=10,或m=10和n=11时,x 2

的系数最小

8、自然数n 为偶数时,求证:

1

n n n

1n n 4n 3n 2n 1n 23C C 2C C 2C C 21--?=+++++++ 8、原式=1n 1n n 1n n 5n 3n 1n n n 1n n 2n 1n 0n 2.32

2)C C C C ()C C C C C (----=+=++++++++++ 9、求11

80被9除的余数

9、 )(1811818181)181(80101110111110111111Z k k C C C ∈-=-++-=-= ,

∵k ∈Z,∴9k-1∈Z ,∴11

81被9除余8

10、在(x 2+3x+2)5

的展开式中,求x 的系数

10、5552)2x ()1x ()2x 3x (++=++

在(x+1)5

展开式中,常数项为1,含x 的项为x 5C 15=,在(2+x)5

展开式中,常数项为25

=32,含x 的项为x 80x 2C 415=

∴展开式中含x 的项为 x 240)32(x 5)x 80(1=+?,此展开式中x 的系数为240

11、求(2x+1)12

展开式中系数最大的项

11、设T r+1的系数最大,则T r+1的系数不小于T r 与T r+2的系数,即有

???≥≥? ??≥≥+--+----1r 12

r 121r 12r 12r 111r 12r 12r 12r

131r 12r 12r 12C C 2C 2C 12C 2C 2C 2C ?4r ,3

1

4r 313

=∴≤≤ ∴展开式中系数最大项为第5项,T 5=4

4

4

12x 7920x C 16=

二项式定理

1.二项式定理:

011

()()n n n r n r r

n n

n n n n a b C a C a b C a b C b n N --*+=++

++

+∈,

2.基本概念:

①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数r

n

C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式

④通项:展开式中的第1r +项r n r r

n C a b -叫做二项式展开式的通项。用1r n r r r n

T C a b -+=表示。 3.注意关键点:

①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n

b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n .

④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数

(包括二项式系数)。

4.常用的结论:

令1,,a b x == 0122(1)()n r r

n n

n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-

++

+-∈

5.性质:

①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)

k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r

n

n n n n n n C C C C C +++++

+=,

变形式1221r

n

n n n n n C C C C ++

++

+=-。

③奇数项的二项式系数和=偶数项的二项式系数和:

在二项式定理中,令1,1a b ==-,则0123

(1)(11)0n n

n n n n n n C C C C C -+-++-=-=,

从而得到:02421321

11222

r r n

n n n n n n n n C C C C C C C +-++???++???=++

++???=

?= ④奇数项的系数和与偶数项的系数和:

0011222

0120120011222021210

01230123()()1, (1)1,(1)n n n n n n

n

n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=+++

+=+

+++=++++=+---------=--+-++=-----令则①令则024135

(1)(1),()

2

(1)(1),()

2

n n

n n n

n a a a a a a a a a a a a ----++-++++=+---+++=②

①②得奇数项的系数和①②得偶数项的系数和

⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n

C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n

C

-,12n n

C

+同时取得最大值。

⑥系数的最大项:求()n

a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别

为121,,,n A A A +???,设第

1r +项系数最大,应有112

r r

r r A A A A +++≥??≥?,从而解出r 来。

题型一:二项式定理的逆用;

例:123

21666 .n

n n n n n C C C C -+?+?+

+?=

练:123

1393 .n n

n n n n C C C C -+++

+=

题型二:利用通项公式求n

x 的系数; 例:在二项式3241()n

x x

+的展开式中倒数第3项的系数为45,求含有3x 的项的系数?

练:求2

9

1()2x x

-

展开式中9x 的系数?

题型三:利用通项公式求常数项; 例:求二项式2101()2x x

+的展开式中的常数项?

练:求二项式6

1(2)2x x

-的展开式中的常数项?

练:若21()n

x x

+的二项展开式中第5项为常数项,则____.n =

题型四:利用通项公式,再讨论而确定有理数项; 例:求二项式93()x x -展开式中的有理项?

题型五:奇数项的二项式系数和=偶数项的二项式系数和; 例:若23

2

1

()n x x -展开式中偶数项系数和为256-,求n .

练:若3

5211()n

x x

+的展开式中,所有的奇数项的系数和为1024,求它的中间项。

题型六:最大系数,最大项;

例:已知1(2)2

n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项

的系数是多少?

练:在2()n a b +的展开式中,二项式系数最大的项是多少?

练:在31()2n

x x

-的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少?

练:写出在7()a b -的展开式中,系数最大的项?系数最小的项?

练:若展开式前三项的二项式系数和等于79,求1(2)2

n x +的展开式中系数最大的项?

练:在10(12)x +的展开式中系数最大的项是多少?

题型七:含有三项变两项;

例:求当25(32)x x ++的展开式中x 的一次项的系数?

练:求式子31

(2)x x

+

-的常数项?

题型八:两个二项式相乘;

例:342

(12)(1)x x x +-求展开式中的系数.

练:6

10

341(1)(1)x x

++求展开式中的常数项.

练:2

*31(1)(),28,______.n

x x x n N n n x

+++

∈≤≤=已知的展开式中没有常数项且则

题型九:奇数项的系数和与偶数项的系数和;

例:2006(2),,2,_____.x x S x S -==在的二项展开式中含的奇次幂的项之和为当时

题型十:赋值法;

例:设二项式31(3)n

x x

+的展开式的各项系数的和为p ,所有二项式系数的和为s ,若272p s +=,则n 等于多少?

练:若n

x x ???? ?

?-13的展开式中各项系数之和为64,则展开式的常数项为多少?

练:2009

1232009200912

0123200922009(12)(),222

a a a x a a x a x a x a x x R -=+++++∈++???+若则

的值为

练:55432154321012345(2),____.x a x a x a x a x a x a a a a a a -=+++++++++=若则

题型十一:整除性;

例:证明:22*389()n n n N +--∈能被64整除

1、(x -1)11

展开式中x 的偶次项系数之和是

2、=++++n

n n 2n 21n 0n C 3C 3C 3C 2、 3、20

3)5

15(+

的展开式中的有理项是展开式的第 项 4、(2x-1)5

展开式中各项系数绝对值之和是 5、求(1+x+x 2)(1-x)10展开式中x 4

的系数

6、求(1+x)+(1+x)2+…+(1+x)10展开式中x 3

的系数

7、若)N n m ()x 1()x 1()x (f n

m ∈?+++=展开式中,x 的系数为21,问m 、n 为何值时,x 2

的系数最小?

8、自然数n 为偶数时,求证:

1

n n n 1

n n 4n 3n 2n 1n 2

3C C 2C C 2C C 21--?=+++++++ 9、求11

80被9除的余数

10、在(x 2

+3x+2)5

的展开式中,求x 的系数

11、求(2x+1)12

展开式中系数最大的项

二项式定理高考题(带答案)

年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则,所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为, % 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】 决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D.

【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为 __________. ' 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解: 的展开式为: ,当 ,时,,当 , 时,,据 此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 ¥ A .80- B .40- C .40 D .80 【答案】C

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

二项式定理-高考题(含答案)

二项式定理高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x 的展开式中2x 的系数是( D ) (A )42(B )35(C )28(D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5 212x x 的二项展开式中,x 的系数为( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在62() 2x x 的二项展开式中,2x 的系数为( C ) (A )15 4(B )15 4(C )3 8(D )3 8 5.(2012·重庆高考理科·T4)8 21x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x 的展开式中3x 的系数为( A ) (A)270 (B)90 (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)8411+x y 的展开式中22x y 的系数是( D ) A.56 B.84 C.112 D.168

8.(2011·新课标全国高考理科·T8)51 2a x x x x 的展开式中各项系数的和为2,则该展开式中 常数项为( D )(A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x)31((其中n N 且6n )的展开式中5x 与6x 的系数相等,则n ( B ) (A)6 (B) 7 (C)8 (D)910.(2011·陕西高考理科·T4)6(42)x x (x R )展开式中的常数项是(C ) (A )20(B )15(C )15 (D )20 二、填空题 11. (2013·天津高考理科·T10)61 x x 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)181 3x x 的展开式中含15x 的项的系数为 17 . 13.(2011·全国高考理科·T13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为 0 . 14.(2011·四川高考文科·T13)91)x (的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x 的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x (,则 1110a a = 0 . 17.(2011·广东高考理科·T10)72()x x x 的展开式中,4x 的系数是___84___ (用数字作答) 18.(2011·山东高考理科·T14)若62a x x 的展开式的常数项为60,则常数a 的值为 4 .

二项式定理知识点及典型题型总结

、基本知识点 n On 1n 1. 1 rnrr nn, 1、二项式疋理:(a b) Ca 6a b C.a b C n b (n N ) 2、几个基本概念 (1)二项展开式:右边的多项式叫做(a b)n的二项展开式 (2)项数:二项展开式中共有n 1项 (3)二项式系数:C n (r 0,1,2, ,n)叫做二项展开式中第r 1项的二项式系数 (4)通项:展开式的第r 1项,即T r 1 C;a n r b r (r 0,1, ,n) 3、展开式的特点 (1) 系数都是组合数,依次为c,,c:,c n,…,c n (2) 指数的特点①a的指数由厂0(降幕)。 ②b的指数由0 * n (升幕)。 ③a和b的指数和为n。 (3) 展开式是一个恒等式,a, b可取任意的复数,n为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等?即C m c:m (2)增减性与最值 二项式系数先增后减且在中间取得最大值 n 当n是偶数时,中间一项取得最大值c n2 n 1 n 1 当n是奇数时,中间两项相等且同时取得最大值=CF 二项式定理 c0 c1 c2 (3)二项式系数的和:Cn Cn Cn Cn C:奇数项的二项式系数的和等于偶数项的二项式系数和2n 即C0+Cn+L W + L =2n-1

二项式定理的常见题型 一、求二项展开式 1?“ (a b)n”型的展开式 例1?求(3 . x1 )4的展开式;a J x 2. “(a b)n”型的展开式 —1 例2?求)4的展开式; J V 3?二项式展开式的“逆用” 例3?计算 1 3C:9C2 27 C3 .... ( 1)勺匕:; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知(£.. X)9的展开式中x3的系数为9,常数a的值为_______________ x \ 2 4 2.确定二项展开式的常数项 例5. (-x 31 )10展开式中的常数项是_________________ 3' X

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.已知(1+a x )(1+x)5的展开式中x 2 的系数为5,则a = (A )-4 (B )-3 (C )-2 (D )-1 2.若52345012345(23)x a a x a x a x a x a x -=+++++,则:等于() A .55 B .-l C .52 D .52- 3,则的值为 A . B .C 4.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有() A.36种 B.30种 C.24种 D.6种 5.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 6.()()8 x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 7.(x-2)6的展开式中3x 的系数为.(用数字作答) 8.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=________. 9.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数: (1)选其中5人排成一排; (2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站在排头也不站在排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻; (6)全体排成一排,甲、乙两人中间恰好有3人. 10.7个人排成一排,按下列要求各有多少种排法? (1)其中甲不站排头,乙不站排尾; (2)其中甲、乙、丙3人必须相邻; (3)其中甲、乙、丙3人两两不相邻; (4)其中甲、乙中间有且只有1人; (5)其中甲、乙、丙按从左到右的顺序排列. 2312420)()(a a a a a +-++16-16

二项式定理 高考题(含答案)

二项式定理 高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2 x 的系数是( D ) (A )42 (B )35 (C )28 (D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5212x x ??- ?? ?的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在6 的二项展开式中,2x 的系数为 ( C ) (A )154- (B )154 (C )38- (D )38 5.(2012·重庆高考理科·T4)821??? ? ?+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)4 35 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A ) (A)270- (B)90- (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22 x y 的系数是 ( D )

A.56 B.84 C.112 D.168 8.(2011·新课标全国高考理科·T8)5 12a x x x x ????+- ???????的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8 (D)9 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C ) (A )20- (B )15- (C )15 (D )20 二、填空题 11.(2013·天津高考理科·T10)6x ?- ? 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18 x ?- ? 的展开式中含15x 的项的系数为17. 13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为0. 14.(2011·四川高考文科·T13) 91)x +(的展开式中3x 的系数是84(用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是240. 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则 1110a a +=0. 17.(2011·广东高考理科·T10)72()x x x -的展开式中,4x 的系数是___84___ (用数字作答)

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则, 所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为 , 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】

决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D. 【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为__________. 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解:的展开式为:,当,时,,当,时,

,据此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 A .80- B .40- C .40 D .80 【答案】C 【解析】 8.【2017浙江,13】已知多项式() 1x +3 ()2x +2=5432112345x a x a x a x a x a +++++,则 4a =________,5a =________.

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n ΛΛ 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n Λ=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r Λ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴L L 0213n-1 n n n n C +C +=C +C +=2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

(完整word版)二项式定理历年高考试题荟萃

圆梦教育中心二项式定理历年高考试题 一、填空题 ( 本大题共 24 题, 共计 120 分) 1、 (1+2x)5的展开式中x2的系数是。(用数字作答) 2、的展开式中的第5项为常数项,那么正整数的值是 . 3、已知,则(的值等 于。 4、(1+2x2)(1+)8的展开式中常数项为。(用数字作答) 5、展开式中含的整数次幂的项的系数之和为。(用数字作答) 6、(1+2x2)(x-)8的展开式中常数项为。(用数字作答) 7、的二项展开式中常数项是。(用数字作答). 8、 (x2+)6的展开式中常数项是。(用数字作答) 9、若的二项展开式中的系数为,则。(用数字作答) 10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于。 11、(x+)9展开式中x3的系数是。(用数字作答)

12、若展开式的各项系数之和为32,则n= 。其展开式中的常数项为。(用数字作答) 13、的展开式中的系数为。(用数字作答) 14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= 。 15、(1+2x)3(1-x)4展开式中x2的系数为 . 16、的展开式中常数项为 ; 各项系数之和为.(用数字作答) 17、 (x)5的二项展开式中x2的系数是____________.(用数字作答) 18、 (1+x3)(x+)6展开式中的常数项为_____________. 19、若x>0,则(2+)(2-)-4(x-)=______________. 20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________. 21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= . 22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答) 23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________. 24、展开式中x的系数为.

二项式定理高考试题及其答案总

二项式定理历年高考试题荟萃(一) 一、选择题 ( 本大题共 58 题) 1、二项式的展开式中系数为有理数的项共有………() A.6项 B.7项 C.8项 D.9项 2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…() ①存在n∈N,展开式中有常数项; ②对任意n∈N,展开式中没有常数项; ③对任意n∈N,展开式中没有x的一次项; ④存在n∈N,展开式中有x的一次项. 上述判断中正确的是 (A)①与③(B)②与③(C)②与④(D)④与① 3、在(+x2)6的展开式中,x3的系数和常数项依次是…………() (A)20,20 (B)15,20(C)20,15 (D)15,15 4、(2x3-)7的展开式中常数项是……………………………………………………… () A.14 B.- 14 C.42 D.-42 5、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………() (A)28 (B)38 (C)1或 38 (D)1或28

6.若(+)n展开式中存在常数项,则n的值可以是…………() A.8 B.9 C.10 D.12 7 .(2x+)4的展开式中x3的系数是……………………………………() A.6 B.12 C.24 D.48 8、(-)6的展开式中的常数项为…………………………………() A.15 B.- 15 C.20 D.-20 9、(2x3-)7的展开式中常数项是…………………………………………() A.14 B.- 14 C.42 D.-42 10、若(+)n展开式中存在常数项,则n的值可以是………………() A.8 B.9 C.10 D.12 11、若展开式中含项的系数与含项的系数之比为-5,则n等 于 A.4 B.6 C.8 D.10 12、的展开式中,含x的正整数次幂的项共有() A.4项 B.3项 C.2项 D.1项

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

2020年高考理科数学 《二项式定理》题型归纳与训练及参考答案

2020年高考理科数学 《二项式定理》题型归纳与训练 【题型归纳】 题型一 二项式定理展开的特殊项 例 在二项式5 21??? ??-x x 的展开式中,含4x 的项的系数是( ) A .10- B .10 C .5- D .5 【答案】B 【解析】对于()()r r r r r r r x C x x C T 3105525111--+-=??? ??-=,对于2,4310=∴=-r r ,则4x 的项的系数是()101225=-C 【易错点】公式记错,计算错误。 【思维点拨】本题主要考查二项式定理的展开公式,知道什么是系数,会求每一项的系数. 题型二 求参数的值 例 若二项式n x x ??? ? ?+21的展开式中,第4项与第7项的二项式系数相等,则展开式6x 的系数为________.(用数字作答) 【答案】9 【解析】根据已知条件可得: 96363=+=?=n C C n n , 所以n x x ??? ? ?+21的展开式的通项为23999912121C r r r r r x C x x T --+??? ??=??? ??=,令26239=?=-r r ,所以所求系数为921292=??? ??C . 【易错点】分数指数幂的计算 【思维点拨】本题主要考查二项式定理的展开公式,并用其公式求参数的值. 题型三 展开项的系数和 例 已知()()()()10 102210101...111x a x a x a a x -++-+-+=+,则8a 等于( ) A .180- B .180 C .45 D .45- 【答案】B

【解析】由于()()[]1010121x x --=+,又()[]10 12x --的展开式的通项公式为: ()[]()()r r r r r r r r x C x C T -???-=--??=--+12112101010101,在展开式中8a 是()81x -的系数,所以应取8=r , ∴()1802128108 8=??-=C a . 【易错点】对二项式的整体理解 【思维点拨】本题主要对二项式定理展开式的综合考查,学会构建模型 题型四 二项式定理中的赋值 二项式()932y x -的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和. 【答案】(1)9 2 (2)-1 (3)2 159- 【解析】设()9927281909...32y a y x a y x a x a y x ++++=+ (1)二项式系数之和为9992919 092...=++++C C C C . (2)各项系数之和为()132 (9) 9210-=-=++++a a a a (3)由(2)知1...9210-=++++a a a a ,令1,1-==y x ,得992105...=++++a a a a ,将两式相加,得2 15986420-=++++a a a a a ,即为所有奇数项系数之和. 【思维点拨】本题主要学会赋值法求二项式系数和、系数和,难点在于赋值 【巩固训练】 题型一 二项式定理展开的特殊项 1.在 ()10 2-x 的展开式中,6x 的系数为( ) A .41016C B .41032C C .6108C - D .61016C - 【答案】A

高考二项式定理典型例题

二项式定理 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

相关文档
相关文档 最新文档