文档库 最新最全的文档下载
当前位置:文档库 › 液力机械传动与无级变速器

液力机械传动与无级变速器

金属带式无级变速传动变速器工作原理分析

西南大学 本科生课程论文 论文题目:金属带式无级变速传动变速器的工作原理分析 姓名:孙伟 学院:工程技术学院 班级:2012 机制(2)班 专业:机械设计制造及其自动化 课程名称:汽车设计 学号:222012322220063 指导教师:冀杰

2015 年06 月24 日金属带式无级变速传动变速器工作原理分析 摘要:金属带式无级变速传动变速器(CVT,即Continuously Variable Transmission ),同传统的变速器相比,具有结构紧凑,操作简便,传动效率更高,成本更低,以及节能环保等多方面的优点。此外,它作为轿车发展的一项先进技术适合我国轿车变速器发展的要求,并且越来越受到普遍关注,本文重点介绍,以及分析了金属带式无级变速器的传动原理,并系统的介绍了其发展历史和当前的技术状况,对金属带式变速器与其他类型的变速器的优点,缺点进行比较说明在机械式无级变速传动中,金属带式无级变速器无论是在转矩传递能力还是在传动效率方面均优于其他类型的机械式无级变速器传动。 关键词金属带式无级变速器;无级变速器;机械式变速器;CVT 1.金属带式无级变速器(CVT)概述 1.1无级变速器的发展历史 无极变速技术最早诞生于于一百多年前,一位荷兰工程师设计制造了世界上第一台无级变速传动机构。而无极变速技术应用于汽车行业则可以追溯到1886年,德国奔驰公司将V型橡胶带式无极变速机构安装在该公司生产的汽油机汽车上。由于橡胶带式无级变速机构存在功率有限(转矩局限于135Nm以下),离合器工作不稳定,液压泵、传动带和夹紧机构的能量损失较大等缺陷,因而没有被汽车行业普遍接受。然而提高传动带性能和无级变速传递功率极限的研究一直在进行,将液力变矩器集成到无级变速系统中,主、从动轮的夹紧力实现电子化控制,在CVT中采用节能泵,传动带用金属带代替

变速器的发展历史

变速器的发展历史 了解汽车的人都知道,汽车的动力是由发动机产生的。而发动机发出的动力通过离合器、变速器、传动轴等传递到车轮。变速器的重要性由此可见,所以,了解变速器的发展历史是每个爱车人所必需的。变速器的基本作用是: 1)改动传动比,降速增扭。 2)利用倒档实现汽车的倒向行驶。 3)在发动机熄火的情况下,利用空档中断动力传递,且便于汽车起动、怠速、换挡和动力输出。 近百年,变速器经历了用变速杆改变链条的传动比→手动变速器→有级变速器→无级变速器的发展历史。 1、早起汽车传动系统 早期的汽车传动系统,从发动机到车轮之间的动力形式很简单。发动机驱动一组锥齿减速齿轮,再传动到一根轴和皮带轮。皮带轮和驱动桥上的内齿轮啮合,使汽车行驶,大齿轮用来加速,能使汽车达到32 km/h的速度。如果遇到上坡,而爬坡能力不够时,驾驶员就停下车子,把小链轮啮合后进行驱动。 世界上第一辆汽油汽车由德国工程师卡尔·本茨和戈特利布·戴姆勒于1886年同时宣告制成,卡尔·本茨制造的是三轮汽车,后者制造的是四轮汽车。在三轮汽车中,汽油机发动以后,动力经齿轮和链条传至后轴,后轴系两个半轴,中间装有差速器,有利于车辆转弯。

前轮架位于一个叉形结构架上,类似现代自行车的前叉装置,上面有转向手柄,用来操纵车辆转弯。这辆车上还装有变速杆,用来改变链条的传动比,使车速快慢自如. 2、手动变速器 手动变速器是靠驾驶员直接操纵换挡手柄换挡,为汽车最初普遍采用。在20世纪60年代,大部分的汽车变速器只有3个档位,只有高速档具备同步器。当时驾驶员驾驶车辆时,必须有很好的技术,才能平顺地换档。发展至今,大多数手动变速器也搭载有5档,甚至6档速率。低档速率对节约燃料有好处,加快速度需要变高速档。 手动变速器(MT)主要采用齿轮传动的降速增扭原理,变速器内有多组传动比不同的齿轮副,一对齿数不同的齿轮啮合传动时,若小齿动时,输出转速就增高。汽车行驶时的换挡就是通过操纵机构使变速器内不同的齿轮副工作。 12122112M M z z n n i === z 1,n 1,M 1,主动齿轮的参数;z 2,n 2,M 2为从动齿轮的参数。如图1 所示: 图1 工作原理

液压机械无级变速传动在拖拉机上的应用分析

液压机械无级变速传动在拖拉机上的应用分析 徐立友1,李金辉1,张彦勇2 (1.河南科技大学车辆与动力工程学院,河南洛阳 471003;2.洛阳L Y C轴承有限公司,河南洛阳 471039) 摘 要:液压机械无级变速器是一种新型的无级变速传动装置。为此,介绍了液压机械无级变速传动的工作原理,在给出具有代表性的拖拉机用液压机械无级变速器结构方案的同时,简单分析了其传动原理和特点。同时, 结合拖拉机的作业要求,对液压机械无级变速器的结构方案、参数的选择以及自动控制系统等主要问题进行了阐述,提出了相应的原则,对应用于拖拉机的液压机械无级变速器的产品开发设计和选配具有一定的借鉴意义。关键词:拖拉机;液压机械无级变速传动;关键技术 中图分类号:S219.032.1 文献标识码:A文章编号:1003-188X(2009)11-0215-04 0 引言 目前,国外大功率拖拉机以及部分工程车辆的传动系广泛采用液力机械传动变速箱,还有部分先进机型采用全液压传动技术。其操纵方式已由手动液控向电液控制技术方面发展,并取得了非常好的效果,大大提高了整机行驶平顺性和作业性能。虽然它们都具有无级变速功能,操纵轻便,整机动力性好,可靠性高,但由于传动系的传动效率较低,直接影响了整机生产率和经济性。液压机械无级变速传动(H M-C V T)综合了液压传动和机械传动的主要优点,兼有无级调速性能和较高的传动效率。在大功率拖拉机、重型汽车、工程机械等车辆上有着良好的应用前景[1-6]。本文在分析液压机械无级变速传动原理的基础上,给出具有代表性的拖拉机用液压机械无级变速器,并结合拖拉机的作业要求,对液压机械无级变速传动的关键技术进行了阐述,以期为拖拉机液压机械无级变速器的产品开发设计提供参考。 1 液压机械无级变速传动原理 图1为液压机械无级变速传动的基本形式,发动机输出的功率分成两路,一路作为机械功率通过离合器直接传给太阳轮s,另一路作为液压功率,经传动齿轮后,通过液压传动系将功率传给齿圈r,最后功率经差动轮系合成后由行星架c输出。当离合器C脱开、 收稿日期:2009-01-09 基金项目:河南省教育厅自然科学研究计划项目(2008B460006);河南科技大学博士科研启动基金资助项目(2008-2010);河 南科技大学科学研究基金项目(2008Z Y007) 作者简介:徐立友(1974-),男,河南息县人,副教授,博士,(E-m a i l)x l y o u2002@s i n a.c o m。 制动器B接合时,发动机的功率全部经液压传动输出,随着变量泵和定量马达排量比e从0~+1变化,输出转速n b从零逐渐增大,其关系如图2中的H段。 当离合器C接合、制动器B脱开时,机械功率和液压功率经差动轮系合成后输出,此时随着e从+1~-1变化,输出转速n b在一定范围内连续无级变化,如图2中的H M段。若通过电液伺服阀控制变量泵的斜盘倾角,使液压马达的转速为0,则发动机的功率全部由机械功率传递,此时传动效率最高。 图1 液压机械传动结构图 F i g.1 C o n f i g u r a t i o no f h y d r o-m e c h a n i c a l t r a n s m i s s i o n 图2 输出转速与e的关系 F i g.2 R e l a t i o n s h i p o f o u t p u t r e v o l u t i o ns p e e d a n de · 215 · 2009年11月 农机化研究 第11期

德国SEW机械无级变速器

德国SEW机械无级变速器 简介 SEW生产两种系列的机械变速器:VARILOC?系列宽V带式无级变速器与VARIMOT?系列摩擦盘式无级变速器,结构见下图。变速器与交流鼠笼电动机组合而成调速驱动装置,在SEW模块系统里能套配各种型号(R../F../K../S..)的齿轮减速器构成输出低速、高转矩的无级调速减速电机。也可不经减速器直接驱动工作机。无级调速减速电机样本可向SEW公司函索。 1—可调带轮2—宽V带3—分离式箱体4—电动机5—调节装置6—配接附件7—减速器 1-电动机和调节座2-驱动锥3-摩擦环境和输出轴总成4-传动箱体5-箱罩6-速度控制机构 输出速度可通过手轮或链轮手动调节,也可通过伺服电机遥控。若使用变极电机可以扩大调速范围。机械调速的调节时间约为20~40s,所以这些变速装置只用于不需经常调速的场合。 机械调速传动装置的选择。 在确定所需功率和输出速度的范围之后,可从SEW产品样本中选择变速器。选择时必须注意一些重要因素。 对VARIBLOC?调速传动装置,V带的结构和尺寸是计算功率的决定因素。对VARIMOT ?调速传动装置,摩擦环的接触应力和材料是重要因素。为了能够正确地确定调速传动装置的尺寸,除所需功率和调速范围外,还应知道安装高度,环境温度和工作制。图3给出输出功率P a、效率η、转差率s与调速比i0的关系曲线。其中

机械调速传动装置不仅变换速度,而且变换转矩,因而可根据不同准则来选型。 1 按恒转矩选择 大多数传动装置需要在整个速度范围内输出转矩基本恒定。按此要求调速传动装置能承受的转矩(N·m)按下式计算 式中P amax、n amax-----最大输出功率(kw)和转速(r/min)。 这种情况所连的减速器在整个速度范围内受均匀载荷。变速器只有在最大速度时才会被完全利用,在低速时许用输出功率减小。在速度范围内的最低速度时最小输出功率(KW)按下式计算 式中R—速度范围。 2 按恒功率选择 在整个调节范围内可以利用下式计算出输出功率Pa 式中M amax—最大转矩(N·m)。 这种情况所连的减速器必须能传递合成转矩,这些转矩约比恒转矩设计时的转矩高200%~600%。变速器只有在最低输出速度时才被完全利用。 3 按恒功率和恒转矩选择 在这种情况下,调速性能被最佳利用。选择减速器应保证能够传递所出现的最大输出转矩。在n′a—n amax范围内功率保持不变. 在 n amax—n′a范围内转矩保持不变。 如果不全部利用变速器的可用速度范围,那么,由于效率的原因就使用较高的速度级。实际上,速度级较高时变速器打滑最小,传递功率最大。 SEW带式无级变速器技术数据列于下表。表中符号意义如下: R- 调速范围; R m-电动机功率(KW); n a1-转速下限(r/min); n a2-转速上限(r/min); P a1-转速下限时的输出功率(KW); P a2-转速上限时的输出功率(KW); RZ-小齿轮轴直径(mm)。 如果用户需要无级调速斜齿轮减速电机(R../VU/VZ..DT/DV..)、无级调速斜齿轮-蜗杆减速电机(S..VU/VZ..DT/DV..)、无级调速斜齿轮-锥齿轮减速电机(K..VU/VZ..DT/DV..)的技术数据和外形尺寸,可查阅SEW产品样本。样本可向SEW公司各办事处函索。 VARIBLOC?带式无级变速器技术数据

液压机械无级变速器设计与试验分析

液压机械无级变速器设计与试验分析 摘要:液压机械无级变速器(HMCVT)兼具机械传动高效和液压传动无级调速的特点,适应了大功率拖拉机的传动要求。功率经分流机构分流,液压调速机构中的变量泵驱动定量马达,在正、反向最大速度间无级调速,液压调速机构与机械变速机构相配合,经汇流机构汇合,实现档位内微调,通过换挡机构实现档位间粗调,最终实现车辆的无级变速。 关键词:单行星齿轮;液压机械无级变速器;设计 对大马力拖拉机进行动力学和运动学分析,根据性能参数,设计一种单行星排汇流液压机械无级变速器(HMCVT),包括发动机、液压调速机构和离合器的选择,单行星齿轮、换挡机构齿轮传动比的设计。 一、变速器总体设计方案 1.变速器用途和选材。设计一种用于时速-10~30 km/h大马力拖拉机的单行星排汇流液压机械无级变速器。变速器由纯液压起步、后退档,液压机械4个前进档位和2个后退档位构成。液压调速机构选择SAUER90系列055型变量泵、定量马达及附件,采用电气排量控制(EDC)构成闭环回路。选择潍柴WP4.165柴油机作为变速器配套发动机,最大输出功率Pemax=120 kW,全负荷最低燃油消耗率gemin=190 g/kW·h,额定转速nemax=2 300 r/min,最大转矩Temax=600 N·m。汇流机构选用2K-H行星排,行星排特性参数k定义为行星排齿圈齿数与太阳轮齿数之比,取k=3.7。太阳轮、行星架材料选用20crmnti,齿圈材料选用40cr。模数为3,实际中心距为57 mm,太阳轮与行星架采用角度变位,行星架与齿圈采用高度变位。太阳轮轴连接液压调速机构可使系统增速减矩,并充分利用液压元件特性,以提高使用寿命。 2.变速器设计方案。液压机械无级变速器设计方案如图1。变速器输入轴、输出轴和液压动力输入轴成“品”字型布局,行星排通过离合器与机械动力输入轴和液压机械输出轴相连。 1.机械动力输入轴2.输入轴3.前进后退档接合套4.变量泵5.定量马达6.液压机械输出轴7.液压动力输入轴8.输出轴 图1 液压机械无级变速器结构图 离合器L1、L2由比例压力阀控制,结合平稳,起主离合器作用,其它离合器采用电磁换向阀控制,以降低成本;变速器起步和制动为纯液压传动,此时,离合器L8接合;L1~L4是行星排同步离合器,L5~L7是换挡机构离合器。所有离合器由补油泵供油,采用蓄能器减小离合器动作时的油压波动,采用大排量低压齿轮泵供油冷却润滑油路。 二、HMCVT试验台设计 HMCVT试验台用于HMCVT性能试验,试验内容包括空载损耗特性试验、无级调速特性试验、传动效率特性试验和自动调速特性试验。空载损耗试验用于考查HMCVT输出轴不加载状态下变速器功率消耗随变速器速比变化情况;无级调速特性试验用于考查发动机工作在最佳工作点下HMCVT的无级调速范围;传动效率特性试验用于考查HMCVT在不同速比下的传动效率,验证HMVCT传动的高效率特性;自动调速特性试验用于考查负载连续变化时HMCVT速比对发动机最

乘用车无级变速器液压系统毕业设计

摘要 液压控制系统是通过控制金属带轮的夹紧力来实现无级自动变速器速比调节的,其设计方法是开发无级变速传动系统的关键技术之一.在分析了金属带式无级变速器的结构特征和力学关系的基础上,通过对汽车典型行驶工况的仿真分析,提出了无级自动变速液压控制系统关键参数—速比变化率的设计方法,完成了液压系统的结构参数设计,并进行了仿真验证,从而为无级自动变速汽车的研制开发奠定了基础. 针对无级变速器电液控制系统的工作要求,应用数字比例控制技术设计了可用作无级变速器中夹紧力控制阀的数字调压阀。介绍了该数字调压阀的结构以及驱动器的设计方法,并对其进行了静态特性、动态特性试验。试验结果表明,该数字调压阀的控制精度及可靠性高,能满足金属带式无级变速器电液控制系统的要求。 关键词:无级变速传动;液压系统;无级变速器;电液控制系统;数字调压阀

ABSTRACT The design method on the hydraulic control system is one of the key technologies of a metal V-belt continuously variable transmission(CVT).It can change the ratio of the transmission system by adjusting thepu-Shing force of the pulley.By analyzing the structure characteristics andForce relationgs,the design method of an important parameter of the CVTHydranlic system and the rate of transmission ratio are put forward by Simulation to the emblematical driving models. The structure parametersOf hydraulic system is gotten and validated by simulation on specific Driving model. An effective design method is provided to develop the co-ntinuously variable transmission system. In terms of working requirements of the electric-hydraulic controlSystem of continuous variable transmissions,the ditital pressure regulator valve,which can be used as the clamping force valve of CVT,is designed with the digital proportional control technology .The st-Ructure of the digital pressure regulator valve and design method forDrivers is introduced. Tests of static characteristics and dynamic cha-racteristics of digital pressure regulator valve is high, it can meetrequirements of the electric-hydraulic control system of system of metalv-belt type continuous variable transmission. Key words:Continuously variable transmission;Hydraulic system;Electric-hydraulic control system;Digital pressure regulator valve

汽车变速器传动效率测试实验指导书

汽车变速器传动效率测试 实验指导书 目录 一、实验目的 二、实验原理 传动实验台构成 转矩转速传感器测量原理和方法 三、实验内容及实验步骤 实验前准备工作 实验步骤 四、试验分析和报告要求 五、实验注意事项

一、 实验目的 1.掌握转速、扭矩和功率的测量原理和方法。 2.掌握汽车变速器的传动效率测试原理和方法。 3.了解变速器的传动效率随转速和载荷间变化的关系。 二、 实验原理 1. 车辆传动实验台构成 车辆传动实验台构成如图1和图2所示由由原动机(带变频调速的电动机)、传感器(转速扭矩测量仪)、汽车变速器(SG135-2)、负荷(拖动发电机)组成。变速器的转矩、转速信号分别由传感器的两条信号线接入到扭矩仪上读出。 图1 汽车传动实验台安装方式 图2 汽车传动实验台与转速转矩测试分析系统 输入端信号 输出端信号

2.转矩转速传感器测量原理和方法 JC型转矩转速传感器的基本原理是:通过弹性轴、两组磁电信号发生器,把被测转矩、转速转换成具有相位差的两组交流电信号,这两组交流电信号的频率相同且与轴的转速成正比,而其相位差的变化部分又与被测转矩成正比。 JC型转矩转速传感器的工作原理如图3。 图3 JC型转矩转速传感器的工作原理 在弹性轴的两端安装有两只信号齿轮,在两齿轮的上方各装有一组信号线圈,在信号线圈内均装有磁钢,与信号齿轮组成磁电信号发生器。当信号齿轮随弹性轴转动时,由于信号齿轮的齿顶及齿谷交替周期性的扫过磁钢的底部,使气隙磁导产生周期性的变化,线圈内部的磁通量亦产生周期性变化,使线圈中感生出近似正弦波的交流电信号。这两组交流电信号的频率相同且与轴的转速成正比,因此可以用来测量转速。这两组交流电信号之间的相位与其安装的相对位置及弹性轴所传递扭矩的大小及方向有关。当弹性轴不受扭时,两组交流电信号之间的相位差只与信号线圈及齿轮的安装相对位置有关,这一相位差一般称为初始相位差,在设计制造时,使其相差半个齿距左右,即两组交流电信号之间的初始相位差在180度左右。在弹性轴受扭时,将产生扭转变形,使两组交流电信号之间的相位差发生变化,在弹性变形范围内,相位差变化的绝对值与转矩的大小成正比。把这两组交流电信号用专用电缆线送入JW型微机扭矩仪,即可得到转矩、转速及功率的精确值。 三、实验内容及实验步骤 1. 实验前准备工作 1)检查机械部分与电器部分线路是否连接好,控制面板上的按扭和旋扭是否复位。

乘用车无级变速器液压系统设计

二○○九年六月 The Graduation Thesis for Bachelor's Degree Passenger CVT hydraulic system design Candidate:Gao XinMing Specialty:Vehicle Engineering Class:B05-18 Supervisor:Associate Prof. An YongDong Heilongjiang Institute of Technology 2009-06·Harbin

摘要 液压控制系统是通过控制金属带轮的夹紧力来实现无级自动变速器速比调节的,其设计方法是开发无级变速传动系统的关键技术之一.在分析了金属带式无级变速器的结构特征和力学关系的基础上,通过对汽车典型行驶工况的仿真分析,提出了无级自动变速液压控制系统关键参数—速比变化率的设计方法,完成了液压系统的结构参数设计,并进行了仿真验证,从而为无级自动变速汽车的研制开发奠定了基础. 针对无级变速器电液控制系统的工作要求,应用数字比例控制技术设计了可用作无级变速器中夹紧力控制阀的数字调压阀。介绍了该数字调压阀的结构以及驱动器的设计方法,并对其进行了静态特性、动态特性试验。试验结果表明,该数字调压阀的控制精度及可靠性高,能满足金属带式无级变速器电液控制系统的要求。 关键词:无级变速传动;液压系统;无级变速器;电液控制系统;数字调压阀 ABSTRACT The design method on the hydraulic control system is one of the key technologies of a metal V-belt continuously variable transmission(CVT).It can change the ratio of the transmission system by adjusting thepu-Shing force of the pulley.By analyzing the structure characteristics andForce relationgs,the design method of an important parameter of the CVTHydranlic system and the rate of transmission ratio are put forward by Simulation to the emblematical driving models. The structure parametersOf hydraulic system is gotten and validated by simulation on specific Driving model. An effective design method is provided to develop the co-ntinuously variable transmission system. In terms of working requirements of the electric-hydraulic controlSystem of continuous variable transmissions,the ditital pressure regulator valve,which can be used as the clamping force valve of CVT,is designed with the digital proportional control technology .The st-Ructure of the digital pressure regulator valve and design method forDrivers is introduced. Tests of static characteristics and dynamic cha-racteristics of digital pressure regulator valve is high, it can meetrequirements of the electric-hydraulic control system of system of metalv-belt type continuous variable transmission. Key words:Continuously variable transmission;Hydraulic system;Electric-hydraulic

乘用车无级变速器液压系统设计

本科学生毕业设计 乘用车无级变速器液压系统设计 系部名称:汽车工程系 专业班级:车辆工程B05-18班 学生:高新明 指导教师:安永东 职称:副教授 黑龙江工程学院 二○○九年六月

The Graduation Thesis for Bachelor's Degree Passenger CVT hydraulic system design Candidate:Gao XinMing Specialty:Vehicle Engineering Class:B05-18 Supervisor:Associate Prof. An YongDong Heilongjiang Institute of Technology

2009-06·Harbin

摘要 液压控制系统是通过控制金属带轮的夹紧力来实现无级自动变速器速比调节的,其设计方法是开发无级变速传动系统的关键技术之一.在分析了金属带式无级变速器的结构特征和力学关系的基础上,通过对汽车典型行驶工况的仿真分析,提出了无级自动变速液压控制系统关键参数—速比变化率的设计方法,完成了液压系统的结构参数设计,并进行了仿真验证,从而为无级自动变速汽车的研制开发奠定了基础. 针对无级变速器电液控制系统的工作要求,应用数字比例控制技术设计了可用作无级变速器中夹紧力控制阀的数字调压阀。介绍了该数字调压阀的结构以及驱动器的设计方法,并对其进行了静态特性、动态特性试验。试验结果表明,该数字调压阀的控制精度及可靠性高,能满足金属带式无级变速器电液控制系统的要求。 关键词:无级变速传动;液压系统;无级变速器;电液控制系统;数字调压阀

无级变速器的应用与发展

汽车无级变速器的应用与发展 XXX (南京农业大学工学院南京 210031) 摘要:无极变速器是由变速传动机构、调速机构以及加压装置或输出机构三部分组成的一种传动装置,简称CVT。它可以显著提高汽车的经济性,改善汽车的动力性,使汽车发动机始终运行在最佳目标运行区,以满足机器或生产系统在运转过程中各种不同工况的要求,这样就既可减少汽车的换挡冲击,也可减轻驾驶员的劳动强度。目前汽车无级变速器是汽车最理想的传动系统,具有很大发展空间,必将成为当前的研究热点。本文简述了无级变速器的发展历程与研究现状,总结了无级变速器的优势。阐述了今后的发展趋势和在我国的发展前景。关键字:汽车、无级变速器、研究现状、优势、发展趋势、前景 The application and development of CVT car XXX (Nanjing agricultural university institute of technology Nanjing 210031) Abstract: Continuously Variable Transmission is by a variable speed drive mechanism, control mechanism and pressurizing device or output mechanism of three parts of a transmission device, it can significantly improve vehicle efficiency, improve vehicle power performance, make the car engine always run run the best target area, to meet machine or production systems in the process of running various requirements of different working conditions, so it can not only reduce automobile shift shock, also can reduce the labor intensity of the driver. Now automotive Continuously Variable Transmission is the most ideal auto transmission system, has the very big development space, will become the current research hot spot. This paper describes the development of numerous level transmission process and research status. Conclusion Continuously Variable Transmission advantage. Expounds the future development trends and the development prospect in our country. Key words: car, Continuously Variable Transmission, research status, advantage, development trend and prospects

变速器设计步骤

第一节概述 变速器用来改变发动机传到驱动轮上的转矩和转速,目的是在原地起步,爬坡,转弯,加速等各种行驶工况下,使汽车获得不同的牵引力和速度,同时使发动机再最有利工况范围内工作。变速器设有空挡和倒挡。需要时变速器还有动力输出功能。 变速器由变速传动机构和操纵机构组成。 对变速器如下基本要求. 1)保证汽车有必要的动力性和经济性。 2)设置空挡,用来切断发动机动力向驱动轮的传输。 3)设置倒档,使汽车能倒退行驶。 4)设置动力输出装置,需要时能进行功率输出。 5)换挡迅速,省力,方便。 6)工作可靠。汽车行驶过程中,变速器不得有跳挡,乱挡以及换挡冲击等现象发生。 7)变速器应当有高的工作效率。 8)变速器的工作噪声低。 除此以外,变速器还应当满足轮廓尺寸和质量小,制造成本低,维修方便等要求。 满足汽车有必要的动力性和经济性指标,这与变速器的档数,传动比范围和各挡传动比有关。汽车工作的道路条件越复杂,比功率越小,变速器的传动比范围越大。 在原变速传动机构基础上,再附加一个副箱体,这就在结构变化不大的基础上,达到增加变速器挡数的目的。近年来,变速器操纵机构有向自动操纵方向发展的趋势。

第二节变速器传动机构布置方案 机械式变速器因具有结构简单,传动效率高,制造成本低和工作可靠等优点,在不同形式的汽车上得到广泛应用。 一.传动机构布置方案分析 变速器传动机构有两种分类方法。根据前进挡数的不同,有三,四,五和多挡变速器。根据轴的形式不同,分为固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又分为两轴式,中间轴式,双中间轴式变速器。固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。旋转轴式主要用于液力机械式变速器。与中间轴式变速器比较,两轴式变速器有结构简单,轮廓尺寸小,布置方便,中间挡位传动效率高和噪声低等优点。因两轴式变速器不能设置直接挡,所以在高档工作时齿轮和轴承均承载,不仅工作噪声增大,且易损坏。此外,受结构限制,两轴式变速器的一挡速比不可能设计得很大。 图3-1示出用在发动机前置前轮驱动轿车的两轴式变速器传动方案。其特点是:变速器输出轴与主减速器主动齿轮做成一体,发动机纵置时,主减速器采用弧齿锥齿轮或双曲面齿轮,发动机横置时则采用圆柱齿轮;多数方案的倒档传动常用滑动齿轮,其他挡位均用常啮合齿轮传动。图3-1F中的倒挡齿轮为常啮合齿轮,并用同步器换挡;同步器多数装在输出轴上,这是因为一挡主动齿轮尺寸小,同步器装在输入轴上有困难,而高档同步器可以装在输入轴的后端,见图3-1D,E;图3-1D所示方案的变速器有辅助支承,用来提高轴的刚度,减少齿轮磨损和降低工作噪声。图3-1F所示方案为五挡全同步器式变速器,以此为基础,只要将五挡齿轮用尺寸相当的隔套替代,即可改变为四挡变速器,从而形成一个系列产品。

机械无级变速传动例题讲解

1. 推导BUS 型机械无级变速器的滑动率ε。 解:BUS 的滑动率求解主要求出*i ,要根据有滑移存在时的几何尺寸来计算,方法同无滑移时一样,关键是找出几何关系,可求出BUS 的滑动率。 图1 BUS 变速器运动分析简图(主要几何尺寸) 由图1可知BUS 型变速器的传动原理属于3K 型行星传动,a,b,e 为中心论,H 为转臂,V 为行星锥。当中心轮e 固定不动时,中心轮b 和a 之间的传动比为: H ae H be e ba i i i --=11 (1) 上式中H ae i 是转臂H 固定不动时,a 和e 的传动比,由下图 2 图2 BUS 变速器运动分析简图(角速度矢量图) 可知它应为:

r R r R r R R r i a e e e a H ae 11-=?- = 而H be i 是转臂不动时,b 和e 的传动比为: r R r R r R R r i b e e e b H be 11-=?- = 将H ae i 和H be i 代入式(1)中,得到: 1 1r R R r r R R r i b e b e e ba +- = 由于外环e 实际是固定不动的,其角速度0=e ω,所以: a b e a e b e ba i ωωωωωω= --= 由此可知e ae i 实际上就是变速器的传动比,并且等于输出轴角速度b ω与输入轴a ω角速度的比值。把变速器的传动比e ba i 简写为i ,则: 1 1 r R R r r R R r i b e b e a b +- = =ωω (2) (2)式可进一步简化为: 1 1 r R R r r r i a e +-= (3) 又由锥体半径之间的关系:当βα,被确定后,外环的摩擦半径e R ,主动锥的大端半径a R 和行星锥打断半径1r 之间有下述唯一确定的关系: ()()β βαβαsin sin sin 1 r R R a e =-=+ 则式(3)可简化为

液压机械无级变速器( HMT)原理及应用分析

现在车辆上的传动装置多采用机械式变速器, 1液力机械式变速器(AT)液力机械式变速器由液力变矩器和多挡机械变速箱组成。 2液压机械无级变速器(HMT)及应用分析 3静液压无级变速器(HST)及其应用分析静液压无级变速器(HST)依靠液压变量马达实现纯液压无级变速,效率较AT高,但较齿轮变速器低许多,传递功率不大 4 金属带式无级变速器 为了充分利用发动机大的功率,节约能源以及获得优良的动力性能,最理想的方法是从传统的有级传动发展为无级传动。 目前普遍采用的液力变矩器及其闭锁装置,自动换挡机构等均是为了弥补有级传动的不足而产生的传动模式,但不能实现真正的无级变速。 另外还出现了全液压传动的无级变速器,其操纵方式也由手动液控向电液控制或微电脑控制技术方面发展,并取得了非常好的效果,大大提高了整机的行使平顺性和作业性能,液压传动可以保证车辆具有稳定的行驶速度。但是在液压传动的车辆中传动效率低也是一个不容忽视的问题,按当代的技术水平,纯液压传动中最高效率在80-85%左右,而在车辆使用中,一般只能达到50-60%。此外,适用于重型车辆使用的大功率的液压元件难以加工,也使液压传动的车辆增加了制造成本。另外,这种高油压高转速的变量泵和定量马达的排量越大,即功率越大时,效率和寿命愈难以保证,生产愈困难,在市场上愈难买到。液压传动的低效率直接影响了整机的生产率和经济性,决定了它在车辆上很难有较大的发展空间。 机械液压双功率流则兼有机械传动的高效率和液压无级传动的双重优点,可在较宽的范围内实现可控的无级变速和所需的车速。以小功率的液压元件传递大功率特性,高效率特性,为车辆的经济性和动力性问题的解决找到了理想的道路。 液压机械无级传动是一种双功率流传动系统,分为液压功率和机械功率两路传递,分流机构分流后液压马达在正向和反向最大速度之间来回无级变速。其每一个行程和行星齿轮机构的一种工况相配合,最后两路汇合成由若干无级调速段相衔接并组逐段升高的全程无级输出速度。液压元件只负担最大功率的一部分,其他功率都由机械路传递。这相当于将液压无级变速功率扩大,传动总效率相对于液压传动也显著提高,和液力机械传动相比,装载量最大可提高30%,燃油经济性最大可提高25%。其特点是通过机械传动实现功率转递,通过液压机械相结合实现无级变速。 液压机械无级变速器( HMT)及应用分析 液压机械无级变速器(HMT)由液压调速机构和机械变速机构及分、汇流机构组成,是一种液压功率流与机械功率流并联的传动形式,通过机械传动实现传动高效率,通过液压传动与机械传动相结合实现无级变速。其原理如1所示,输入功率经分流机构分流为两路,一路经液压调速机构流至汇流机构,另一路经机械变速机构传至汇流机构,由于液压调速机构具有无级调速特性(通过控制系统控制变量泵斜盘倾角的变化使排量改变来实现),与机械变速机构经汇流机构汇流后,使HMT实现无级变速。液压调速机构有变量泵-定量马达,定量泵-变量马达,变量泵-变量马达3种形式,第一种应用较多。机械变速机构为自动有级变速器。分、汇流机构为定轴齿轮传动或行星齿轮传动,从成本及实

变速器传动机构布置方案分析

变速器传动机构布置方案分析 变速器传动机构有两种分类方法。根据前进挡数的不同,有三,四,五和多挡变速器。根据轴的形式不同,分为固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又分为两轴式,中间轴式,双中间轴式变速器。 变速器传动机构有两种分类方法。根据前进挡数的不同,有三,四,五和多挡变速器。根据轴的形式不同,分为固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又分为两轴式,中间轴式,双中间轴式变速器。固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。旋转轴式主要用于液力机械式变速器。与中间轴式变速器比较,两轴式变速器有结构简单,轮廓尺寸小,布置方便,中间挡位传动效率高和噪声低等优点。因两轴式变速器不能设置直接挡,所以在高档工作时齿轮和轴承均承载,不仅工作噪声增大,且易损坏。此外,受结构限制,两轴式变速器的一挡速比不可能设计得很大。 图3-1示出用在发动机前置前轮驱动轿车的两轴式变速器传动方案。其特点是:变速器输出轴与主减速器主动齿轮做成一体,发动机纵置时,主减速器采用弧齿锥齿轮或双曲面齿轮,发动机横置时则采用圆柱齿轮;多数方案的倒档传动常用滑动齿轮,其他挡位均用常啮合齿轮传动。图3-1F中的倒挡齿轮为常啮合齿轮,并用同步器换挡;同步器多数装在输出轴上,这是因为一挡主动齿轮尺寸小,同步器装在输入轴上有困难,而高档同步器可以装在输入轴的后端,见图3- 1D,E;图3-1D所示方案的变速器有辅助支承,用来提高轴的刚度,减少齿轮磨损和降低工作噪声。图3-1F所示方案为五挡全同步器式变速器,以此为基础,只要将五挡齿轮用尺寸相当的隔套替代,即可改变为四挡变速器,从而形成一个系列产品。

无级变速器的基本结构和变速原理

无级变速器的基本结构和变速原理 沈林江,胥家政 摘要:无级变速技术是目前汽车传动系统中的前沿技术,无级变速器(CVT)与手动变速器(MT)、自动变速器(AT)相比,综合动力性能更佳,能与发动机形成理想的动力匹配,因此,无级变速汽车是当今发展的主要趋势之一。无级变速器中最为重要的一项是电液控制技术,直接影响到汽车变速品质、经济性以及动力性。速比控制、夹紧力控制和起步离合器的控制是无级变速控制系统的关键。 关键词:无级变速;结构;原理;特点 Basic structure and Variable speed principle of the CVT Shen lin-jiang , Xu jia-zheng Abstract: Continuously variable transmission technology is currently in the forefront of automotive technology,continuously variable transmission (CVT) with manual transmission(MT),automatic transmission(AT),an integrated vechicle is the development of the car one of the main trend. CVT is the most important one is the electro-hydraulic control technology.Car speed directly affects the quality and economy, and dynamic.However ratio control, clamping force control and control is the key to starting clutch CVT control system. Key word: I nfinitely variable speeds; structure; principle; characteristic 引言 汽车无级变速器能实现传动比连续变化,在更大范围内控制发动机的工作点,真正实现发动机—变速器—道路载荷的最佳匹配,所以一直以来是汽车制造商和用户追求的理想变速器。无级变速器按作用方式的不同和传动形式的差异,可分为机械式、电气式、液压式三大类。其中机械式无级变速器恒功率特性较好,有较高的传动效率,应用比较广泛,金属带式无级变速器就是典型的一种机械式摩擦无级变速器。由于金属带式无极变速器最为普遍,所以本文主要研究金属带式无级变速器的基本结构和变速原理。 1 汽车无级变速器的类型和特点 无级变速器可分为:液力变矩器,摆销链式无级变速器CVT,金属带式无级变速器CVT,环盘滚轮式无级变速器IVT这4大类。与有级变速器相比,它的优点明显:(1)提高燃油

相关文档
相关文档 最新文档