文档库 最新最全的文档下载
当前位置:文档库 › 进程和线程的关系与区别是什么

进程和线程的关系与区别是什么

进程和线程的关系与区别是什么

进程和线程的关系与区别是什么

?1定义

?

?

?进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。

?

?线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

?

?2关系

?

?

?一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。

?

?

?相对进程而言,线程是一个更加接近于执行体的概念,它可以与同进程中的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。

?

进程与线程的区别 进程的通信方式 线程的通信方式

进程与线程的区别进程的通信方式线 程的通信方式 进程与线程的区别进程的通信方式线程的通信方式2011-03-15 01:04 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车 而同一辆马车可以有很多匹马来拉--这些马就是线程 假设道路的宽度恰好可以通过一辆马车 道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)--即最小的运行单位 每辆马车马匹数=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度 马匹数1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程.

线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执 行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序 的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行 的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在 应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可 以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程 的调度和管理以及资源分配。这就是进程和线程的重要区别。 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的 能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中 必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的 其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以 并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有 独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响, 而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线 程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程 的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者 《操作系统的设计与实现》。对就个问题说得比较清楚。 +++ 进程概念

操作系统第二章进程和线程复习题

第二章练习题 一、单项选择题 1.某进程在运行过程中需要等待从磁盘上读入数据,此时该进程的状态将( C )。 A. 从就绪变为运行; B.从运行变为就绪; C.从运行变为阻塞; D.从阻塞变为就绪2.进程控制块是描述进程状态和特性的数据结构,一个进程( D )。 A.可以有多个进程控制块; B.可以和其他进程共用一个进程控制块; C.可以没有进程控制块; D.只能有惟一的进程控制块。 3.临界区是指并发进程中访问共享变量的(D)段。 A、管理信息 B、信息存储 C、数据 D、 程序 4. 当__ B__时,进程从执行状态转变为就绪状态。 A. 进程被调度程序选中 B. 时间片到 C. 等待某一事件 D. 等待的事件发生 5. 信箱通信是一种( B )通信方式。 A. 直接通信 B. 高级通信

C. 低级通信 D. 信号量 6. 原语是(B)。 A、一条机器指令 B、若干条机器指令组成 C、一条特定指令 D、中途能打断的指令 7. 进程和程序的一个本质区别是(A)。 A.前者为动态的,后者为静态的; B.前者存储在内存,后者存储在外存; C.前者在一个文件中,后者在多个文件中; D.前者分时使用CPU,后者独占CPU。 8. 任何两个并发进程之间存在着(D)的关系。 A.各自完全独立B.拥有共享变量 C.必须互斥D.可能相互制约 9. 进程从运行态变为等待态可能由于(B )。 A.执行了V操作 B.执行了P 操作 C.时间片用完 D.有高优先级进程就绪 10. 用PV操作管理互斥使用的资源时,信号量的初值应定义为(B)。 A.任意整数 B.1 C.0 D.-1

进程和线程的选择

鱼还是熊掌:浅谈多进程多线程的选择 关于多进程和多线程,教科书上最经典的一句话是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,这句话应付考试基本上够了,但如果在工作中遇到类似的选择问题,那就没有这么简单了,选的不好,会让你深受其害。 经常在网络上看到有的XDJM问“多进程好还是多线程好?”、“Linux下用多进程还是多线程?”等等期望一劳永逸的问题,我只能说:没有最好,只有更好。根据实际情况来判断,哪个更加合适就是哪个好。 我们按照多个不同的维度,来看看多线程和多进程的对比(注:因为是感性的比较,因此都是相对的,不是说一个好得不得了,另外一个差的无法忍受) 看起来比较简单,优势对比上是“线程 3.5 v 2.5 进程”,我们只管选线程就是了? 呵呵,有这么简单我就不用在这里浪费口舌了,还是那句话,没有绝对的好与坏,只有哪个更加合适的问题。我们来看实际应用中究竟如何判断更加合适。 1)需要频繁创建销毁的优先用线程 原因请看上面的对比。 这种原则最常见的应用就是Web服务器了,来一个连接建立一个线程,断了就销毁线程,要是用进程,创建和销毁的代价是很难承受的

2)需要进行大量计算的优先使用线程 所谓大量计算,当然就是要耗费很多CPU,切换频繁了,这种情况下线程是最合适的。 这种原则最常见的是图像处理、算法处理。 3)强相关的处理用线程,弱相关的处理用进程 什么叫强相关、弱相关?理论上很难定义,给个简单的例子就明白了。 一般的Server需要完成如下任务:消息收发、消息处理。“消息收发”和“消息处理”就是弱相关的任务,而“消息处理”里面可能又分为“消息解码”、“业务处理”,这两个任务相对来说相关性就要强多了。因此“消息收发”和“消息处理”可以分进程设计,“消息解码”、“业务处理”可以分线程设计。 当然这种划分方式不是一成不变的,也可以根据实际情况进行调整。 4)可能要扩展到多机分布的用进程,多核分布的用线程 原因请看上面对比。 5)都满足需求的情况下,用你最熟悉、最拿手的方式 至于“数据共享、同步”、“编程、调试”、“可靠性”这几个维度的所谓的“复杂、简单”应该怎么取舍,我只能说:没有明确的选择方法。但我可以告诉你一个选择原则:如果多进程和多线程都能够满足要求,那么选择你最熟悉、最拿手的那个。 需要提醒的是:虽然我给了这么多的选择原则,但实际应用中基本上都是“进程+线程”的结合方式,千万不要真的陷入一种非此即彼的误区。

c语言 多进程和多线程

一.多进程程序的特点 进程是一个具有独立功能的程序关于某个数据集合的一次可以并发执行的运行活动,是处于活动状态的计算机程序。进程作为构成系统的基本细胞,不仅是系统内部独立运行的实体,而且是独立竞争资源的基本实体。 进程是资源管理的最小单位,线程是程序执行的最小单位。进程管理着资源(比如cpu、内存、文件等等),而将线程分配到某个cpu上执行。在操作系统设计上,从进程演化出线程,最主要的目的就是更好的支持多处理器系统和减小上下文切换开销。 进程的状态系统为了充分的利用资源,对进程区分了不同的状态.将进程分为新建,运行,阻塞,就绪和完成五个状态. 新建表示进程正在被创建, 运行是进程正在运行, 阻塞是进程正在等待某一个事件发生, 就绪是表示系统正在等待CPU来执行命令, 完成表示进程已经结束了系统正在回收资源. 由于UNIX系统是分时多用户系统, CPU按时间片分配给各个用户使用,而在实质上应该说CPU按时间片分配给各个进程使用, 每个进程都有自己的运行环境以使得在CPU做进程切换时不会"忘记"该进程已计算了一半的"半成品”. 以DOS的概念来说, 进程的切换都是一次"DOS中断"处理过程, 包括三个层次: 1)用户数据的保存: 包括正文段(TEXT), 数据段(DATA,BSS), 栈段(STACK), 共享内 存段(SHARED MEMORY)的保存. 2)寄存器数据的保存: 包括PC(program counter,指向下一条要执行的指令的地址), PSW(processor status word,处理机状态字), SP(stack pointer,栈指针), PCBP(pointer of process control block,进程控制块指针), FP(frame pointer,指向栈中一个函数的local 变量的首地址), AP(augument pointer,指向栈中函数调用的实参位置), ISP(interrupt stack pointer,中断栈指针), 以及其他的通用寄存器等. 3)系统层次的保存: 包括proc,u,虚拟存储空间管理表格,中断处理栈.以便于该进程再一次得到CPU时 间片时能正常运行。既然系统已经处理好所有这些中断处理的过程, 我们做程序 还有什么要担心的呢? 我们尽可以使用系统提供的多进程的特点, 让几个程序精 诚合作, 简单而又高效地把结果给它搞出来。 另外,UNIX系统本身也是用C语言写的多进程程序,多进程编程是UNIX的特点,当我们熟悉了多进程?将会对UNIX系统机制有一个较深的认识.首先我介绍一下多进程程序的一些突出的特点:

Apache log4cxx在C++多进程多线程下的使用

Apache log4cxx在C++多进程多线程下的使用 1、Apache log4cxx介绍 Apache log4cxx是Apache Logging Services三个日志记录项目之一,完全开源组件。是著名的日志记录组件log4j的c++移植版,用于为C++程序提供日志功能,以便开发者对目标程序进行调试和审计。当前的最新版本为0.10.0。 2、Apache log4cxx 框架组成 Apache Log4cxx有三个关键组件,它们是loggers, appenders和layouts。执行日志操作Logger是log4cxx的核心类。looger有层次结构,最顶层为RootLogger;logger是分七个级别,分别是debug、info、warn、error、fatal、all、off,最常用的应该是debug()和info();而warn()、error()、fatal()仅在相应事件发生后才使用。每个logger可以附加多个Appender。Appender 代表了日志输出的目标,如输出到文件、控制台,数据库等等。对于每一种appender,都可以通过layout进行格式设置,根据自己需求定制不同日志内容。 使用中用到的类有BasicConfigurator、PropertyConfigurator、DOMConfigurator等,用于对log4cxx进行配置。其中BasicConfigurator提供了一种简单配置,包括使用ConsoleAppder作为root appender和PatternLayout 作为缺省布局, PropertyConfigurator使用properties文件作为配置方式,DOMConfigurator则使用properties文件作为配置方式,具体配置文档信息请查阅相关资料。 3、多进程多线程使用设计 Apache Log4cxx 提供的常用供日志调用方法,logger->info(),logger->debug(),logger->warn(),logger->error(),与上述方法类似的还有相应的宏调用LOG4CXX_DEBUG()、LOG4CXX_INFO()、LOG4CXX_WARN()、LOG4CXX_ERROR()。每个方法与宏的参数要求是全字符串类型,对于不同的日志信息相应调用不同的日志记录方法,即可得到不同级别、不同类型的日志信息。 配置文件的设置Apache Log4cxx提供 static void configure(helpers::Properties& properties)函数,参数中传入配置文件的绝对路径或是相对路径、文件名,日志文件名称 Apache Log4cxx 提供 static LoggerPtr getLogger(const std::wstring& name); 参数中传入日志文件名,用日志文件名称实例化LoggerPtr对象 LoggerPtr logger(Logger::getLogger(trace)),即可用通过logger对象调用相应类型日志方法,宏调用也在实例化日志对象后才能对设置信息有作用大家看到了,方法参数要求是一个字符串类型,不便于C++记录日志,也不习惯于C++程序员使用。配置文件与日志文件名设备,都用到了静态方法,多线程共用一个日志对象,每个线程一个日志文件,上述静态方法是不能满足这个需求的,多个进程里面不用的线程调用此方法,每个线程一个日志文件,就更不能满足需求,所以我们必须自己设计一种结构来封装Apache Log4cxx提供的方法,满足多进程多线程下,一个线程一个日志文件的需求。设计一种方便的参数传入模式,使C++程序员能方便使用日志组件提供方法。 我的设计模型如下,用动态库封装日志方法,不同进程、不同线程实例化一

进程线程的概念

提起程序这个概念,大家再也熟悉不过了,程序与进程概念是不可分的。程序是为了完成某项任务编排的语句序列,它告诉计算机如何执行,因此程序是需要运行的。程序运行过程中需要占有计算机的各种资源才能运行下去。如果任一时刻,系统中只有一道程序,即单道程序系统,程序则在整个运行过程中独占计算机全部资源,整个程序运行的过程就非常简单了,管理起来也非常容易。就象整个一套房子住了一个人,他想看电视就看电视,想去卫生间就去卫生间,没人和他抢占资源。但为了提高资源利用率和系统处理能力,现代计算机系统都是多道程序系统,即多道程序并发执行。程序的并发执行带来了一些新的问题,如资源的共享与竞争,它会改变程序的执行速度。就象多个人同时住一套房子,当你想去卫生间的时候,如果此时卫生间里有人,你就得等待,影响了你的生活节奏。如果程序执行速度不当,就会导致程序的执行结果失去封闭性和可再现性,这是我们不希望看到的。因此应该采取措施来制约、控制各并发程序段的执行速度。由于程序是静态的,我们看到的程序是存储在存储介质上的,它无法反映出程序执行过程中的动态特性,而且程序在执行过程中是不断申请资源,程序作为共享资源的基本单位是不合适的,所以需要引入一个概念,它能描述程序的执行过程而且可以作为共享资源的基本单位,这个概念就是进程。 进程的生命周期 进程和人一样是有生命的,从诞生到死亡要经历若干个阶段。一般说来进程有三种状态:就绪、执行、等待。由多种原因可以导致创建一个进程,例如一个程序从外存调入内存开始执行,操作系统就要为其创建进程,当然还可以有其它原因,如一个应用进程为完成一个特殊的任务,可以自己创建一个子进程。进程被创建后就是在内存中,处于就绪状态,所谓就绪状态就是具备除了CPU之外的所有资源,万事具备,只欠东风,一旦占有 了CPU,就变成了执行状态,执行中如果需要等待外围设备输入数据,则进程就沦落为 等待状态,操作系统又会从就绪状态队列中调度一个进程占有CPU。等到数据到来后, 等待状态的进程又被唤醒成为就绪状态。这些状态的转换是通过进程控制原语实现的。程序的运行是通过进程体现的,操作系统对进程进行管理和控制,那么操作系统怎么了解到进程的状态呢,怎么把资源分配给进程呢,而且进程做状态转换时CPU现场保存在那呢?这要说到PCB(进程控制快)。PCB是进程的唯一标志,在其中记录了进程的全部信息,它是一种记录型的数据结构,相当于进程的档案。操作系统就通过PCB感知进程的存在,通过PCB了解进程和控制进程的运行。PCB也是放在内存中的,如果PCB太大,有些系 统把PCB中一些不重要的信息放在外存中。 进程执行速度的制约 并发进程由于共享系统内部资源,因此导致进程执行速度上的制约,这种制约分为:间接制约与直接制约。间接制约引起进程之间的互斥执行,直接制约引起进程间的同步执行。例如一个家里如果只有一个卫生间,卫生间这个公有资源使得每个人只能互斥使用它,这就是间接制约。而直接制约是指并发进程各自执行的结果互为对方的执行条件,例如司机与售票员的关系,当司机到站停车后,售票员才能开门,而只有售票员关门后,司机才

实验二 编程实现进程(线程)同步和互斥

《操作系统》实验内容 实验二编程实现进程(线程)同步和互斥 1.实验的目的 (1)通过编写程序实现进程同步和互斥,使学生掌握有关进程(线程)同步与互斥的原理,以及解决进程(线程)同步和互斥的算法,从而进一步巩固进程(线程)同步和互斥等有关的内容。 (2)了解Windows2000/XP中多线程的并发执行机制,线程间的同步和互斥。 (3)学习使用Windows2000/XP中基本的同步对象,掌握相应的API函数。 (4)掌握进程和线程的概念,进程(线程)的控制原语或系统调用的使用。 (5)掌握多道程序设计的基本理论、方法和技术,培养学生多道程序设计的能力。2.实验内容 在Windows XP、Windows 2000等操作系统下,使用的VC、VB、java或C等编程语言,采用进程(线程)同步和互斥的技术编写程序实现生产者-消费者问题或哲学家进餐问题或读者-写者问题或自己设计一个简单进程(线程)同步和互斥的实际问题。 3.实验要求 (1)经调试后程序能够正常运行。 (2)采用多进程或多线程方式运行,体现了进程(线程)同步和互斥的关系。 (3)程序界面美观。 4.实验步骤 (1)需求分析:了解基本原理,确定程序的基本功能,查找相关资料,画出基本的数据流图; (2)概要设计:确定程序的总体结构、模块关系和总体流程; (3)详细设计:确定模块内部的流程和实现算法; (4)上机编码和调试; (5)运行测试; (6)编写实验报告。 5.实验报告要求 格式符合《实验报告格式》书;书写规范,排版美观,有较强的文字表达能力,能够正确地表达自己的思想,图表符合规范。 6.实验说明 本实验分两次进行,每次要求填写一份实验报告,报告中的实验名分别为:编程实现进程同步和互斥1和编程实现进程同步和互斥2,其他内容依据实验进度具体填写。

线程、进程、多线程、多进程和多任务之间的区别与联系

线程、进程、多线程、多进程和多任务之间的区别与联系

可能学习操作系统开发的读者都听说过这些专业名词,但又多少人理解了? 首先,从定义开始,先看一下教科书上进程和线程定义:进程:资源分配的最小单位。线程:程序执行的最小单位。 1 进程进程是程序执行时的一个实例,即它是程序已经执行到课中程度的数据结构的汇集。从内核的观点看,进程的目的就是担当分配系统资源(CPU时间、内存等)的基本单位。 举例说明进程:想象一位有一手好厨艺的计算机科学家正在为他的女儿烘制生日蛋糕,他有做生日蛋糕的食谱,厨房里有所需的原料:面粉、鸡蛋、糖、香草汁等。在这个比喻中,做蛋糕的食谱就是程序(即用适当形式描述的算法)计算机科学家就是处理器(CPU),而做蛋糕的各种原料就是输入数据。 进程就是厨师阅读食谱、取来各种原料以及烘制蛋糕等一系列动作的总和。现在假设计算机科学家的儿子哭着跑了进来,说他的头被一只蜜蜂蛰了。计算机科学家就记录下他照着食谱做到哪儿了(保存进程的当前状态),然后拿出一本急救手册,按照其中的指示处理蛰伤。这里,我们看到处理机制是从一个进程(做蛋糕)切换到另一个高优先级的进程(实施医疗救治),每个进程拥有各自的程序(食谱和急救手册)。当蜜蜂蛰伤处理完之后,这位计算机科学

家又回来做蛋糕,从他离开时的那一步继续做下去。 2 线程线程是CPU调度的最小单位(程序执行流的最小单元),它被包含在进程之中,是进程中的实际运作单元。一条线程是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。 一个标准的线程有线程ID、当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单元,线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所拥有的全部资源。一个线程可以创建和撤销另一个线程,同一进程中的多个线程之间可以并发执行。由于线程之间的相互制约,致使线程在运行中呈现处间断性。 线程也有就绪、阻塞和运行三种基本状态。就绪状态是指线程具备运行的所有条件,逻辑上可以运行,在等待处理机;运行状态是指线程占有处理机正在运行;阻塞状态是指线程在等待一个事件(如某个信号量),逻辑上不可执行。每一个程序都至少有一个线程,若程序只有一个线程,那就是程序本身。举例说明线程:假设,一个文本程序,需要接受键盘输入,将内容显示在屏幕上,还需要保存信息到硬盘中。若只有一个进程,势必造成同一时间只能干一样事的尴尬(当保存时,就不能通过键盘输入内容)。若有多个进程,每个进程负责一个任务,进程A负责接收键盘输入的任务,进程B负责将内容显示在屏幕上的任务,进程C负责保存内容到硬盘中的任务。这里进程A,B,C间的协作涉及到了进程通信问题,而且有共同都需要拥有的东西——-文本内容,不停的切换造成性能上的损失。若有一种机制,可以使任务A,B,C共享资源,这样上下文切换所需要保存和恢复的内容就少了,同时又可以减少通信所带来的性能损耗,那就好了。这种机制就是线程。 总的来说:进程有独立的地址空间,线程没有单独的地址空间(同一进程内的线程共享进程的地址空间)。

多进程与多线程性能比较

1.多进程与多线程并发速度的实验对比 在多进程与多线程并发运行速度的问题上,一般认为线程的创建销毁速度快,进程的创建销毁速度慢,多线程的速度要优于多进程。为了得到明确结果,在192.168.1.141的主机上使用了thread.c和fork.c两个程序进行测试。(测试程序基于论文《Linux系统下多线程与多进程性能分析》作者“周丽焦程波兰巨龙”) fork.c #include #include #include #define P_NUMBER 127 #define COUNT 50 #define P_NUMBER 127 /* 并发进程数量*/ #define COUNT 50 /* 每进程打印字符串次数*/ char *s = "hello linux\0"; int main(void) { int i = 0, j = 0; logFile = fopen(TEST_LOGFILE, "a+"); for (i = 0;i < P_NUMBER; i ++){ if (fork() == 0){ for (j = 0;j < COUNT; j ++){ printf("[%d]%s\n", j, s); fprintf(logFile, "[%d]%s\n", j, s); } exit(0); } } for (i = 0;i < P_NUMBER; i ++){ wait(0); } } thread.c #include #include #include #include #define P_NUMBER 127 /* 并发线程数量*/ #define COUNT 50 /* 每线程打印字符串次数*/ #define Test_Log "logFile.log"

进程、线程、管程三者之间的关系

进程、线程、管程三者之间的关系 首先我们先了解进程、线程、管程各自的概念:进程:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。线程:线程是进程中的实体,一个进程可以拥有多个线程,一个线程必须有一个父进程。线程不拥有系统资源,只有运行必须的一些数据结构;它与父进程的其它线程共享该进程所拥有的全部资源。线程可以创建和撤消线程,从而实现程序的并发执行。一般,线程具有就绪、阻塞和运行三种基本状态。 管程:管程定义了一个数据结构和能为并发进程所执行的一组操作,这组操作能同步进程和改变管程中的数据。 现在我们来了解进程和线程的关系: 简而言之,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有

多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。 下面我们用实际图解来加以分析进程和线程之间的关系:

进程和线程的区别

进程和线程的区别 进程和线程的概念 先了解一下操作系统的一些相关概念,大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式,也就是说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。任务执行的一小段时间叫做时间片,任务正在执行时的状态叫运行状态,任务执行一段时间后强制暂停去执行下一个任务,被暂停的任务就处于就绪状态等待下一个属于它的时间片的到来。这样每个任务都能得到执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发(并发简单来说多个任务同时执行)。 进程 计算机的核心是CPU,它承担了所有的计算任务;而操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应用程序侧是具有某种功能的程序,程序是运行于操作系统之上的。 进程是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行资源分配和调度的一个独立单位,是应用程序运行的载体。进程是一种抽象的概念,从来没有统一的标准定义。进程一般由程序、数据集合和进程控制块三部分组成。程序用于描述进程要完成的功能,是控制进程执行的指令集;数据集合是程序在执行时所需要的数据和工作区;程序控制块(Program Control Block,简称PCB),包含进程的描述信息和控制信息,是进程存在的唯一标志。 进程具有的特征: 动态性:进程是程序的一次执行过程,是临时的,有生命期的,是动态产生,动态消亡的; 并发性:任何进程都可以同其他进程一起并发执行; 独立性:进程是系统进行资源分配和调度的一个独立单位; 结构性:进程由程序、数据和进程控制块三部分组成。 进程的生命周期 ? 在早期只有进程的操作系统中,进程有五种状态,创建、就绪、运行、阻塞(等待)、退出。

JAVA多线程(一)基本概念和上下文切换性能损耗

JAVA多线程(一)基本概念和上下文切换性能损耗 1 多线程概念 在理解多线程之前,我们先搞清楚什么是线程。根据维基百科的描述,线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是行程中的实际运行单位。一条线程指的是进程中一个单一顺序的控制流,一個进程中可以并行多个线程,每条线程并行执行不同的任务。每个线程共享堆空间,拥有自己独立的栈空间。 这里反复出现的概念是线程和进程,我们在这里列出它们的区别: 线程划分尺度小于进程,线程隶属于某个进程; 进程是CPU、内存等资源占用的基本单位,线程是不能独立占有这些资源的; 进程之间相互独立,通信比较困难,而线程之间共享一块内存区域,通信方便; 进程在执行过程中,包含比较固定的入口、执行顺序和出口,而进程的这些过程会被应用程序控制。 多线程是指从软件或者硬件上实现多个线程并发执行的技术。具有多线程能力的计算机因有硬件支持而能够在同一时

间执行多个线程,进而提升整体处理效能。 2 为什么要使用多线程 随着计算机硬件的发展,多核CPU已经屡见不鲜了,甚至手机处理器都早已是多核的天下。这就给我们使用多线程提供了硬件基础,但是,只是因为硬件让我们可以实现多线程,就要这样做吗?一起来看看多线程的优点: 更高的运行效率。在多核CPU上,线程之间是互相独立的,不用互相等待,也就是所谓的“并行“。举个例子,一个使用多线程的文件系统可以实现高吞吐量和低延迟。这是因为我们可以用一个线程来检索存储在高速介质(例如高速缓冲存储器)中的数据,另一个线程检索低速介质(例如外部存储)中的数据,二者互不干扰,也不用等到另一个线程结束才执行; 多线程是模块化的编程模型。在单线程中,如果主执行线程在一个耗时较长的任务上卡住,或者因为网络响应问题陷入长时间等待,此时程序不会响应鼠标和键盘等操作。多线程通过将程序分成几个功能相对独立的模块,单独分配一个线程去执行这个长耗时任务,不影响其它线程的执行,就可以避免这个问题; 与进程相比,线程的创建和切换开销更小。使用多线程为多个客户端服务,比使用多进程消耗的资源少得多。由于启动

进程与线程的区别[试题]

进程与线程的区别[试题] 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车而同一辆马车可以有很多匹马来拉----这些马就是线程 假设道路的宽度恰好可以通过一辆马车道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)----即最小的运行单位 每辆马车马匹数>=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度马匹数>1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者《操作系统的设计与实现》。对就个问题说得比较清楚。 +++++++++++++++++++++++++++++++++++++++++++++++ 进程概念 进程是表示资源分配的基本单位,又是调度运行的基本单位。例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I,O设备等。然后,把该进程放人进程的就绪队列。进程调度程序选中它,为它分配CPU以及其它有关资源,该进程才真正运行。所以,进程是系统中的并发执行的单位。

基于Linux的多进程网络通信

信息工程学院 嵌入式系统设计课程设计报告 题目:基于linux系统移植的多进程通信学号:------------ 学生姓名:-------- 专业名称:计算机科学与技术 班级:-------

目录 一、课程研究意义及现状 (3) 1.1课题研究意义 (3) 1.2课题研究现状 (3) 二、系统总体方案设计及功能模块介绍 (4) 2.1 系统概述及总体方案设计 (4) 2.2功能模块介绍 (4) 三、系统软件设计与实现 (5) 3.1主程序设计与实现 (5) 3.3文件上传程序设计与实现 (8) 3.4文件下载程序设计与实现 (9) 3.5多进程简易聊天设计与实现 (10) 四、系统测试 (12) 4.1系统软件测试 (12) 4.1.1文件上传测试 (12) 4.1.2文件下载测试 (13) 4.1.3多进程简易聊天 (14) 4.2系统硬件测试 (15) 五、总结和展望 (16) 六、参考文献 (17) 七、源代码 (18)

一、课程研究意义及现状 1.1课题研究意义 Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX 和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。Linux继承了Unix以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统 1.2课题研究现状 在网络无所不在的今天,在Internet上,有Faceboo k、微信、Twitter、QQ等网络聊天软件,极大程度上方便了处于在世界各地的友人之间的相互联系,也使世界好像一下子缩小了,不管你在哪里,只要你上了网,打开这些软件,就可以给你的朋友发送信息,不管对方是否也同时在线,只要知道他有号码。 Linux操作系统作为一个开源的操作系统被越来越多的人所应用,它的好处在于操作系统源代码的公开化!只要是基于GNU公约的软件你都可以任意使用并修改它的源代码。但对很多习惯于Windows操作系统的人来说,Linux的操作不够人性化、交互界面不够美观,这给Linux操作系统的普及带来了很大的阻碍。因此制作一个Linux操作系统下的简易聊天程序,通过设计这样的一个应用程序还能更好的学习网络编程知识和掌握Linux平台上应用程序设计开发的过程,将大学三年所学知识综合运用,以达到检验学习成果的目的。

第02章 进程与线程习题解答

第2章进程与线程 习题2 参考解答 1. 简要回答下列问题。 1) 进程和线程有什么区别? 2) 线程是如何创建的?怎样设置线程的优先级? 3) 前台线程和后台线程有什么区别?如何将一个线程设置为后台线程? 【解答】 1) 一个完整的进程拥有自己独立的内存空间和数据,但是同一个进程内的线程是共享内存空间和数据的。一个进程对应着一段程序,它是由一些在同一个程序里面独立的同时运行的线程组成的。线程有时也被称为并行运行在程序里的轻量级进程,这是因为它的运行依赖于进程提供的上下文环境,并且使用的是进程的资源。 在一个进程里,线程的调度有抢占式或者非抢占的模式。在抢占模式下,操作系统负责分配CPU时间给各个线程,一旦当前的线程使用完分配给自己的CPU时间,操作系统将决定下一个占用CPU时间的是哪一个线程。因此操作系统将定期的中断当前正在执行的线程,将CPU 分配给在等待队列的下一个线程。所以任何一个线程都不能独占CPU。每个线程占用CPU的时间取决于进程和操作系统。进程分配给每个线程的时间很短,以至于我们感觉所有的线程是同时执行的。 2) C#中创建线程的工作是通过使用System.Threading名称空间下的Thread类的构造方法来完成的,如创建一个线程实例输出字符“a”1000次。 Thread thread = new Thread(new ThreadStart(func1)); thread.Priority =ThreadPriority.Normal; thread.Start(); static void func1() { for(int i =0;i<1000;i++) { Console.WriteLine("a"); } } C#中System.Threading名称空间下的ThreadPriority枚举类定义了线程可能具有的所有优先级的值,优先级由高到低排序为:Highest,AboveNormal,Normal,BelowNormal,Lowest。可以通过访问线程的Priority属性来获取和设置其优先级。每个线程都具有分配给它的线程优先级。在公共语言运行库中创建的线程最初分配的优先级为ThreadPriority.Normal。在运行库以外创建的线程保留它们在进入托管环境之前具有的优先级。可以使用Thread.Priority属性获取或设置任何线程的优先级。 3) 前台线程和后台线程的区别是后台线程不会影响进程终止。属于某个进程的所有前台线程都终止后,公共语言运行库就会结束该进程,而且所有属于该进程的后台线程也都会立即停止,而不管后台工作是否完成。 1

操作系统(进程与线程)习题与答案

1、下面哪种死锁处理策略代价最小?() A.死锁忽略 B.死锁检测+恢复 C.死锁避免 D.死锁预防 正确答案:A 2、下面哪种死锁处理策略引入的不合理因素最严重?() A.死锁检测+恢复 B.死锁忽略 C.死锁预防 D.死锁避免 正确答案:C 3、为什么进程切换的代价要比线程切换要大?() A.因为进程切换要切换控制块数据结构 B.因为进程切换要切换PC指针 C.因为进程切换要切换段表 D.因为进程切换要切换栈 正确答案:C 4、初值为N的信号量,当前值为-1表示的含义是什么?() A.有1个资源 B.有N-1个进程在等待 C.有1个进程在等待 D.有N-1个资源 正确答案:C

5、为什么PC机通常死锁忽略策略?() A.因为死锁检测算法在PC机器上不能执行 B.因为PC机上的发生死锁造成的破坏小 C.因为PC机上的死锁可以用重启来解决 D.因为PC机上的发生死锁的可能性小 正确答案:C 6、下面哪种参数可以用来表征操作系统可以对用户输入快速处理?() A.响应时间 B.等待时间 C.吞吐量 D.周转时间 正确答案:A 7、下面哪种调度算法可以保证用户的输入在一定的时间以后可以得到响应?() A.短作业优先 B.时间片轮转调度 C.剩余短作业优先 D.先来先服务算法 正确答案:B 8、下面哪个系统调用不是用来操控进程的?() A.open() B.fork() C.wait() D.exec() 正确答案:A 9、下面哪种状态下的进程不存放在内存中?()

A.运行态 B.阻塞态 C.挂起态 D.就绪态 正确答案:C 10、关于进程和线程的主要区别,下面哪种论述是正确的?() A.线程之所以切换快是因为TCB比PCB尺寸小 B.线程切换时可能会引起进程切换 C.进程不能成为调度的单位 D.线程可以没有栈 正确答案:B 11、在实际系统中实现进程调度算法需要考虑诸多因素,相比而言下面哪个因素最不需要考虑?() A.机器物理内存的大小 B.机器的使用环境 C.用户任务的特点 D.算法的复杂性 正确答案:A 12、进程和程序的区别主要体现在哪里?() A.进程在内存中,程序在磁盘上。 B.进程有代码段,程序没有。 C.进程在CPU上执行,程序没有执行。 D.进程有当前执行位置,程序没有。 正确答案:D

JAVA的多进程运行模式分析与编程

一般我们在java中运行其它类中的方法时,无论是静态调用,还是动态调用,都是在当前的进程中执行的,也就是说,只有一个java虚拟机实例在运行。而有的时候,我们需要通过java代码启动多个java子进程。这样做虽然占用了一些系统资源,但会使程序更加稳定,因为新启动的程序是在不同的虚拟机进程中运行的,如果有一个进程发生异常,并不影响其它的子进程。 在Java中我们可以使用两种方法来实现这种要求。最简单的方法就是通过Runtime中的exec方法执行java classname。如果执行成功,这个方法返回一个Process对象,如果执行失败,将抛出一个IOException错误。下面让我们来看一个简单的例子。 //Test1.java文件 import java.io.*; public class Test { public static void main(String[]args) { FileOutputStream fOut=new FileOutputStream("c:\\Test1.txt"); fOut.close(); System.out.println("被调用成功!"); } } //Test_Exec.java public class Test_Exec { public static void main(String[]args) { Runtime run=Runtime.getRuntime(); Process p=run.exec("java test1"); } } 通过java Test_Exec运行程序后,发现在C盘多了个Test1.txt文件,但在控制台中并未出现"被调用成功!"的输出信息。因此可以断定,Test已经被执行成功,但因为某种原因,Test的输出信息未在Test_Exec的控制台中输出。这个原因也很简单,因为使用exec建立的是Test_Exec的子进程,这个子进程并没有自己的控制台,因此,它并不会输出任何信息。 如果要输出子进程的输出信息,可以通过Process中的getInputStream得到子进程的输出流(在子进程中输出,在父进程中就是输入),然后将子进程中的输出流从父进程的控制台输出。具体的实现代码如下如示: //Test_Exec_Out.java import java.io.*; public class Test_Exec_Out { public static void main(String[]args) { Runtime run=Runtime.getRuntime(); Process p=run.exec("java test1");

进程,轻量级进程,内核线程,用户线程的区别关系

进程,轻量级进程,内核线程,用户线程的区别关系 在现代操作系统中,进程支持多线程。进程是资源管理的最小单元;而线程是程序执行的最小单元。一个进程的组成实体可以分为两大部分:线程集合资源集。进程中的线程是动态的对象;代表了进程指令的执行。资源,包括地址空间、打开的文件、用户信息等等,由进程内的线程共享。 线程有自己的私有数据:程序计数器,栈空间以及寄存器。 Why Thread?(传统单线程进程的缺点) 1.现实中有很多需要并发处理的任务,如数据库的服务器端、网络服务器、大容量计算等。 2.传统的UNIX进程是单线程的,单线程意味着程序必须是顺序执行,不能并发;既在一个时刻只能运行在一个处理器上,因此不能充分利用多处理器框架的计算机。 3.如果采用多进程的方法,则有如下问题: a. fork一个子进程的消耗是很大的,fork是一个昂贵的系统调用,即使使用现代的写时复制(copy-on-write)技术。 b. 各个进程拥有自己独立的地址空间,进程间的协作需要复杂的IPC技术,如消息传递和共享内存等。 多线程的优缺点 多线程的优点和缺点实际上是对立统一的。 支持多线程的程序(进程)可以取得真正的并行(parallelism),且由于共享进程的代码和全局数据,故线程间的通信是方便的。它的缺点也是由于线程共享进程的地址空间,因此可能会导致竞争,因此对某一块有多个线程要访问的数据需要一些同步技术。 三种线程——内核线程、轻量级进程、用户线程 内核线程 内核线程就是内核的分身,一个分身可以处理一件特定事情。这在处理异步事件如异步IO时特别有用。内核线程的使用是廉价的,唯一使用的资源就是内核栈和上下文切换时保存寄存器的空间。支持多线程的内核叫做多线程内核(Multi-Threads kernel )。 轻量级进程[*] 轻量级线程(LWP)是一种由内核支持的用户线程。它是基于内核线程的高级抽象,因此只有先支持内核线程,才能有LWP。每一个进程有一个或多个LWPs,每个LWP由一个内核线程支持。这种模型实际上就是恐龙书上所提到的一对一线程模型。在这种实现的操作系统中,LWP就是用户线程。 由于每个LWP都与一个特定的内核线程关联,因此每个LWP都是一个独立的线程调度单元。即使有一个LWP在系统调用中阻塞,也不会影响整个进程的执行。 轻量级进程具有局限性。首先,大多数LWP的操作,如建立、析构以及同步,都需要进行系统调用。系统调用的代价相对较高:需要在user mode和kernel mode中切换。其次,每个LWP都需要有一个内核线程支持,因此LWP要消耗内核资源(内核线程的栈空间)。因此一个系统不能支持大量的LWP。

相关文档
相关文档 最新文档