文档库 最新最全的文档下载
当前位置:文档库 › 金刚石工加工硬脆材料的磨损因素分

金刚石工加工硬脆材料的磨损因素分

金刚石工加工硬脆材料的磨损因素分
金刚石工加工硬脆材料的磨损因素分

《航天用特殊材料加工技术》

课程大作业

题目:影响航天用硬脆材料加工工具磨损因素分析

姓名:陈广俊

学号: 1080830215

授课教师:张飞虎

哈尔滨工业大学航空宇航制造系

2011年11月11日

金刚石工具加工硬脆材料的磨损因素分

摘要:对金刚石工具加工硬脆材料时的磨损及其影响因素的国内外研究成果进行了综述,讨论了金刚石工具的磨损机理和影响金刚石工具磨损的各种因素,提出了需要深入研究的热点问题。

1.引言

随着科学技术的进步和现代工业的发展,硬脆材料(如激光和红外光学晶体、陶瓷、石英玻璃、硅晶体和石材等)的应用日益广泛。由于硬脆材料硬度高、脆性大,其物理机械性能尤其是韧性和强度与金属材料相比有很大差异,因此这些材料很难甚至不能采用普通的加工方法进行加工。金刚石是自然界已知的硬度最高的物质,其优异的性能使其在硬脆材料加工领域具有广阔的前景。目前,采用金刚石工具对硬脆材料进行切割和磨削仍是有效的加工方法,如用金刚石切割工具切割石材、用金刚石砂轮磨削陶瓷等。

加工硬脆材料的金刚石工具主要有各种金刚石锯和金刚石砂轮等,尽管各种工具的应用范围和加工特点不同,但其磨损机理都大致相同。因为金刚石工具的磨损对工件的加工质量和加工过程的影响很大,工具的磨损性能是反映工具性能、工艺参数是否合理的一个重要指标,所以对金刚石工具磨损机理的研究对指导金刚石工具的合理制造和工艺参数的合理选择具有重要意义。长期以来,国内外许多学者致力于金刚石工具磨损机理的研究,并已取得了可喜的成果。

2.金刚石工具磨损机理的研究

用金刚石工具加工硬脆材料时,由于剧烈摩擦、高温等的作用,工具不可避免地会产生磨损,而磨损是一个非常复杂的过程。

(1)磨损的三个阶段

金刚石工具的磨损由三个阶段组成:初始的快速磨损阶段(也称过渡阶段)、磨损率约为常数的稳定磨损阶段以及随后的加速磨损阶段。加速磨损阶段表明工具不能继续工作,需要重新修整。

(2)磨粒磨损形式

磨粒磨损形式可分为:整体磨粒、微破碎磨粒、宏观破碎磨粒、磨粒脱落及磨粒磨平。这几种磨损形式所占的比例决定于不同的磨损阶段、所用工具和被加工材料等。TWLiao等定量研究了微进给磨削结构陶瓷时金刚石砂轮的磨损并指出:在过渡阶段和稳定磨损阶段,砂轮的磨损不同。过渡阶段的磨损不仅决定于砂轮的规格、材料特性和磨削条件,更重要的决定于砂轮的制备方法。在过渡阶段,因砂轮刚修整过,磨粒伸出最大,许多磨粒不参加切削,所以整体磨粒的比例比稳定阶段高;同时,修整使许多磨粒伸出过大,把持力不够,磨粒脱落的比例比稳定阶段高;此外,修整会削弱一些磨粒,使微破碎磨粒的比例比稳定阶段高。稳定阶段的磨粒磨损主要是摩擦磨损,较低的微破碎磨粒比例和相对高的摩擦磨损比例说明砂轮没出现自锋利现象,这对加工是不利的。哈工大的仇中军等通过用金刚石砂轮磨削

氧化铝陶瓷,指出砂轮的磨损主要是磨粒磨损和磨粒脱落。SYLUO对金刚石锯片切割花岗岩进行了研究,指出锯片的失效主要是由于磨粒宏观破碎和(或)磨粒脱落,当破碎和脱落的磨粒数超过1/3时,工具失效。华侨大学的于怡青等通过对切割石材、混凝土等材料的过程中金刚石工具表面金刚石及结合剂状态的大量跟踪观察和SEM分析表明:整体磨粒保持越久,加工越容易进行,工具耐磨度也越高;宏观破碎状态会导致金刚石出刃高度显著下降,甚至失去切削能力;工具切削相当长一段时间后,磨粒自然磨钝,出刃高度降低,随着磨粒周围结合剂的进一步磨损,对金刚石的把持力减弱,导致金刚石脱落。徐西鹏等研究锯切花岗石时的金刚石节块磨损,认为金刚石实际磨损过程需经历不同的路径:从完整晶型开始,经历微破碎再到宏观破碎,最后发生脱落;也可以开始就发生脱落。这取决于金刚石的品质、所承受载荷和结合剂等因素。而用于金刚石固位载体的金属结合剂的磨损过程则具有较复杂的摩擦学特性。花岗石的切屑和金刚石碎屑在切削液的带动下冲蚀结合剂表面,在其表面形成冲蚀痕迹,结合剂在类似流体研削的条件下被磨蚀。金刚石前端的月牙洼凹坑显示在锯切过程中流体形成气穴而引起冲蚀。此外,结合剂还受到花岗石中硬质点的刮削和犁削,其形貌类似于金属磨削加工中的纹理。

(3)金刚石工具磨损机理

金刚石工具的磨损机理大致有以下几种:摩擦磨损、磨粒破碎、结合剂破碎、磨蚀磨损、表面疲劳和冲击等,摩擦磨损使磨粒磨钝和磨平,结合剂破碎使磨粒脱落,磨蚀磨损由于减弱了结合剂强度而促进了磨粒脱落。不同的加工过程其磨损机理是有区别的,如:用金刚石砂轮微进给磨削结构陶瓷时,金刚石砂轮的磨损主要有三种形式:摩擦磨损、磨粒破碎和结合剂破碎;除此之外,另一种形式的磨损是结合剂磨蚀。YiyangZhou等用陶瓷结合剂砂轮磨削蓝宝石,认为陶瓷结合剂砂轮的磨损主要是结合剂脆性断裂,而金属和树脂结合剂砂轮的磨损主要为磨耗和磨蚀。文献[5]的作者通过用金刚石锯片切割花岗岩,指出:工具的磨损机理主要有四个:摩擦磨损、磨蚀磨损、表面疲劳和冲击。徐西鹏等研究锯切花岗石时的金刚石节块磨损,认为金刚石在经受与花岗石的直接摩擦磨损的同时,还受到花岗石切削碎屑的冲击和腐蚀,其磨损类型可归结为:磨粒磨损、冲击磨损和流体中固体微粒引起的冲蚀。XPXU等定量分析了作用于磨粒上的载荷和切削区的温度,认为磨粒破碎主要由冲击力引起,但温度变化也很重要,因为它会引起热疲劳损坏和热应力。

3.影响金刚石工具磨损的因素

(1)工具

金刚石品级、含量、粒度、结合剂与金刚石的匹配及工具形状等与工具本身有关的因素是影响工具磨损的重要因素。

通常金刚石含量低,功耗也低;但金刚石含量太低,宏观破碎会剧增,从而造成出刃高度不足,使功耗反而增加;金刚石含量高,则功耗增加,进而导致金刚石脱落,工具耐磨性反而下降。若金刚石品级较高,在较低含量情况下,其完整晶型率仍较高,节块耐磨性高,功耗低,但金刚石品级应与结合剂选择相匹配。吴健等分析了金刚石品质分散性对锯切过程的影响,指出高质量金刚石的耐磨性好,必须要求结合剂也具有很好的耐磨性,只有这样才能充分发挥高质量金刚石的作用。而对低质量金刚石,由于其抗压和抗冲击能力都较差,即使切割较容易的矿物成分时也会发生较明显的磨损和破碎,在遇到特别难切割部分时,一般

会发生宏观破碎而失去切削能力,此时对结合剂耐磨性的要求应相对低一些,以保证金刚石有足够的出刃高度。文献[10]同时指出,应尽量降低金刚石的品质分散性。文献[8]通过分析陶瓷结合剂金刚石砂轮加工蓝宝石过程中的主轴变形(用变形表示磨削所需法向载荷的变化),发现其变形成周期性变化,说明砂轮具有自锋利性,原因是陶瓷结合剂砂轮的磨损是结合剂材料的脆性断裂,从而会快速出现新的磨粒。而金属和树脂结合剂砂轮的磨损主要为摩擦磨损和磨蚀。YCFu等给出了砂轮磨削的优化模型,通过此模型,可根据加工要求和磨削参数来优化砂轮(包括磨粒大小、浓度、伸出率和有效磨粒的空间),也可根据砂轮和加工要求优化磨削参数(包括磨削深度、砂轮转速和工件进给速度)。此外还有不少学者进行了这方面的研究。

(2)加工条件

由于金刚石工具的磨损与其负载状态密切相关,因此加工条件会对磨损产生明显影响。戴向国等分析了金刚石砂轮切割工程陶瓷时工艺参数对砂轮寿命的影响,认为当其它参数一定时,对应每一切割深度均存在一最佳砂轮速度;当切割深度和砂轮速度一定时,存在一最佳进给速度;各工艺参数对砂轮径向磨损量影响的主次顺序为:砂轮速度—切割深度—进给速度。文献[17]指出,工具磨损与加工工艺参数及加工工艺参数间的协调有很大关系,因此必须对工艺参数进行优化。ZJPei分析了精磨硅片时的情况,得出如下结论:当砂轮转速为4350rpm、夹盘转速为590rpm时,磨削力逐渐增大,当达到一定峰值时,又回到较低值,并继续按此循环,说明砂轮逐渐变钝,当磨削力达到一定值时磨粒破碎;当砂轮转速为2175rpm、夹盘转速为40rpm时,砂轮在磨削力较小时破碎。所以,其磨削力基本为常数且磨损率高。

(3)被加工材料

不同的工件材料,其断裂韧性、硬度等均相差较大,所以工件材料的性质也影响金刚石工具的磨损。文献[19]研究了用金刚石圆锯切割不同石材时刀具的磨损并指出:当切割硬的花岗石时,金刚石圆锯的磨损主要是磨粒的宏观破碎和脱落,原因是把持力不够,切削条件恶劣;当切割较软的花岗石时,完整晶形和磨粒的微观破碎占较大比例,同时磨粒脱落所占比例仍然较高,这种磨损使锯片保持切割能力。徐西鹏认为:花岗石中不同矿物的性质及变形机理是决定金刚石失效方式的关键。石英含量越高,金刚石磨损越剧烈;正长石的含量若明显高,则锯切过程相对较难进行;在相同的锯切条件下,粒度粗的花岗石较之粒度细的花岗石更难以发生解理断裂。

4.结语

国内外学者对金刚石工具的磨损机理及其影响因素进行了大量研究,取得了令人瞩目的成就,对于指导加工实践和进一步研究具有重要意义。与此同时,金刚石工具加工硬脆材料的领域还有许多问题,比如研究工具失效的微观机理、建立金刚石工具寿命的理论模型等,有待于研究者们不懈努力去解决。

金刚石生产工艺流程

金刚石生产工艺一、生产工艺流程

二、生产工艺简介 1、将原料叶腊石,按粒度为16目、24目,80目分选,然后按2:6:3的比例混合,混合后 在280 0C温度条件下焙烧l小时后制成内腔为中20mm的合成腔体,将破片的杂质和粉尘去掉,将触媒清洗后置入烘箱保持”℃恒温。 2、在内腔为中20 mm的合成腔体内分层交替装入碳片,触媒,两端客为两个碳片、碳片为 15片.触媒为12层,在两端的两个碳片外各装一个导电铜圈制成合成块,将合成块置于烘箱内,使之处于140℃恒温状态,保持9小时。 3、将烘过的合成块装入压机内,在压力为110MPa -120MPa,温度为1400℃-1500℃的条件下 保持12分钟将破转化为金刚石。 4、将压机内的合长块取出,进行破碎,使金刚石颗粒和内部杂质暴露。 5、电解法去除金属介媒,合成棒作为阳极,硫酸盐作为电解液,惰性阴极,化学反应式: 阳极:M-ne→Mn+ 阴极:Mn++ne→M M表示Ni、Co、Mn等金属原子;Mn+表示相应的n价金属离子。 6、将电解完的物料放入球磨机进一步粉碎,使金刚石颗粒和石墨进行分离。 7、将球磨完的物料放入摇床进行石墨分离,该工艺主要利用金刚石和石墨在密度上的差异, 在往复摇动的倾斜工作面上,流体对其冲刷实现分离。 8、分选完的金刚石放入酸水中,进一步去除金属杂质,利用销售和王水等强氧化性酸,和金 属反应生成可溶性盐,经水洗即可去除金属杂质,化学反应式: 3Ni+2HNO3+6HCl=3NICl2+2NO↑+4H2O 3Co+2HNO3+6HCl=3CoCl2+2NO↑+4H2O 3MN+2HNO3+6HCl=3MnCl2+2NO↑+4H2O 9、除叶腊石,将酸洗过的金刚石物料加入氢氧化钠进行高温煮沸,化学反应方程式: Al2(Si4O10)(OH) +10NaOH→△→2NaAlO2+4NaSiO3+6H2O 10、将碱洗过的物料进行烘干,烘干后使用不同目数的筛子进行筛分分级,筛分后使用选型机进行等级分选。 11、将筛分选型好的物料按照每袋1万克拉进行包装入库。

人造金刚石

人造金刚石 编辑词条 该词条缺少基本信息栏、词条分类,补充相关内容帮助词条更加完善!立刻编辑>> 人造金刚石是加工成珠宝的主要原料,硬度高、耐磨性好,广泛用于切削、磨削、钻探。由于人造金刚石导热率高、电绝缘性好,可作为半导体装置的散热板;有优良的透光性和耐腐蚀性,在电子工业中也得到广泛应用。 快速导航 目 录 ?1钻石介绍 ?2发展历史 ?3主要应用 ?4制造方法 ?直接法 ?熔媒法 ?外延法 ?形成机制 ?相关热力学 ?5媛石研究 ?6其它相关 ?微波法 ?发明背景

1钻石介绍 编辑 钻石,是珠宝中的贵族,它通明剔透,散发着清冷高贵的光辉,颇有“出淤泥而不染”的气质。钻石亦被称为金刚石,因为它是自然界最坚硬无比的物质,摩氏硬度10,显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。它的形成和发现极为不易,它是碳在地球深部高温高压的特殊条件下历经亿万年的“苦修”转化而成的,由于地壳的运动,它们从地球的深处来到地表,蕴藏在金伯利岩中,从而被人类发现和开采。虽然人类可以生产出人造金刚石,但质量大小还远远不及天然金刚石。 金刚石俗称“金刚钻”,也就是我们常说的钻石,它是一种由纯碳组成的矿物,也是自然界中最坚硬的物质。自18世纪证实了金刚石是由纯碳组成的以后,人们就开始了对人造金刚石的研究,只是在20世纪50年代通过高压研究和高压实验技术的进展,才获得真正的成功和迅速的发展,人造金刚石亦被广泛应用于各种工业,工艺行业。 2发展历史 编辑 18世纪末,人们发现身价高贵的金刚石竟然是碳的一种同素异形体,从此,制备人造金刚石就成为了许多科学家的光荣与梦想。一个世纪以后,石墨——碳的另一种单质形式被发现了,人们便尝试模拟自然过程,让石墨在超高温高压的环境下转变成金刚石。为了缩短反应时间,需要2000℃高温和5.5万个大气压的特殊条件。 1955年,美国通用电气公司专门制造了高温高压静电设备,得到世界上第一批工业用人造金刚石小晶体,从而开创了工业规模生产人造金刚石磨料的先河,他们的年产量在20吨左右;不久,杜邦公司发明了爆炸法,利用瞬时爆炸产生的高压和急剧升温,也获得了几毫米大小的人造金刚石。 金刚石薄膜的性能稍逊于金刚石颗粒,在密度和硬度上都要低一些。即便如此,它的耐磨性也是数一数二,仅5微米厚的薄膜,寿命也比硬质合金钢长10倍以上。我们知道,唱片的唱针在微小的接触面上要经受极大的压力,同时要求极长的耐磨寿命,只要在针尖上沉积上一层金刚石薄膜,它就可以轻松上阵了。如果在塑料、玻璃的外面用金刚石薄膜做耐磨涂层,可以大大扩展其用途,开发性能优越又经济的产品。 更重要的是,薄膜的出现使金石的应用突破了只能作为切削工具的樊篱,使其优异的热、电、声、光性能得以充分发挥。金刚石薄膜已应用在半导体电子装置、光学声学装置、压力加工和切削加工工具等方面,其发展速度惊人,在高科技领域更加诱人。

金刚石合成理论与工艺设计

前言 1.金刚石的性质和用途。 金刚石是一种在机械、热学、光学、化学、电子学等方面具有极限性能的特殊材料。图1为金刚石的空间晶格的一个晶胞。与其他材料相比,金刚石具有最大的原子密度(176 atoms/nm3),最大可能的单位原子共价键数目(4),极强的原子键合能(7.4eV)。这使得金刚石具有许多极限性质:最高硬度,最高热导率,最高传声速度,最宽透光波段,抗强酸强碱腐蚀,抗辐射,击穿电压高,介电常数小,载流子迁移率大,既是电的绝缘体,又是热的良导体,而掺杂后又可成为卓越的P型或N型半导体。 人造金刚石的应用领域十分广泛,几乎涉及国计民生的各个领域,小到家庭装修,大到微电子及航空航天等高技术领域。金刚石的推广应用在光学玻璃冷加图1 立方金刚石的晶胞空间结构示意图

工、地质钻探、瓷、汽车零件等机械加工,金属拉丝等方面引起了个革命性的工艺改革。表1列出了金刚石的一些极限性能和用途。 表1 金刚石的一些极限性能和用途

2.人造金刚石合成的历史 由于金刚石的优越性质,长期以来它一直成为人们感兴趣的研究对象。早在1772年,法国化学家Antoine L. Lavoisier发现金刚石燃烧的产物是CO2,1792年,S. Tennan发现金刚石是碳的一种结晶形态。从此,人类开始了对人工合成金刚石的探索。1880年,J. B.Hanney从锂、骨粉和矿物油在干燥的铁管中加热合成了金刚石,现列于大英博物馆。1893年,诺贝尔奖获得者Henry Moissan 发展了一种方法,用电加热炉加热糖、木炭和铁至熔融,然后用水急冷做了合成金刚石的尝试,后来经证实并未获得成功。二十世纪四十年代,另一个诺贝尔奖获得者哈佛大学的Percy Bridgman设计了许多优秀的高压设备(有的压力超过了5GPa),并指出可以用电加热结合高压来合成高质量金刚石。虽然因为没有使用触媒导致未能合成金刚石,但是他的热力学的计算为高温高压(HTHP)合成金刚石提供了理论依据。1953年2月15日瑞典ASEA(General Electric Company of Sweden)的科学家宣称合成出人造金刚石,但由于其工作没有正式发表,没能获得广泛的承认,他们使用的是六面顶压机,样品由Fe3C和石墨组成。人类首次真正合成金刚石是1954年12月16日美国GE公司的H.T.Hall, F.P.Bundy, H.M.Strong, R.H.Wentorf四位科学家率先完成,他们使用两面顶压

简述人造金刚石

人造金刚石制造方法综述 人造金刚石取得成功的方法有许多种,兹将具有代表性的几种分类列举如下: 静压触媒法是国内外工业生产上应用最为广泛的方法,人造金刚石的绝大部分(约90%)都是用这种方法生产的。爆炸法在某些国家被应用于金刚石微粉的生产,产量占1%左右。CVD薄膜生长法近年来开始了工业应用。其它一些方法,目前都还处于试验研究阶段。 静压法,又称静态超高压高温合成法。静压触媒法是指在金刚石热力学稳定的条件下,在恒定的超高压高温和触媒参与的条件下合成金刚石的方法。就是以石墨为原料,以过渡金属或合金作触媒,用液压机产生恒定高压,以直流或交流电通过石墨产生持续高温,使石墨转化成金刚石。转化条件一般为5~7GPa,l300~1700℃。这个方法就是传统的高压高温合成法,至今已有40多年的历史了。现在它还在继续发展和完善中,国内外都在致力于高压设备和加热方法的改进以及碳素原料和合金触媒的研究。 静压触媒法合成金刚石的工艺程序大致分为以下三个阶段: 原材料准备(石墨、触媒、叶蜡石的选择、加工与组装) 高压高温合成(p、T、t参数,控制方法与设备) 提纯分选与检验(原理、方法、标准、仪器) 静压触媒法制造金刚石的原理与工艺,是本书所要讨论的主要内容。 所谓静压直接转变法,是指没有触媒参与下的静压法。由于不用触媒,因而需要更高的压力和温度条件,对压机提出了更高的要求,这也正是它不能用于工业生产的原因。

静压法有两种情况,一是固相转化,二是熔融冷暖。 (1) 固相转化 固相转化,要求提供12GPa以上的压力、2000℃以上的温度,保持时间很短(千分之几秒),只能生长细微的多晶体。 (2) 熔融冷凝 此法比固相转化要求更高的压力和温度。日本有人曾经在20GP,和4000℃条件下,使金刚石熔融,然后逐渐冷凝成为块状大单晶。这是液相金刚石向固相金刚石的转变。也可以通过石墨→熔融→重结晶的过程生成金刚石。石墨在高压高温下熔融,晶格解体,然后冷凝,在重结晶过程中建立起金刚石键,成为金刚石晶体。这种方法的困难在于要有耐高温容器。 动压法主要是爆炸法,爆炸法压力温度条件与不用触媒的静压法相似(压力一般在20GPa以上),但产生高压高温的方法不同,不是用压机,而是用炸药。利用TNT(三硝基甲苯)和RDX(黑索金)等烈性炸药爆炸后产生的强冲击波作用于石墨,在几微秒的瞬间可得到几十GPa和几千度高温,使石墨转变为金刚石,产品一般为5~20nm的细小多晶体。结晶缺陷严重,脆弱,可作为研磨膏或者制造聚晶的原料。纳米金刚石的用途有待研究开发。 爆炸法的优点是不需要贵重设备,单次产量高,每次使用15kg炸药(TNT 40%+RDX60%)可生产约120克拉的金刚石微粉,缺点是温度压力不好控制,尤其无法分别控制温度和压力并且样品回收提纯手续繁多。 爆炸法常用的一种装置是单飞片装置,图1-1为其剖面简图。平面波发生器使顶端的点爆源变成面爆源,产生平面激波,引爆主炸药包,驱动飞片以每秒几千米的速度撞击石墨,使之转变成金刚石,所得产品占石墨的3%~5%。 假若碳源不用石墨而改用球墨铸铁或者普通生铁,铁就能起触媒作用,促使其中的碳变成金刚石。 如果用含有石墨小包裹体的触媒金属块作原料,由于金属比石墨难以压缩,压缩波通过时,没有象石墨那样热起来,造成了石墨包裹体的猝灭。这种猝灭作用使得在冲击压缩过程中形成的金刚石在随后的卸压膨胀过程中得以保存下来,产量大大提高。 日本人漱同信雄采用无定形碳素和改进过的单飞片装置(飞片速度为 3.6

人工合成金刚石产业现状分析

人工合成金刚石产业现状分析 金刚石一种机械、热学、光学、化学、电子学等方面具有极限性能特殊材料。 一、人工合成金刚石现状1954年12月8日,纽约州斯克内克塔迪美国GE(通用电器)公司研究发展心科学家本迪(F·P·Bundy)、霍尔(H·T·Hall)等人首先克服了高温高压工程、材料测试方面种种困难而达到了这一转变条件,成功地为石墨含碳物质金属熔体合成金刚石,做出了划时代贡献。1958年,人工合成金刚石投入商业生产。从此人工合成金刚石产量逐渐超过了天然金刚石产量。美国通用电气公司合成工业金刚石后,又花了15年时间,到1970年,宣告宝石级金刚石合成工艺成功。 1971年公布了晶种温梯法详细工艺。据称,只生产出重量分别为0。30ct、0。31ct、0。39ct三粒透明金刚石,代价之昂贵,无法与天然金刚石相匹敌。1986年,前苏联对外机构宣布,苏联科学院高温高压下合成一颗重达9988ct特大金刚石晶体,生成温度比太阳表面温度还要高。1987年,南非德比尔斯公司金刚石研究室利用高温高压法60小时内制出1ct金刚石晶体;180小时内合成5ct金刚石晶簇,最大单晶为11。14ct,最大长度为16mm,晶体呈立方体(100)八面体(111)为主聚形。这些金刚石一般呈黄色或棕黄色;无解理裂纹;适于进行宝石刻面,也可用于拉丝模,切削刀具,辐射探测器等。

1987年,“金刚石薄膜”世界上兴起,国外文献发表生长金刚石膜方法有几十种之多。进入20世纪80年代以来,膜生长速率、沉积面积结构性质已逐步达到可应用程度。研究证实,高质量CVD金刚石多晶膜硬度、导热、密度、弹性(以杨氏膜量表征)透光物理性质已达到或接近天然金刚石,并且金刚石膜具有与单晶金刚石几乎相同性能,但它连续性材料,从而解决了尺寸问题。作为21世纪新型功能材料金刚石薄膜,随着研究工作与应用开拓不断深入,不远将来,金刚石薄膜功能必将各个重要领域,特别高新技术领域产生重要影响。 2003年,国外人造金刚石又获得2项突破性进展———俄罗斯生产出性能超过金刚石大分子三维聚合物,日本研发出超高硬度人造金刚石。俄罗斯科学院化学物理研究所根纳季·科罗廖夫博士领导科研小组,经过近30年不懈研究,终于找到有效控制分子行为方法,成功地合成了大分子三维结构聚合物。这一工艺称为“激活聚合作用”,其性能测试指标完全超过了金刚石性能指标;日本爱媛大学深部地球动态研究心采用不同催化剂“直接转化法”第一次用石墨直接合成出纯度很高多晶金刚石,集合了直径数十纳米微粒子多晶体,硬度可达140GPa,高出单晶2倍以上,而且更耐高温。 二、人工合成金刚石主要生产国目前世界上能够生产人造金刚石国家有二十几个:美国、英国、国、爱尔兰、俄罗斯、乌克兰、瑞典、韩国、日本、法国、白俄罗斯、乌兹别克、德国等等,我们估计,世界人造金刚石现今年产量突破30亿克拉,其国年产量有20亿克拉之多,为世界

人造金刚石合成技术开拓创新的50年_王光祖

文章编号:1006-852X(2004)06-0073-05 人造金刚石合成技术开拓创新的50年 THE FIFTY YEARS CREATIO N OF DIAMO ND SYNTHESIZING TECHNIQ UE 王光祖 (郑州磨料磨具磨削研究所,郑州450013) Wang Guangzu (Zhengzhou Research Institutef or Abrasives and Grinding,Zhengzhou450013,China) 摘要:人们经过近百的艰苦探索,世界人工合成的金刚石终于1954年12月16日在美国通用电气公司诞生,从而拉开人工合成金刚石的序幕。50年来,金刚石合成技术经历了三次大的飞跃。过去的50年是人造金刚石合成技术不断开拓创新的50年,产品质量及其品种不断提高和增多,以及生产规模和年产量迅速发展的50年,也是应用领域不断拓展的50年。人造金刚石的问世,为促进工业现代化和科学技术现代化的高速发展提供了巨大的技术支撑,并为材料科学的发展和工艺技术、理论创新所做出的重要贡献。 关键词:人造金刚石;合成技术;开拓创新 中图分类号:TQ163文献标识码:A Abstract:The first synthetic diamond was produced by General Electric Company in the USA in19541This work opened the prolusi on of syn thetic diamond1Within the last fifty years,the diamond syn thesize technique experienced three great inprovements.So,the past fifty years not only were the years of creation of diamond synthesize technique,but also the years of increase in the quali ty and diversities of the products,and the years of rapid development of production scale and annual production,and also the years of continuous expansion of application1The invention of the syn thetic diamond not only provided a great techniq ue supporting for improving the develop ment of industry modernization and science technique modernization but also contributed to the develop ment of materials science and technology1 Key words:synthetic diamond;synthesize technique,exploi ting and innovating 1引言 金刚石是由碳原子构成的典型原子晶体,其来源有二:一是天然金刚石;另一是人造金刚石。由于天然金刚石资源稀少,难于满足工业的各种需求,所以必须走人工合成之路。20世纪50年代初世界第一颗粒人造金刚石的诞生,为人工合成金刚石的科研、生产、应用打开了闸门。在过去的50年中经历了从静态高压高温触媒法合成单晶金刚石,低压低温化学气相沉积法合成微米/纳米金刚石膜,到利用负氧平衡炸药爆轰法合成纳米金刚石的三大跨越的发展过程,为不断开发金刚石的新品种和扩大应用领域提供了重要的技术保证。 金刚石在自然界极其稀少,分布不均匀。到目前为止,全球只有27个国家找到了具有经济价值的金刚石矿床。世界上90%以上的金刚石产于澳大利亚、扎伊尔、俄罗斯、博茨瓦纳、南非、加拿大、安哥拉,金刚石储量均超过1亿克拉。纳米比亚、加纳、中国、塞拉里昂和巴西,金刚石储量超过1000万克拉;印度、几内亚、中非共和国、利比里亚和委内瑞拉、坦桑尼亚等国的金刚石储量均超过500万克拉。从价值而论,南非供应了世界50%以上的宝石级金刚石。目前,澳大利亚是世界上最大的金刚石产出国,扎伊尔居世界第二位,博茨瓦拉居第三位。加拿大的金刚石资源极具潜力。自2800年前,印度首次开发金刚石砂矿以来,迄今为止,世界上共采出金刚石约26亿克拉,约520吨。从20世纪90年代中期至新世纪,全球天然金刚石年产量巳突破1亿克拉[1]。 正如大家所知,工业金刚石在以天然金刚石为主的时代,有什么性能的金刚石用户就只能用什么样的金刚石,到了以人造金刚石为主的时代,则用户需要什么性能的金刚石,就研究生产什么样性能的金刚石,是人定胜天的生动体现!因此,可以毫不夸张地说,进入21世纪人的一生将离不开金刚石,所以一个国家若不重视发展工业金刚石,那么国防现代化、工业现代化和科学技术现代就无从谈起。在过去的50年中金刚石合成技术的不断创新为实现上述三个现代化提供了有力的技术支撑。可见,人工合成金刚石的研制成功对 2004年12月金刚石与磨料磨具工程December12004总第144期第6期Diamond&Abrasives Engineering Serial1144No16

硬脆材料磨削加工机理的理论分析

25K M Mussert,M Janssen,A Bakker et al.Modeling fracture in an Al2O3particle reinforced aa6061alloy using Weibull stati stics.J.Mater.Sci.,1999,34(17):4097~4104 26N Shinohara,M Okumiya,T Hotta et a l.Formation mecha-nisms of processing defects and their relevance to the strength in alumina ceramics made by powder compaction process.J. Mater.Sci.,1999,34(17):4271~4277 第一作者:易勇,硕士研究生,四川大学金属材料系研2000级,610065成都市 编辑:胡红兵 收稿日期:2002年3月硬脆材料磨削加工机理的理论分析 尚广庆孙春华 河海大学 摘要:通过对硬脆材料(玻璃)的切削试验,建立了硬脆材料的磨削模型,讨论了硬脆材料在磨粒作用下的塑性变形和断裂行为。 关键词:硬脆材料,磨削,塑性变形,断裂 Theoretical Analysis of Grinding Mechanics of Rigid-brittle Materials Shang Guangqing Sun Chunhua Abstract:Based on the cutting experimen t to glass,a kind of rigid-brittle materials,the grinding model of the ri gid-brittle ma-terial is established,and the plastic deformation and fracture behavior of the rigid-bri ttle material cut by abrasive grain are discussed. Keywords:rigid-bri ttle material,grinding,plastic deformation,fracture 1引言 随着科技与生产的发展,硬脆材料(如工程陶瓷、光学玻璃等)的应用日趋广泛。由于硬脆材料的脆性较大,加工时在磨粒作用下易发生断裂,因此其加工机理比金属材料加工更为复杂。目前对硬脆材料加工机理的理论研究尚不够深入与成熟,积极开展这方面的研究对于指导生产实践具有重要意义。本文通过对典型硬脆材料)))玻璃的切削试验,对硬脆材料的磨削加工机理进行了理论分析,其结论对加工硬脆材料时切削用量的选择具有一定指导意义。 2硬脆材料磨削模型的建立 在精密磨床上用单颗粒金刚石飞铣装置对玻璃进行切削试验。利用高速摄影机观察金刚石颗粒切削脆硬材料的动态过程;利用扫描电镜观察被加工材料的沟槽横截面和沟槽形貌。通过对切削试验过程以及被加工玻璃表面的观测分析,建立如图1所示的硬脆材料(玻璃)磨削模型。 3试验结果与讨论 311硬脆材料在磨粒挤压作用下的塑性行为 在切削试验中可观察到,当切深较小时(即磨削初始阶段),硬脆材料的变形表现为塑性变形。从应力场的角度分析,硬脆材料只有在围压足够大时,才能象金属材料一样表现出良好的塑性,围压越大,塑 性越好。 图1硬脆材料(玻璃)的磨削模型 由于任何磨粒的端部均有一定的圆弧半径,因而可将磨粒端部近似看作一个半径为R的球体。当磨粒在垂直力P作用下压向玻璃表面时,其与玻璃的接触面边缘为一个圆。该圆半径为 a= 3 2 (1-L2) PR E (1) 接触面上的压力分布可用q表示为(见图2) 图2磨粒压入平面时的压力分布情况 19 2002年第36卷l10

关于人造金刚石的制备与合成

关于人造金刚石的制备与合成 1目的与意义 钻石,是珠宝中的贵族,它通明剔透,散发着清冷高贵的光辉,颇有“出淤泥而不染的气质。钻石亦被称为金刚石,是自然界最坚硬无比的物质,人造金刚石不仅可以加工成价值连城的珠宝,在工业中也大有可为。它硬度高、耐磨性好,可广泛用于切削、磨削、钻探;由于导热率高、电绝缘性好,可作为半导体装置的散热板;它有优良的透光性和耐腐蚀性,在电子工业中也得到广泛应用。 1、制造树脂结合剂磨具或研磨用等 2、制造金属结合剂磨具、陶瓷结合剂磨具或研磨用等 3、制造一般地层地质钻探钻头、半导体及非金属材料切割加工工具等 4、制造硬地层地质钻头、修正工具及非金属硬脆性材料加工工具等 5、树脂、陶瓷结合剂磨具或研磨等 6、金属结合剂磨具、电镀制品。钻探工具或研磨等 7、剧切、钻探及修正工具等[1] 2设计基本原理 石墨在一定的温度和压强下是会发生结晶变态从而变成金刚石,且石墨的温度和压强要在金刚石的热稳定性区域内,其动力学要满足一定的关系。 3设计内容(方案) 3.1原材料的选择 金刚石是石墨结晶变态产生的,其石墨是主要原料,转变过程的反应压力和温度必须不低于190 000kg/cm2 和∽3900℃[2],这一推测的正确性已为实验所证实。不过目前要得到这样高的压力和温度的设备是非常困难的。所以需要加入触媒材料来降低石墨的活化能。 3.2制备与合成方法 3.2.1压力控制 人造金刚石压机生产工艺要求加压控制根据合成材料的不同分2~6段超压、保压,超压到90 MPa左右,再保压几分钟后卸压,完成一个工序,时问为几分钟到十几分钟。可根据工艺要求任意设为多段,由现场人机界面随时输入修改。加压闭环控制系统将压力传感变送器所测的油液压力信号与计算机中预设的压力控制工艺曲线进行分析比较,经过高级控制算法处理后,控制液压泵组和液压阀组的工作状态,使系统的压力工作状态跟踪给定压力工艺曲线。被控对象油路压力是由电动机带动增压器增压的,要求系统在几分钟内将油路压力从lO Pa左右分几段提升到90 MPa左右,并且超调不能大于0.3 MPa。控制速度要快,控制精度要高。因此超压采用主泵开关控制,保压采用副泵补压模糊PID控制。 模糊控制具有控制速度快、过程参数的变化适应性强、可靠性高、不受工作环境影响、鲁棒性好、灵敏度高、不需要精确数学模型等特点。但模糊控制的稳态精度较差,故采用模糊一PID复合控制的方法,以提高模糊控制的精度[3][7][8] 3.2.2温度控制 人造金刚石压机生产工艺要求加热控制是在超压达30 MPa以后开始的,加热控制也分加温、保温几段进行,几分钟或十几分钟后停止加热。加热控制系统将加热电压和加热电流采样信号相乘得到功率测量值,与计算机预设的加热功率工艺曲线进行分析比较,经高级控制算法处理后,通过控制功率可控硅的导通角来控制大电流加热变压器的输出电压和输出电流,使系统的加热功率满足工艺要求。被控对象合成块为叶腊石作触媒内装石墨,为电阻性负载。由于采用变压器降压和升流,串入了电感性负载,容易引起超调和振荡。合成块的温度是根

等离子体合成金刚石

]等离子体合成金刚石已有12人参与 这个方法是一个俄罗斯人首先提出的,由此可见俄罗斯人的确很牛。 这种方法可以合成大面积金刚石薄膜,大面积哦,这是由于现在可以得到很大规模的等离 子体,所以这种方法在研究领域可谓不可多得,只用甲烷就可以得到大面积的金刚石。CVD金刚石可以用各种方法合成,其中晶粒生长速度最快的则为热等离子体CVD工艺。我们试验室过去曾试图用DC等离子体CVD工艺合成金刚石厚膜,并就膜与基底的附着强度 和膜的性质作过探讨。但是,热等离子体工艺存在沉积面积和膜质量都不如其它CVD工艺 等问题。CVD金刚石薄膜应用中对扩大沉积面积有着强烈的需求。 金刚石在所有已知物质中具有最高的硬度、高耐磨率、良好的抗腐蚀性、低的摩擦系数、 高的光学透射率(对光线而言从远红外区到深紫外区完全透明) 、高的光学折射率、高空穴 迁移率、极佳的化学惰性,既是热的良导体,又是电的绝缘体,掺杂后可形成P和N型的半导体。金刚石有如此多优异性能,因而在国民经济上有着广泛的用途。金刚石从真空紫外光波 段到远红外光波段对光线是完全透明的,因此金刚石膜作为光学涂层的应用前景非常好, 可用作红外光学窗口和透镜的保护性涂层。以及在恶劣环境下工作的红外在线监测和控制 仪器的光学元件涂层。在工业制造领域,需要大量轻量化、高强度的材料,用具有高硬度、高耐磨性的金刚石制成的刀具有长寿命、高加工精度、高加工质量等优异特性,而将金刚 石薄膜直接沉积在刀具表面不仅价格大大低于聚晶金刚石刀具,而且可以制备出具有复杂 几何形状的金刚石涂膜刀具,在加工非铁系材料领域具有广阔的应用前景。金刚石在室温 下具有最高的热导率,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电 子器件的理想散热材料。金刚石能掺杂为P和N型的半导体,与现有半导体材料相比,具有最低的介电常数,最高的禁带宽度,较高稳定性,很高的电子及空穴迁移率和最高的热导率,性能远优于Si半导体,是替代Si的理想材料。它有可能用于制备微波甚至于毫米波段超高 速计算机芯片,高电压高速开关及固体功率放大器,而工作温度更可达600摄氏度。金刚 石制备电子器件的应用已取得了初步的结果,如金刚石薄膜发光管、金刚石薄膜场效应管、金刚石薄膜热敏电阻等金刚石制备电子器件的应用。但天然金刚石价格昂贵、数量稀少,

人造金刚石的生产、市场、趋势及新生产工艺

人造金刚石的生产、市场、趋势及新生产工艺 扈楠021131021 由于有些矿物在自然界产出较少,不能满足工业生产的需要,从19世纪四十年代开始了人造矿物的研究。许多人造矿物的性能已接近或超过相应的天然矿物,有些人造矿物可以代替某些天然矿物,成本比开采天然矿物的成本还低,并且可以控制矿物的质量和大小。所以人造矿物的研究和生产发展很快。金刚石以其最大的硬度、半导体性质以及光彩夺目的光泽,分别应用于钻头切割、电子工业和宝石工业上。故人造金刚石的意义显得尤为重大。 人造金刚石是用超高压高温或其他人工方法,使非金刚石结构的碳发生相变转化而成的金刚石。与天然金刚石相比,它具有生产成本低,应用效果好的优点。由于非金属材料和其他硬脆材料,如大理石、花岗石、耐火材料、玻璃、陶瓷、混凝土等加工工业的发展,对锯片、钻头用金刚石质量的要求越来越高,需求量越来越大,目前世界上工业用金刚石的85%以上已由人造金刚石代替。 1生产状况 目前世界上生产人造金刚石的国家主要有:美国、南非、爱尔兰、瑞典、英国、德国、俄罗斯、乌克兰、亚美尼亚、日本、中国、罗马尼亚、波兰、捷克、朝鲜、希腊、印度等近20个国家。世界人造金刚石的产量为7~10亿克拉,其中年产量在1亿克拉以上的国家有美国、英国、俄罗斯等。我国人造金刚石年产量2亿克拉以上,居世界第一位。世界人造金刚石产量年增长率为8%~15%。 美国的GE公司、英国的DeBeers公司和德国的Winter公司是目前世界上生产人造金刚石的三大集团,垄断着世界人造金刚石的生产技术和消费市场,代表着世界人造金刚石的发展方向。GE公司1955年首先宣布人工合成金刚石的工业方法,且曾一度在单晶工艺方面处于领先地位,目前与其他两家公司相比,该公司的聚晶技术更为先进,年产量达1.65亿克拉,所采用的压机吨位一般在38~100MN之间。DeBeers公司1987年合成出世界上最大的宝石级单晶体(11.14克拉)和工业级单晶体(重14.20克拉),1992年又创造了合成重量39.40克拉的工业级单晶金刚石的世界纪录。它首先推出SDA系列的锯片级人造金刚石,SDA系列现已成为国际通行的锯片级人造金刚石等级标准。DEBeers公司设在南非、爱尔兰和瑞典的工厂全部采用100MN级压机生产,高压模具腔体内径为Φ110mm,如采用SDA工艺,合成单次产量为300克拉,其中SDA级产品可达60%,如采用MDA工艺生产,单次产量可达500克拉。Winter公司早年主要从事金刚石工具的制造,为了把人造金刚石和金刚石工具连成一个完整的系列产品,1974年在德国政府及北大西洋公约组织的资助下开始研制人造金刚石生产技术,并且后来居上,其独特的工艺及设备使其生产的金刚石在品质方面优于其他两大公司,如成品杂质含量为2‰~3‰,单次产量可达800克拉,具世界领先水平。 我国自1963年研制成功第一颗人造金刚石,1966年投入工业化生产,年产量仅1万克拉。经过30多年的发展,目前全国已有人造金刚石生产企业600多家,年产量达2亿克拉以上,从产量看,我国已成为世界人造金刚石生产大国。我国的人造金刚石设备基本都是自己设计制造的,目前主要为六面顶压机。6×6MN的压机20世

人造金刚石的提纯技术

2005年10月 总第149期 第5期 金刚石与磨料磨具工程 D iamond&Abrasives Engineering Oct ober.2005 Serial.149 No.5 文章编号:1006-852X(2005)05-0077-02 人造金刚石的提纯技术 林克英 潘 勇 侯书恩 肖红艳 马保军 (中国地质大学,武汉430074) 摘 要 对人造金刚石的提纯技术进行了综述,着重介绍了人造金刚石传统的“三除”提纯工艺及其优缺点,分析了目前国内外超微金刚石主要的化学提纯方法及其优缺点,并简单介绍了超微金刚石近年来现有的几种物理提纯方法的特点及人造金刚石的提纯进展,并对超微金刚石的提纯技术和其应用前景进行了展望。 关键词 超微金刚石;提纯 中图分类号 T Q164 文献标识码:A D iscussi on on pur i f i ca ti on techn i ques of syn theti c d i a m ond L i n Keyi ng P a n Yo ng Ho u S huen Xi ao Ho ngyan M a B ao j un (China U niversity of Geosciences,W uhan,430074) Abstract I n this report,discussi on on purificati on techniques of synthetic dia mond was summarized.Traditi onal purificati on techniques,their merits and shortcom ings were intr oduced,the characteristic of current che m ical purificati on methods for ultrafine diamond were analyzed.Current physical purificati on methods of ultrafine dia mond were briefly p resented,and devel opment of artificial dia mond purificati on were intr oduced.Purifi2 cati on technique and app licati on foregr ound of ultrafine diamond were forecasted. Keywords ultrafine dia mond;purificati on 金刚石具有最高的硬度、最高的热导率、以及良好的耐磨性和化学稳定性等,使其在力学、热学、电子学和光学等领域具有广泛的应用前景。 目前,工业中多用人造金刚石。金刚石的合成方法有静压法、爆炸震动法和爆轰法等,这些合成方法可以得到不同粒径等级的金刚石。但是金刚石物料是由金刚石、石墨、触媒金属和少量叶蜡石等组成的混合物。其中金刚石的粒度一般在1mm以下,与触媒金属结合比较紧密,具有不与酸碱强氧化剂反应被溶解的化学稳定性;石墨容易被强氧化剂氧化;金属容易被酸溶解;叶蜡石能与碱反应。因此金刚石的提纯成为科研工作者广泛关注的课题。 1 人造金刚石传统的“三除”工艺 众所周知,人造金刚石繁重的任务是对其提纯,人造金刚石提纯技术的主要内容是去除剩余触媒中的合金、石墨及叶蜡石等。下面进行简单的介绍。 1.1 除触媒金属 对触媒合金的处理有两种不同方法:酸浸处理法、电解处理法[1-2]。 酸浸处理法利用硝酸和王水等强氧化性酸和金属反应能够生成可溶性盐,经过水洗即可除去金属。同时石墨被氧化变得松散。这种方法耗用大量的强酸,除了有害于操作者健康外,还耗费大量资金,尤其是严重危害了大气环境和水资源。 电解法是国际上普遍采用的除触媒金属方法,这种处理法经济效益高、污染少、工艺较成熟。1.2 除石墨和无定型碳 用硝酸、硫酸和高氯酸等单独使用或组成混合酸使用或者在酸中添加作无机氧化剂的高锰酸钾和重铬酸钾[3],以除去石墨和无定型碳。 贾咏胜去除石墨的新工艺为:球磨金刚石后浮选去除粉末级石墨,用硝酸浸润加硫酸。这样既达到硫酸的反应条件又提高了自然反应速度,不但去除了石墨,而且还将所含的少量金属N i、Co等残渣除去[4]。 美国专利3,348918指出了在250~500℃范围的温度下,把作催化剂的氧化铅与金刚石混合,通过与分子氧的选择性氧化除去非金刚石碳。 东德专利DD224575A指出了一种把铜盐水溶液与金刚石混合,除去非金刚石碳的方法:铜盐水溶液在高于450℃温度时,分解为氧化铜或氧化亚铜,并在540℃高温下加入到含氧气体中发生反应。反应产物可用盐酸或硝酸沸腾后用水将酸洗出。经X2射线分析金刚石中几乎不含石墨。 O.R.伯曼的发明专利[5]指出,传统的物理方法虽然可以除去粒状混合物中的碳,但是如果碳颗粒太小和其它颗粒结合太紧,需通过催化氧化除去粒状混合物中的碳及各种元素形态的碳:在有氧存在的条件下,在250~500℃内,把金刚石和作催化剂的氧化银混合物加热12260 h,经过酸沥滤,除去催化剂的同时回收到高纯度的金刚石。 徐康等的发明专利[6]涉及一种从含非金刚石碳的金刚石半成品中清除非金刚石碳的方法:用浓硫酸将金刚石半成品浸没,加热至沸腾后,以缓慢的速度向反应物中加入浓硝酸,直至金刚石半成品中非金刚石碳全部被氧化除去。该专利的特点是:由于浓硝酸的缓慢加入,使得浓硝酸的消耗量大为降低;同时反应混合物中浓硫酸的沸腾温度接近硫酸的沸点,因此硝酸的氧化能力得以充分发挥。

金刚石生产工艺流程

金刚石生产工艺流程标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

金刚石生产工艺一、生产工艺流程

金属粉 叶腊石石墨粉叶腊石合成触媒 微量元素 合成柱合成块电导石墨电导堵头 组装 烘干 液压机 砸散 电解 球磨 筛选 酸洗 碱洗 烘干 分选 包装 二、生产工艺简介

1、将原料叶腊石,按粒度为16目、24目,80目分选,然后按2:6:3的比例混合,混 合后在280 0C温度条件下焙烧l小时后制成内腔为中20mm的合成腔体,将破片的杂质和粉尘去掉,将触媒清洗后置入烘箱保持”℃恒温。 2、在内腔为中20 mm的合成腔体内分层交替装入碳片,触媒,两端客为两个碳片、碳片 为15片.触媒为12层,在两端的两个碳片外各装一个导电铜圈制成合成块,将合成块置于烘箱内,使之处于140℃恒温状态,保持9小时。 3、将烘过的合成块装入压机内,在压力为110MPa -120MPa,温度为1400℃-1500℃的条件 下保持12分钟将破转化为金刚石。 4、将压机内的合长块取出,进行破碎,使金刚石颗粒和内部杂质暴露。 5、电解法去除金属介媒,合成棒作为阳极,硫酸盐作为电解液,惰性阴极,化学反应 式: 阳极:M-ne→Mn+ 阴极:Mn++ne→M M表示Ni、Co、Mn等金属原子;Mn+表示相应的n价金属离子。 6、将电解完的物料放入球磨机进一步粉碎,使金刚石颗粒和石墨进行分离。 7、将球磨完的物料放入摇床进行石墨分离,该工艺主要利用金刚石和石墨在密度上的差 异,在往复摇动的倾斜工作面上,流体对其冲刷实现分离。 8、分选完的金刚石放入酸水中,进一步去除金属杂质,利用销售和王水等强氧化性酸, 和金属反应生成可溶性盐,经水洗即可去除金属杂质,化学反应式:

人造金刚石合成

人造金刚石合成工艺基础 一、序言 人造金刚石晶体生长技术是最近几年才发展起来的一门新技术,它与晶体生长、结晶学、高压、固体物理学、化学热力学和化学动力学是紧密联系着的,尤其是晶体生长和高压物理学最为密切。 近代,随着高压物理学的深入研究和超高压技术的迅速发展,人造金刚石晶体生长技术也就很快地为人们所掌握了。这一研究之所以为世界科学工作者给予如此重视,其原因不仅是因为金刚石硬度在工业上具有突出作用,更重要的是它具有技术的先进性和经济的合理性(与天然金刚石比较),以及天然金刚石是一种极其稀有的非金属矿物,根本不能长期满足科学技术飞跃发展的需要要求等客观原因所致。 近百年来,人们力图能够获得合成金刚石这一强烈愿望,给超高压高温技术的研究起着极大的推动作用,如所周知,超高压高温技术的进一步提高,不仅对金刚石合成技术和理论的研究具有实际意义,同时也为促使其它学科(如实验地质学)的深入研究和探索新物质开辟了广阔途径。 从所发表的有关资料来看,人造金刚石合成技术的研究中心已在好些国家建立起来,正在大力展开这方面的研究工作,并取得显著成效。这一技术轮廓虽有透露,但关键性的细节问题仍属保密,有待我国科学工作者去研究解决。因此,我们认为: 1.天然金刚石不能满足科学技术发展的要求,必须走人工合成之路; 2.从国内天然资源少,需求量多,必须迅速地掌握人造金刚石晶体生长这一 门新技术; 3.为了给人造金刚石新品种的发展提供一套完整的工艺规程,必须在实验室 中进行创造性的实验研究工作; 4.为了给实验研究工作提供一些方向性的资料,特将收集到的国外有关人造 金刚石合成技术资料,工艺资料加以整理分析,编写了“人造金刚石合成工艺基础”。 二、人造金刚石研究简史 1880年英国化学家Hannery,1894年法国著名物理学家Moissan和1935~1940年美国杰出高压物理研究者P.W.Bridgman等几个著名的和具有代表性的实验,对20世纪50年代人们掌握人造金刚石合成技术做出了贡献。清楚地证明,人造金刚石的合成过程必须是一个超高压、高温同时并举的过程,也就是说,祗有在超高压高温同时存在的条件下金刚石生成才有可能。关于这点,当然从天然金刚石的形成也会使我们这样想。P.W.Bridgman的试验告诉我们,在人造金刚石晶体生长的研究中,除首先必须考虑这一转变的可能性,但更重要的是研究使可能性变为现实性的具体条件,也就是我们常说的反应速率问题。 三、石墨—金刚石转变过程中热力学条件分析及其平衡曲线的讨论

CVD合成金刚石简介

检测方法FT-IR,XRR,拉曼 这个方法是一个俄罗斯人首先提出的,由此可见俄罗斯人的确很牛。 这种方法可以合成大面积金刚石薄膜,大面积哦,这是由于现在可以得到很大规模的等离子体,所以这种方法在研究领域可谓不可多得,只用甲烷就可以得到大面积的金刚石。 CVD金刚石可以用各种方法合成,其中晶粒生长速度最快的则为热等离子体CVD工艺。我们试验室过去曾试图用DC等离子体CVD工艺合成金刚石厚膜,并就膜与基底的附着强度和膜的性质作过探讨。但是,热等离子体工艺存在沉积面积和膜质量都不如其它CVD工艺等问题。CVD金刚石薄膜应用中对扩大沉积面积有着强烈的需求。 金刚石在所有已知物质中具有最高的硬度、高耐磨率、良好的抗腐蚀性、低的摩擦系数、高的光学透射率(对光线而言从远红外区到深紫外区完全透明) 、高的光学折射率、高空穴迁移率、极佳的化学惰性,既是热的良导体,又是电的绝缘体,掺杂后可形成P和N型的半导体。金刚石有如此多优异性能,因而在国民经济上有着广泛的用途。金刚石从真空紫外光波段到远红外光波段对光线是完全透明的,因此金刚石膜作为光学涂层的应用前景非常好,可用作红外光学窗口和透镜的保护性涂层。以及在恶劣环境下工作的红外在线监测和控制仪器的光学元件涂层。在工业制造领域,需要大量轻量化、高强度的材料,用具有高硬度、高耐磨性的金刚石制成的刀具有长寿命、高加工精度、高加工质量等优异特性,而将金刚石薄膜直接沉积在刀具表面不仅价格大大低于聚晶金刚石刀具,而且可以制备出具有复杂几何形状的金刚石涂膜刀具,在加工非铁系材料领域具有广阔的应用前景。金刚石在室温下具有最高的热导率,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电子器件的理想散热材料。金刚石能掺杂为P和N型的半导体,与现有半导体材料相比,具有最低的介电常数,最高的禁带宽度,较高稳定性,很高的电子及空穴迁移率和最高的热导率,性能远优于Si半导体,是替代Si的理想材料。它有可能用于制备微波甚至于毫米波段超高速计算机芯片,高电压高速开关及固体功率放大器,而工作温度更可达600摄氏度。金刚石制备电子器件的应用已取得了初步的结果,如金刚石薄膜发光管、金刚石薄膜场效应管、金刚石薄膜热敏电阻等金刚石制备电子器件的应用。但天然金刚石价格昂贵、数量稀少,人们一直在寻求人工合成金刚石的方法。传统上,依据热力学原理,人们利用石墨在高温高压下合成金刚石。但这种传统方法需要高温高压,对设备要求比较高,条件比较苛刻,导致合成的金刚石价格较贵。在20世纪80年代初,一种新的方法出现了,那就是微波等离子体化学气相法合成金刚石薄膜(CVD)制备金刚石薄膜,它成本低,质量高,有利于大规模合成利用,且装置简单,能量集中,反应条件易于控制,产物比较纯净,成为当前研究的主要方向和热点。现在该领域的最新进展是用微波化学气相合成法合成纳米级的金刚石薄膜,纳米级金刚石薄膜除了有普通微米级金刚石薄膜的性质外,还具有高光洁度,高韧性,低场放射电压,是具有广阔应用前景的新材料。摩擦系数低,光洁度高,颗粒极细,硬度高,耐磨度高,可广泛应用医疗,交通,航空航天,工业制造

相关文档