文档库 最新最全的文档下载
当前位置:文档库 › 土石坝波浪爬高计算

土石坝波浪爬高计算

土石坝波浪爬高计算

一、MurunyDam土石坝波浪爬高计算

选用莆田试验站公式计算风浪要素

波长: P= 12.98 (米) 平均水深:H=20(米)

吹程: D= 2000 (米) 计算风速:W= 24.3 (米/秒)

平均周期:T= 2.88 (秒) 平均波高:H1=0 .52 (米)

波长: λ= 12.98 (米) 边坡系数:M=2.

平均爬高:R=0.79(米)

安全加高:H2=0.4(米) 风壅水面高:E=0 .02 (米)

设计爬高(p=1%-ⅠⅡⅢ级土石坝):R=1.77(米)

计算超高:B=2.19(米)

设计爬高(p=5%-ⅣⅤ级土石坝):R=1.46(米)

计算超高:B=1.88(米)

二、坝顶高程确定

坝顶高程=2716+2.12+1.88=2720m

三、溢洪道过流量反算

Q=mb H03/2

g2

海岸工程海堤设计——计算说明书

《海岸工程》课程设计 计算说明书 学院: 港口海岸与近海工程 专业: 港口航道与海岸工程 班级: 大禹港航班 姓名: 学号: 1420190

第1章设计资料分析 1.1工程背景介绍 1.1.1主要依据 乐清湾港区的开发建设需要对港区前沿的滩地进行大面积疏浚开挖,从而产生大量的疏浚土方。从环境保护、减少工程投 资的角度,采用就近吹泥上岸的疏浚土处理方式替代传统的外抛 方式,既实现了宝贵疏浚土资源的综合利用,又缓解了土地供求 的矛盾和压力,大大提高了疏浚弃土的综合经济效益和社会效益。 为了尽早形成拟建港区港池、航道疏浚工程的纳泥区,同时为临 港产业经济用地的开发建设创造条件,拟通过围垦提供约1500 亩的后备土地资源。 1.1.2主要规范、规程 1.《海堤工程设计规范》(SL 435—2008) 2.《浙江省海塘工程技术规定》(上、下) 1.1.3工程项目内容和规模 本工程尽可能实现筑堤与吹泥工程的同步实施,二者相互依托、互为条件,因此,作为工程项目必需内容的一部分,需在本 研究阶段提出吹泥上岸工程的实施方案。因此,本项目工程建设 的主要内容包括围堤、吹泥上岸和临时排水工程。

工程规模如下: (1)围(海)涂面积约99.2万m2,合1487.7亩;围堤总长度 3.200km; (2)围堤建设符合国家规范及地方规程要求,顺堤按照50年 一遇标准建设,防洪高程+7.8m(85高程,下均同);南侧堤按照50年一遇标准建设,防洪高程+7.8~7.6m。 (3)围区内允许纳泥标高按+3.0m控制,纳泥容量约为660.53 万m3。 1.1.4工程平面布置 本工程位于乐清湾中部西侧打水湾山附近,因打水湾与连屿矶头的控制,该段区域为乐清湾最窄处,宽约4.5km,涨落潮流在此汇合、分流,水动力特性复杂、敏感。根据项目前期研究工作成果和结论意见,结合土地开发需要,围涂工程顺堤位置推荐布置在-6m等高线处,走向为18°~198°,堤长约577.5m。 南侧堤布置时考虑东干河出口顺直,沿老海塘延长线向东以132°~312°走向延伸,后以110°~290°向东延伸500m后与顺堤垂直相交,南侧堤长度约2622.7m。 1.2设计内容 乐清湾海堤工程设计:确定海堤设计条件、断面尺寸,并进行波浪爬高计算、护坡计算、防浪胸墙稳定设计、海堤抗滑稳定

浙江省混合式海堤堤顶高程计算方法初探

城市道桥与防洪 2009年8月第8期 收稿日期:2009-04-10作者简介:吴连颖(1981-),女,辽宁大连人,助理工程师,主要从事堤防工程设计工作。 浙江省混合式海堤堤顶高程计算方法初探 吴连颖,李卫红 (浙江省钱塘江管理局勘测设计院,浙江杭州310016) 摘 要:该文主要用浙江省海塘技术规定中的方法计算了断面复杂的混合式海堤的波浪爬高以及越浪量,并通过计算波浪 爬高和越浪量来确定海堤的堤顶高程;结合实际工程中遇到的断面比较复杂的海堤,用不同方法进行计算,并对得出的结果进行分析比较;最后通过模型试验进行验证。结果表明,对于复杂的混合式断面,现行规范规定的波浪爬高的计算方法不够完善,计算得到的结果往往偏大,而对越浪量的计算也有很大的局限性,最好通过断面波浪模型试验来分析验证。关键词:混合式海堤;堤顶高程;计算方法;波浪爬高;越浪量;设计准则中图分类号:TV871 文献标识码:A 文章编号:1009-7716(2009)08-0086-04 0引言 浙江省海堤大部分建筑在软土地基上,根据 整体稳定计算确定的断面往往比较大,而且通常在设计时还要考虑到亲水及景观等要求,诸多因素确定的海堤断面比较复杂,这也就导致确定堤顶高程也比较困难。现有规范的公式跟工程设计的实际断面情况多有出入,只能根据经验进行简化,选择最适合的公式进行计算或者通过试验确定堤顶高程。在海堤工程的各个参数中,堤顶高程的确定十分重要,它直接影响投资,所以堤顶高程的确定至关重要。在对实际工程进行堤顶高程的设计中,对波浪爬高及越浪量计算有了一定的认识,现主要结合文献[1]就工程中遇到的典型的混合式海堤断面进行初步探讨。 1堤顶高程的计算方法 堤顶高程的确定涉及到海堤工程的设防标准、设计潮位、堤前设计波要素、波浪爬高与海堤上的波浪越浪量以及海塘的结构型式。浙江省海堤堤顶高程主要应用的是文献[1]进行计算。1.1波浪爬高计算确定堤顶高程 带有平台的复式斜坡的爬高计算,可先确定该断面的折算坡比me,然后按坡比为me单坡断面确定其爬高值。但折算坡比法只适用于m 上=1.0~4.0,m 下=1.5~3.0的断面。还有一种常见 的断面是下部为斜坡式,上部为陡墙式(m 上≤0.4 ),上下坡之间带平台的复式断面结构,根据文献[1]可采用如下近似方法,作为粗估,供拟定海塘设计断面尺寸时采用。 第一种方法是把最外侧平台作为镇压层考 虑,先计算两极挡墙的爬高值。 (1)当d 前≥2H 1%,d w >1.5H 1%,则波浪爬高值 计算时边坡用m上, 再按(1)式计算:R F %=K ΔK V R 0H 1%K p (1)式(1)中:F%为波浪爬高累积率,不允许越浪取2%,允许部分越浪取13%(允许越浪指塘顶、内坡及坡脚有防冲刷保护及排水措施,大部分工 程按照允许部分越浪计算); K Δ为糙渗系数;K V 为风速的影响因子;K F %为爬高累积率换算系数,若要求的R F %所相应累积率的塘前波高H F %已经破碎,则K F =1;R 0为不透水光滑斜面上的相对爬高,即当K Δ=1.0,H =1.0时的爬高值。 (2)当d 前≤2H ,i ≤110 ,塘前按破碎波考虑, 其爬高按(2)式计算: R=H ′+(0.75c ′+v ′)2 2g (2) 式(2)中, H ′、C ′、V ′为破碎波高、波速及水质点轨迹速度; H ′可取d 前的极限波高H b ;C ′=L ′T ′L ′为波长;V ′=H ′ 2 2πg L ′cosh2πd L ′ 姨 。(3)当d 前≥2H,-1.0≤d w H ≤1.0,时,爬高按 (3)式计算: R=1.36(1.5HK Z th 2πd L -d w )(3) 式(3)中:dw为墙前水深, 平台位于水下时,dw取正值,当平台位于水上时,dw取负值。系数Kz,根据ζ=d w d 姨姨d H 姨姨 2πH L ,按图1确定。H 值对不允许越 浪取累积率2%的波高值,允许部分越浪累积率为13%的波高值,所求得的R不再作爬高累计率 之换算。式 (3)仅适用于m 上≤0.4,m 下=1.5 ̄3.0,B ≤3H 斜坡陡墙均为砌石护面的情况。 防洪排水 86

海堤工程设计规范(SL435-2008)

附录C 波浪要素计算 C.0.1 不规则波对应平均波周期的波长L 可按式(C.0.1)计算。 2 2th 2g T d L L ππ = (C.0.1) 式中 L ——波长,m ; T ——平均周期,s ; g ——重力加速度,g=9.81m/s 2; d ——水深,m 。 波长L 可通过试算确定,也可根据0/d L 值查附录D 中0/L L 之比值求得。 C.0.2 …… C.0.3 …… 2 cos cos i i e i F F αα = ∑ ∑ (C.0.3—1) 式中 i F ——在设计主风向两侧各45 o范围内,每隔α?角由计算点 引到对岸的射线长度,m ; i α——射线0F 与设计风向上射线i F 之间的夹角,(o), 0i i αα=?计算时可取()7.50,1,2,,6 i α=?=±±± , 初步计算时也可取()150,1,2,3i α?=?=±±±,如图C.0.3所示。 C.0.4 风浪要素可按莆田海堤试验站公式计算确定, 其计算应按式

(C.0.4—1)和式(C.0.4—2)进行。 ()()0.452 0.7 2 20.7 2 0.0018/0.13th 0.7th 0.13th 0.7/gF g H gd gd υυ υυ???????? =???? ? ???????? ? ?????? ? (C.0.4—1) 0.5 213.9g T g H υυ?? = ??? (C.0.4—2) 式中 g ——重力加速度,g =9.81m/s 2; H ——平均波高,m ; T ——平均波周期,s ; F ——风区长度,m ; υ——设计风速,m /s ; d ——风区的平均水深,m 。

波浪爬高计算公式及附表

附录C 波浪计算 C.1 波浪要素确定 C.1.1 计算风浪的风速、风向、风区长度、风时与水域水深的确定,应符合下列规定: 1 风速应采用水面以上10m 高度处的自记10min平均风速。 2 风向宜按水域计算点的主风向及左右22.5°、45°的方位角确定。 3 当计算风向两侧较宽广、水域周界比较规则时,风区长度可采用由计算点逆风向量到对岸的距离;当水域周界不规则、水域中有岛屿时,或在河道的转弯、汊道处,风区长度可采用等效风区长度Fe,Fe可按下式计算确定: 式中ri——在主风向两侧各45°范围内,每隔Δα角由计算点引到对岸的射线长度(m); αi——射线ri与主风向上射线r0之间的夹角(度),αi=i×Δα。计算时可取Δα=7.5°(i=0,±1,±2,…,±6),初步计算也可取Δα=15°(i=0,±1,±2,±3),(图C.1.1)。 图C.1.1 等效风区长度计算 4 当风区长度F小于或等于100km 时,可不计入风时的影响。 5 水深可按风区内水域平均深度确定。当风区内水域的水深变化较小时,水域平均深度可按计算风向的水下地形剖面图确定。

C.1.2 风浪要素可按下列公式计算确定: 式中——平均波高(m); ——平均波周期(s); V——计算风速(m/s); F——风区长度(m); d——水域的平均水深(m); g——重力加速度(9.81m/s2); tmin——风浪达到稳定状态的最小风时(s)。 C.1.3 不规则波的不同累积频率波高Hp与平均图C.1.1 等效风区长度计算波高之比值Hp/可按表C.1.3-1确定。 表C.1.3.1 不同累积频率波高换算 不规则波的波周期可采用平均波周期表示,按平均波周期计算的波长L 可按下式计算,也可直接按表C.1.3-2确定。

波浪“爬高”的计算方法

作用于直立堤墙与桩柱的波峰高度 对于波浪作用在建筑物上的高度,目前没有查到全面系统的解释与分类,哪位同仁查到可以分享一下。不妨这样理解:波浪在行进过程中,当遇到水工建筑物之类的障碍物时,波浪能量传播受阻,大部分动能转化为势能,波面升高,达到的最高高度合称为“波浪作用在建筑物上的高度”。当建筑物为斜坡堤,波浪爬升的最高垂直高度一般称为“波浪爬高”或“浪爬高”(比较形象有木有?);当建筑物为直立式堤防或墙体、桩基或墩柱时,一般称为“波峰面高度”或“波峰高度”。波浪作用在建筑物上的高度与波浪要素及形态、相对水深、建筑物机构型式、坡率、渗透性、粗糙率(有时合计以渗糙系数考量)等等因素有关,非常复杂。科研院所大多基于规则波(波形近似于正余弦波,波列中波要素相同的波浪),研制出一定适用范围内适用的半经验半理论计算方法,经实测资料验证后被《港口与航道水文规范》JTS145-2015、《堤防工程设计规范》GB50286-2013及各自前溯版本采用。关于斜坡堤的波浪爬高计算,上述两本规范及各自前溯版本以附录形式或以明晰的条文集中列出,公式图表的表达相对系统且清晰,容易查算。《电力工程水文技术规程》DL/T5084-2012也在电力勘测规程范围内首次增引《海港水文规范》JTJ213-98给出的斜坡堤浪爬高计算方法(DL/T 5084-2012附录D.2)。然而,关于直立堤墙和桩柱的波峰高度的计算方法,分散于波浪对直墙式建筑物与波浪对桩基和墩柱的力学计算的条文内,许多情形下的计算公式没有以我们习惯采用的以设计波高的比值来给出,亦即公式表达不顾直观,图表也不够清晰,使用者不易查算,甚至误以为JTS145等规范没有这方面的内容。在直立式堤防、码头、电厂直墙式岸边泵房(参见《大中型火力发电厂设计规范》GB50660-2011第17.4.5条文说明)以及近年来兴起的海上风电基础平台、升压站平台等的竖向布置中,常常以设计波高的比值来表示波峰高度,用作堤顶或建筑物±0m层设计标高时的总超高组成(与这类问题相关的电力条文的演化,且容水货另行整理成文,晚些时候奉上)。为计算和衡量方便,水货基于《港口与航道水文规范》JTS145-2015给出的方法,结合规则波无因次周期与相对水深的对应关系等,分类推演后“析出”作用于直立堤墙和桩柱下的波峰高度与波高的关系,给出计算公式并制作图表方便使用与查算,同时评价了各类条件下波峰高度的值域范围,文末对成果予以汇总与讨论。本文分两部分。在第二部分文末针对电力工程可能遇到的问题,展开进一步讨论,希望引起全面和系统的思考,以便在工程实践中准确计算与合理取值。 ?作用于直立堤墙的波峰高度 1.1直立堤墙前的波浪形态判别 波浪遇到直立堤或直墙式建筑物(图1)时,当水深足够,波浪会形成全反射,与入射波叠加形成立波(也称“驻波”)。当水深较浅或直立堤或墙本身有较高的基床时,波浪会产生破碎。当破碎在距离堤墙半个波长以外发生时,称为远破波;当破碎在距离堤墙半个波长以内或在基床及堤墙面发生时,称为近破波。

波浪爬高计算公式及附表

附录C 波浪计算 时间:2007-01-26 来源:作者: C.1波浪要素确定 C.1.1计算风浪的风速、风向、风区长度、风时与水域水深的确定,应符合下列规定: 1风速应采用水面以上10m高度处的自记10m i n平均风速。 2风向宜按水域计算点的主风向及左右22.5°、45°的方位角确定。 3当计算风向两侧较宽广、水域周界比较规则时,风区长度可采用由计算点逆风向量到对岸的距离;当水域周界不规则、水域中有岛屿时,或在河道的转弯、汊道处,风区长度可采用等效风区长度F e,F e 可按下式计算确定: 式中r i——在主风向两侧各45°范围内,每隔Δα角由计算点引到对岸的射线长度(m); αi——射线r i与主风向上射线r0之间的夹角(度),αi=i×Δα。计算时可取Δα=7.5°(i=0,±1,±2,…,±6),初步计算也可取Δα=15°(i=0,±1,±2,±3),(图 C.1.1)。 图 C.1.1等效风区长度计算 4当风区长度F小于或等于100k m时,可不计入风时的影响。

5水深可按风区内水域平均深度确定。当风区内水域的水深变化较小时,水域平均深度可按计算风向的水下地形剖面图确定。 C.1.2风浪要素可按下列公式计算确定: 式中——平均波高(m); ——平均波周期(s); V——计算风速(m/s); F——风区长度(m); d——水域的平均水深(m); g——重力加速度(9.81m/s2); t m i n——风浪达到稳定状态的最小风时(s)。 C.1.3不规则波的不同累积频率波高H p与平均图 C.1.1等效风区长度计算波高之比值H p/可按表 C.1.3-1确定。 表 C.1.3.1不同累积频率波高换算

相关文档