文档库 最新最全的文档下载
当前位置:文档库 › 冷却塔组溢水问题

冷却塔组溢水问题

冷却塔组溢水问题
冷却塔组溢水问题

浅析冷却塔组溢水问题

简介:本文针对某中央空调的冷却塔溢水的故障现象,进行了原因分析。认为原设计中,冷却水系统的流量计算偏大。针对问题提出了解决方案。

关键字:冷却水系统、冷却塔溢水、改造

1工程概况及系统概述

笔者参建的某综合楼,建筑面积为85000平方米,由六块区域组成,主机房位于一区地下室,共四台主机,其中三台制冷量为2720000 kcal/h(900冷吨),一台1810000 kcal/h(600冷吨),四台冷却塔分别对应四台主机,三大一小,位于五区天面。四台冷却塔的进水独立设置,管径dn350,回水管则是四根dn250的支管汇集到一根dn500的总管流回主机。本工程制冷系统原理图如下:2多个冷却塔组溢水故障情况

该空调系统运行以来,由于为初期,好多部门没有搬迁进来,昼间开启一台离心制冷机组及相应的冷冻水泵、冷却水泵、冷却塔。当运行于此种运行模式时,开机的冷却塔发生溢水现象,而没有开机的冷却塔补水盘内的水位下降,补水浮球持续补水,其示意图见下图,当四台主机及冷却塔轮换运行时,溢水现象依旧发生。但当四台冷却塔同时开启时(四台离心制冷机组及水泵同时开启),无溢水现象发生。

溢水原因分析

3.1初步分析

各种冷却塔的优缺点

各种冷却塔的优缺点 1逆流式节能冷却塔 逆流式节能冷却塔是指水流在塔内垂直落下,气流方向与水流方向相反的冷却塔。逆流式冷却塔是水在塔内填料中,塔内的水从上到下,塔内的空气从下到上进行反流,这既是逆流式冷却塔。 逆流式节能冷却塔的优点: 1、整套涉笔设计简单,配水系统通畅,整个配水过程不需要特别要求,并且不易堵塞。采用了淋水填料,防止老化和湿气回流。在温度比较低的地方,容易采取抗冻措施。并且可以设计多台冷却塔同时使用。 2、整套设备设计比较简单,操作比较简单。整套设备生产成本可以控制,通常会在一些大型的冷却循环水中使用。冷却塔工作原理是通风的空气从正确的角度吹向滴下来的水,当空气通过这些水滴的时候,一部分水就蒸发了,由于用于蒸发水滴的热量降低了水的温度,剩余的水就被冷却了。这种方法的冷却效果依赖于空气的相对湿度以及压力。当水滴和空气接触时,一方面由于空气与不的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。冷却塔的工作过程:圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。 2干式冷却塔 干式冷却塔,水和空气不直接接触,只有热交换的冷却塔。 干式冷却塔,干式冷却难的热水在散热翅管内流动,靠与管外空气的温差,形成接触传热而冷却。所以干式冷却塔的特点是:

循环水冷却塔蒸汽回收除雾技术

间冷开式循环水冷却塔上应用CRECT蒸发水汽回收系统探讨 我国是一个水资源十分贫乏的国家,一些地区水资源已成为制约经济发展的主要因素之一。石油化工、发电等行业是工业耗水大户,苴中循环水冷却塔的耗水量约占整个耗水量的45% 以上。冷却塔内水量散失主要是因蒸发散热使部分水相变为水蒸气散入空气中,不但造成水的流失,有时因水雾大还造成很多环境问题。因此回收降低冷却塔的蒸发水耗,意义重大。 多年来,人们采取了很多技术措施,实现冷却塔的肖水。目前有冷却塔内加设高效收水器、髙压静电收水和水轮式旋转布水器消除飘水现象等收水措施。但大多只是收回空气中携带的水滴,高压静电收水也是只收集粒径小于200?300 Pm的小水滴。CRECT蒸发水汽回收系统工业试验装置可实现对饱和空气中的水蒸气进行回收,这部分蒸发水汽水量大,同时达到了蒸锚水的水质标准。 1.CRECT蒸汽回收技术原理 1.1冷却塔蒸发水汽回收原理介绍 冷却塔主要靠从塔底抽进的塔外冷空气与冷却热水通过接触进行热屋的交换。塔外冷空气是低度水蒸气和干空气的混合物,进塔前冷空气中的水蒸气含量较少。在冷却塔运行过程中,水经过冷却塔填料层时,气水充分接触混合,气中水的分压达到了当时温度所对应的饱和压力,进入冷却塔的冷空气便成为了饱和热湿空气。在冷却塔内除水器上部基本上是以饱和热湿空气的形式存在的。 在冷却塔内除水器上部,饱和热湿空气在塔内逐渐上升,与塔外进入的冷空气进行接触,热湿空气温度逐渐下降,并逐步呈过饱和状态,形成小水滴,开始凝结成水雾;至塔顶处,水汽凝结达到最大程度,这便是通常在塔顶看到的雾气团。当具备了充足的水汽,上升过程中遇到凝结核以后,形成的小水滴会凝结形成大水滴。在蒸发水汽出塔前,采用一泄的设备,就可以回收冷却塔饱和蒸发水汽,达到节水和保护环境的双重目的。 CRECT蒸发水汽回收装宜是利用环境大气与冷却塔塔顶饱和蒸发水汽的温差,核心部件冷凝

水池满水试验复习过程

水池满水试验

水池满水试验 一、工程概述及编制说明 1、工程概况 侨立水务永川三水厂建设项目,系侨立水务设计规模20万吨/日的第三水厂一期工程(设计规模10万吨/日)的净化厂建设工程,工程概算总投资14888.26万元。 净化厂建设项目包括主要工艺构筑物(配水井一个、絮凝沉淀池两组、翻板滤池一组八格、5000立方米清水池两个、送水泵房及变配电中控室一组)、辅助构筑物(加药间一个、机修车间一个、回收水池一个、污泥处理系统一套)、附属构筑物(办公楼一栋)辅助设施(厂区给排水、道路、围墙、绿化等)。 本工程于2011年3月正式开工建设,计划2012年5月底竣工投产。 2、编制说明 编制目的作为两组絮凝沉淀池、一组汽水反冲洗滤池,两个5000立方米清水池等工程满水试验施工的指导性文件。 3、编制依据 《给水排水构筑物施工及验收规范》(GB50141-2008) 消防泵房工程设计图纸 以往类似工程施工经验 二、施工组织及技术准备 1、施工组织 首次在本工程中组织进行满水试验,本着对工程质量负责的态度,由项目经理组织、协调,各工序相关管理人员积极配合,认真对待积累经验,指导构筑物的满水试验。 2、技术准备

组织技术人员根据各盛水构筑物的实际情况,精心编制施工方案,严格按照设计要求和经审批通过的施工方案进行施工。 3、人员准备 4、施工准备 池体混凝土的表面处理 1) 池壁加固螺栓割除,用高一标号的微细水泥砂浆抹平修补好砼表面; 2) 预留工艺管道采用闸阀或盲板封堵。 3) 池内杂物清扫干净; 4) 注水采用麻柳河河水作为水源,使用水泵从河中直接取水,向待试验池内注水;试水完毕后,池内的水由排水阀排出。 5) 在加盖清水池等满水试验时,人孔处安置照明灯,便于夜间观察、注水; 6) 设置水位观测标尺、标定水池最高水位,安装水位测针;标尺用木方制作(高度由池底到人孔上50㎝),分别在三次注水平面处安置刻度尺,用木方固定在人孔处。 三、满水试验步骤及检查测定方法 1、注水 1) 采用麻柳河河水作为水源,使用水泵从河中直接取水,向待试验池内注水;

冷却塔性能的评价汇总

冷却塔性能的评价 摘要:通过冷却塔验收试验或性能试验整理出结果,应对该冷却塔的性能作出评价。评价的指标,决定于所采用的评价方法,有以冷却出水温度,或以冷却能力(实测经修正后的气水比与设计时气水比的比值)作为评价指标,也有用其它的评价指标。下面介绍几种目前国内外常用的冷却塔性能评价方法。 关键词:冷却塔评价指标性能评价 通过冷却塔验收试验或性能试验整理出结果,应对该冷却塔的性能作出评价。评价的指标,决定于所采用的评价方法,有以冷却出水温度,或以冷却能力(实测经修正后的气水比与设计时气水比的比值)作为评价指标,也有用其它的评价指标。下面介绍几种目前国内外常用的冷却塔性能评价方法。 1.按计算冷却水温评价 根据冷却数方程式表示的热力特性和阻力特性,可以综合计算得到设计或其它条件下的冷却水温。 根据设计条件及实测的热力、阻力特性,计算出冷却水温,与设计的进行比较,如前者的值等于或低于后者的值,则该冷却塔的冷却效果达到或优于设计值。 2.按实测冷却水温评价 通过验收试验,测得一组工况条件下的出塔冷却水温,由于试验条件与设计条件的差异,需通过换算方可比较,其比较的方法是:将实测的工况条件代入设计时提供的性能曲线或设计采用的计算方法和公式,计算出冷却水温,如果比实测的高,则说明新建或改建的冷却塔实际冷却效果要比设计的好,反之则说明冷却塔效果差。 这种用实测冷却水温的评价方法,计算简便,评价结果直感,试验时不需测量进塔风量,易保证测试结果的精度,但需设计单位提供一套性能曲线(操作曲线)或计算公式。 3.特性曲线评价法 3.1 性能评价应用公式

式中——实测冷却能力; ——修正到设计条件下的冷却水量(); ——设计冷却水量(); ——试验条件下的实测风量(); ——修正到设计工况条件下的气水比, 由于试验条件与设计条件存在差异,故需将试验条件下所测之数据,修正到设计条件下进行评价。 3.2 设计工况点的决定 在作设计时,根据选定的塔型及淋水填料,可获得该冷却塔的热力特性,在双对数坐标纸上便可获得一条的设计特性曲线,如下图中直线1。 根据给定的冷却任务()假设不同的气水比,可获得不同的,将其描绘在图上,便可得冷却塔的工作特性曲线,如上图中曲线2,直线1和曲线2的交点。即为满足设计要求的工况点。 3.3 试验条件的工况向设计条件修正 冷却塔进行验收试验或性能试验时,由于实测进塔空气量G,和设计空气量不可能完全相同,所以获得的直线和上图中的直线1不可能完全相同,而是另外一条和直线1平行的直线3。直线3和曲线2的交点c则表示修正到设计条件下的工作点,C点对应的气水比即为修正到设计工况条件下的气水比。 c点的获得,可由试验得到的冷却数和气水比点绘到冷却塔设计特性曲线图上,得试验点b,过b点作直线3平行于直线1,从而可得到直线3和曲线2交点c。 根据试验实测的空气量及修正后c点的气水比,便可得到修正后的冷却水量,即: 将上式代入便可求得实测冷却能力。如大于90%或95%,应视为达到设计要求;大于100%,应视为超过设计要求。 4.美国CTI机械通风冷却塔特性曲线评价法 此评价方法与上述的冷却塔性能评价方法基本相同,亦是以实测冷却能力表示的,即:

浅谈如何降低循环冷却水损耗

浅谈如何降低循环冷却水损耗 摘要:随着社会的发展和进步,水污染日益严重,水资源短缺,节约用水势在必行。工业用水约占总用水量的60%以上,而循环冷却水用量约占整个工业用水量的70%~80%。因此,企业对水资源尤其是工业用水的合理性与处理方法的研究越来越重视。在工业水中,工业用冷却水所占的比例极大,因此,如何通过水处理的方法合理地重复使用冷却水,是共同追求的目标。 关键词:循环;冷却水; 热电站是生产装置的主要电力和热力供应单位。电站有一套闭式循环水系统,为热电站汽轮机、锅炉等装置提供循环冷却水。工业冷却水的循环使用是工业节水的重要措施,并已被推广,但由于冷却塔的冷却原理主要是依靠传质传热,即依靠水的蒸发,从液态变成气态时吸收大量的气化热实现的,所以工业冷却水循环系统存在一定数量的水的蒸发消耗。另外,冷却水循环系统为避免水蒸发引起水中盐分的过度浓缩还必须有一定量的排污,因此,为了保持系统水量的平衡,必须对系统进行补充新鲜水。水的蒸发消耗量在目前的情况下相对难于收回,因此,在正常工况下,如何能够减少新鲜水的补充量减少排污是节水减排的关键。 一、循环水系统的组成 循环水系统中主要是由风吹损失、蒸发损失、排污、系统渗漏、旁滤反洗排污等几部分损失构成了系统补水量,在下面将对其进行技术分析,提出循环水节水减排的措施。 二、分析与探讨 2.1 蒸发水量 冷却塔传热依靠热传质,传质即水的蒸发将热量从水传递到空气,然后由蒸汽带出塔外,在这部分热量传递过程中,冷却塔水的蒸发水率按下式计算: Pe=KzfΔt 即:E/R=(0.1+0.002T)(T1+T2) 式中:E为水的蒸发量,m3/h;R为循环水量,m3/h;T为进塔空气干球温度,℃;T1、T2为进塔和出塔水温,℃。 在一般情况下:T=30℃,T1-T2=10℃,则E =1.6%R。 由上式可见:蒸发水量为循环水量的1.6%。往往占到补水量的70%左右。良好的水质,较大的水量,在冷却塔上是否可以考虑蒸气水的回收系统,回用到

冷却塔技术参数样本

1.设备组成 1.1设备原产地及制造厂家 广东省广州市/斯必克(广州)冷却技术有限公司。 1.2供货明细 NC玻璃钢冷却塔/NC8330F/4台 SR玻璃钢冷却塔/SR-200/2台 SR玻璃钢冷却塔/SR-40/2台 1.3其他 2.设备性能及技术参数 2.1设备性能 1)NC系列产品简介 A、NC型横流式冷却塔系统性设计 横流式冷却塔是马利公司工程师通过 冷却塔多年热工测试试验,引进世界上最大 的冷却塔生产商斯必克公司的先进技术和 设备,对测试数据进行全面综合处理,参照 美国冷却协会CTI标准和GB7190-1997等 依据计算机运算得出的淋水填料的容积散 质系数 xv,选择最佳的水气比,最佳截面水 负荷,截面气负荷和填料的高度范围以确定 填料体积,并以流体力学、空气动力学、材 料学、建筑学等多种学科观点,综合设计塔 的外型与结构,根据测试计算通风阻力,参 考风机特性曲线和对测试数据进行优化,选 择符合风量和噪音要求的风机和匹配的电 机,使冷效、能耗、噪音达到一个优化的系 统设计效果。 B、NC型横流式冷却塔淋水填料 马利NC方形横流式冷却塔采用的 MX-75型高级薄膜式复合波淋水填料, 堪

称世界上薄膜式淋水填料的佼佼者,此填料片用于横流冷却塔, 由热处理PVC多层片构成,厚度0.38mm, 表面成波纹式, 相邻两层填料片形成的间隔,保证气流的通畅,经美国冷却塔协会(CTI)测试分析,其阻力特性和热力特性远远优于现有国内填料,使用寿命15年以上。 一般冷却塔产品填料均采用竖直放置,且无明显收水端。参考右下图,一般冷却塔的做法是布水盘偏向外侧安装,A、B、C、D、E、F这6个区域内充满了填料,而当冷却塔运行起来以后,由于风机向上排风,气流由外向内流经填料,在风力的带动下,实际冷却水流过的区域是C、D、E、F、G这5个区域,A、B两区无水。那么按照一般冷却塔的做法, 用,而有水的G区却又没有填料。马利的工 程师们对这个问题进行了深入的研究,在千 百次的实验之后,提出了冷却塔填料倾斜悬 挂式安装的方案,在马利冷却塔当中C、D、 E、F、G区充满填料,A、B两区无填料, 而倾斜的角度又根据不同的塔型有十分严 格的要求,这种方法有效地解决了进风面下 端“无水区”问题,且填料带有明显的收水 端,克服了竖直放置填料的缺点。因此,倾 斜悬挂放置的填料比竖直放置填料漂水损 失小,水与空气接触充分,热工性能好。 马利冷却塔填料片高度是根据填料片特性、进风宽度、布水状况及与之相匹配的风量、电机功率、风机等,进行分析计算而得出的。其设计高度可保证热湿交换效率达到极限值,同时,MX-75型填料集均匀布风、换热、收水于一体,其卓越的收水性和导风性使冷却塔无需安装百叶窗,经测试其漂水损失小于循环水量的0.001%。实践证明,MX-75型填料片的亲水性和抗冰性能好,耐温-50~+70?C,适合于北方严寒气候的地区使用,是理想的进口填料片。 该填料以抗紫外线和抗腐蚀的聚氯乙烯(PVC)经热塑真空加压成型,其表面亲水性好,散热面积大、冷效高,在使用环境空间受限制多的热交换过程中更能体现其优越性。从而使整个填料体积发挥最有效的冷却作用,该填料无须胶水粘接,防止了由于粘接对填料造成的损坏,便于清洗安装,延长了使用寿命。 C、NC型横流式冷却塔的进风装置 此塔由于使用马利MX-75填料,无需另配进风百叶窗,该型填料将进风口百叶部位与填料淋水部位模塑成一体,这种美国马利公司获得专利的装置可以防止溅水漂出塔外,在多变的气流条件下保证配水的均匀性,无需再增加安装进风百叶窗的麻烦。 D、NC型横流式冷却塔除水系统 高效蜂窝式除水器与填料膜塑成为一体,属于美国斯必克公司专利产品,其收水率比老式的半弧型收水器高出许多倍,大大降低了漂水损失,使水耗费用减少,另外这种除水器能引导空气流向风机,降低风阻,从而使能耗降低,其漂水 损失小于循环水量的0.001%。

水池满水试验规定(闭水试验)

构筑物满水试验得规定 一、水池满水试验前得必备条件 水池满水试验就是水工构筑物得主要功能性试验,满水试验前必须具备以下条件: (1)池体得混凝土或砖、石砌体得砂浆已达到设计强度要求; (2)池内清理洁净,池内外缺陷修补完毕; (3)现浇钢筋混凝土池体得防水层、防腐层施工之前; (4)装配式预应力混凝土池体施加预应力且锚固端封锚以后,保护层喷涂之前; (5)砖砌池体防水层施工以后,石砌池体勾缝以后; (6)设计预留孔洞、预埋管口及进出水口等已做临时封堵,且经验算能安全承受试验压力: (7)池体抗浮稳定性满足设计要求; (8)试验用得充水、充气与排水系统已准备就绪,经检查充水、充气及排水闸门不得渗漏: (9)各项保证试验安全得措施已满足要求; (10)满足设计得其她特殊要求。 二、水池满水试验得准备 (1)选定好洁净、充足得水源;注水与放水系统设施及安全措施准备完毕。 (2)有盖池体顶部得通气孔、人孔盖已安装完毕,必要得防护设施与照明等标志已配备齐全。 (3)安装水位观测标尺;标定水位测针。 (4)准备现场测定蒸发量得设备。一般采用严密不渗,直径500mm,高300mm 得敞口钢板水箱,并设水位测针,注水深200mm。将水箱固定在水池中。 (5)对池体有观测沉降要求时,应选定观测点,至测量记录池体各观测点初始高程。 三、水池满水试验要求 (一)池内注水 1.向池内注水宜分3次进行,每次注水为设计水深得l/3。对大、中型池体,

可先注水至池壁底部施工缝以上,检查底板抗渗质量,当无明显渗漏时,再继续注水至第一次注水深度。 2.注水时水位上升速度不宜超过2m/d。相邻两次注水得间隔时间不应小于24h。 3.每次注水宜测读24h得水位下降值,计算渗水量,在注水过程中与注水以后,应对池体作外观检查。当发现渗水量过大时,应停止注水。待作出妥善处理后方可继续注水。 4.当设计单位有特殊要求时,应按设计要求执行。 (二)水位观测 1.利用水位标尺测针观测、记录注水时得水位值; 2.注水至设计水深进行水量测定时,应采用水位测针测定水位。水位测针得读数精确度应达l/10mm; 3。注水至设计水深24h后,开始测读水位测针得初读数; 4.测读水位得初读数与末读数之间得间隔时间应不少于24h; 5.测定时间必须连续。测定得渗水量符合标准时,须连续测定两次以上;测定得渗水量超过允许标准,而以后得渗水量逐渐减少时,可继续延长观测。延长观测得时间应在渗水量符合标准时止。 (三)蒸发量测定 1.池体有盖时可不测,蒸发量忽略不计。 2.池体无盖时,须作蒸发量测定。 ①现场测定蒸发量得设备,可采用直径约为50㎝,高约30㎝得敞口钢板水箱,并设有测定水位得测针。水箱应检验,不得渗漏。 ②水箱应固定在水池中,水箱中充水深度可在20㎝左右。 3.每次测定水池中水位时,同时测定水箱中蒸发量水位。 四、水池得渗水量按下式计算: A1 q= —〔(E1-E2)-(e1-e2)〕 A2 式中: q渗水量(L/㎡、d); A1 水池得水面面积(㎡); A2 水池得浸湿总面积(㎡);

冷却塔消雾节水改造方案知识分享

冷却塔消雾节水改造 方案

1#135MW汽轮发电机组冷却塔 消雾改造方案

一、冷却塔消雾改造的重要性 在机械通风冷却塔内冷空气冷却循环水的过程中,冷空气经过冷却塔内部和水热交换后变成了饱和的湿热空气。在北方寒冷地区,机械通风冷却塔在冬季运行时,饱和的湿热空气排出塔外与冷空气混合,由于冷却和凝缩形成含有许多微小液粒群的雾团。由于目前环保要求的提高,对冷却塔的相关要求也相应的提高。因机械通风冷却塔高度较低,雾团飘散影响了周边居民区及交通道路的可见度,破坏了城市的环境,造成下风地区的湿度上升,羽雾落在地面造成冷却塔周围路面湿滑或结冰,影响了工厂的安全生产,对冷却塔周边生产设备安全运行造成影响,并且给周围交通带来了很大的安全隐患。由于国家对环境要求日益严格,对开式冷却塔的羽雾减排提出了明确要求,随着人们对环境保护的日益重视,冷却塔消除羽雾也显得越来越重要。 二、冷却塔设计参数 1#135MW发电系统有4台钢混结构逆流式冷却塔,单塔设计水量为5000m3/h,蒸发散热导致产生大量水资源浪费,冬季又产生大量的可视雾团,对企业经济和社会环境造成很大影响,主要技术参数如下表:

三、冷却塔消雾改造技术方案 (一)方案一: 1、冷却塔消雾原理简介--空冷湿冷联合式节水消雾 湿空气的饱和含湿量与湿空气的温度及压力有关,随着温度的降低,空气的饱和含湿量减小,湿空气中的水蒸气发生凝结。在冷却塔内冷空气冷却循环水的过程中,冷空气经过冷却塔内部填料等区域,和水进行热交换后变成了饱和的湿热空气。湿热空气从冷却塔中排出与大气混合,此过程的空气状态可用湿空气含湿图来表示,如下图所示(图中 B 为出填料的饱和湿热空气,A 点为大气状态)。出冷却塔风筒出口的饱和湿热空气经过与环境空气混合,其状态渐渐接近于环境空气状态,即:出填料的饱和湿热空气状态 B 点和环境空气状态 A点为一直线,即得状态线。在塔

冷却塔相关知识点

冷却塔相关知识点及计算 1、机械通风冷却塔主要由配水系统,淋水填料,通风筒,集水池等组成,以下关于机械通风冷却塔各部分组件的作用和设计要求叙述中,哪项正确?(A) A、配水系统的作用是把热水均匀分布到整个淋水面积上 B、淋水填料的作用是分散气流,提高空气和水的良好传热传质交换作用 C、通风筒的作用是导流进塔空气,消除进风口涡流区 D、池(盘)式配水系统由进水管、消能箱、溅水喷嘴组成 【解析】B淋水填料的作用是分散水流;C通风筒(一般位于顶部)的作用是减少气流出口动能损失,防止或减少从冷却塔排除的湿热空气回流到冷却塔进风口;池(盘)式配水系统由进水管、消能箱、配水池组成。配水池通过配水管嘴或配水孔布水。 2、组成一个敞开式冷却循环冷却水系统必不可少的设备有哪些?(ABCD) A.水泵B、冷却构筑物C、冷却水用水设备D、水质稳定处理设备 【解析】循环冷却水系统通常按照循环水是否与空气直接接触而分为密闭式系统和敞开式系统。敞开式循环冷却水系统一般由用水设备(制冷机、空压机、注塑机)、冷却塔、集水设施(集水池等)、循环水泵、循环水处理装置(加药、过滤、消毒装置)、循环水管、补充水管、放空及温度显示和控制装置组成。 3、关于机械通风冷却塔及其部件、填料叙述中,不正确的是哪一项?(C)A、循环水质差,悬浮物含量高时,宜采用槽式配水系统B、小型逆流式冷却塔宜采用旋转管式配水系统C、循环水水质硬度高容易产生结垢时,宜采用鼓风式冷却塔D、淋水填料是机械通风冷却塔的关键部位 【解析】冷却水有较强腐蚀性时,采用鼓风式冷却塔 4、关于冷却塔构筑物类型的叙述中,不正确的是哪几项?(AC) A、冷却构筑物可分为敞开式、密闭式和混合式三类 B、水面冷却物可分为水面面积有限的水体和水面面积很大的水体两类 C、混合通风横流式冷却塔可分为点滴式、薄膜式和点滴薄膜式三类 D、喷水冷却池与喷流式冷却塔都属于自然通风中的冷却构筑物 【解析】A项是对冷却塔的分类;C项是对填料的分类 5、以下关于湿式冷却塔类型及构造的叙述中,不正确的是哪几项?(ABC) A、湿式冷却塔构造中淋水填料是必不可少的 B、湿式冷却塔中只有喷流式冷却塔是无风孔的 C、湿式混合通风冷却塔按气水接触方向可分为逆流式和横流式两类 D、喷雾式冷却塔的主要缺点是对水质、水压要求高 【解析】A一般喷射式湿式冷却塔无填料B无风孔和无电力风机是两回事C湿式混合通风冷却塔只有逆流式D正确,喷雾式冷却塔是喷射式冷却塔的一种 6、机械抽风式逆流冷却塔内,下列哪几项主要组成部分的相对位置布置错误?(BC) A、淋水填料布置在集水池上面、风机的下面 B、淋水填料布置在配水系统的下面,风机的上面 C、除水器布置在淋水填料的上面、配水系统的下面 D、配水系统布置在淋水填料的上面、风机的下面 【解析】见P254图,主要组成部分由上而下的顺序是风机、除水器、配水系统、填料、集水池

循环水凉水塔检修方案计划

1#循环水凉水塔大修方案 一、目的 合成车间1#循环水NH-4500型钢混结构冷却塔由海鸥公司04年设计并承建;单塔尺寸为18X18m,单塔配置φ9140mm风机,185kw电机驱动运行。在运行过程中发现塔组塔芯部件老化,导致换热效果差,拟对该塔组塔芯部件进行更换。 二、确立项目检修负责人:刘江成 三、隔离方案 3.1循环水工段相关责任人将1#循环水凉水塔T-4201A进水上塔管线切断蝶阀关闭,风机电机断电拆线。 3.2施工单位、车间办理检修项目施工联络单,做好工作前安全分析及安全风险辨识等工作,按程序办理动火票。 3.3由庆丰公司在1#循环水凉水塔底下扎好施工脚手架,并在脚手架上铺防水雨布,放置拆除旧填料时破损填料落入循环水池内。 四、施工进度网络图 序 号项目名称工期 (天) 工作天数 1 2 3 4 5 6 1 进厂培训教育提前 2 准备工作(脚手架、水池保护)提前 3 填料粘结、收水器组装提前 4 拆除改造部件 2.0 4.1轮毂(叶片)拆除 1 4.2收水器、喷头拆除 1 4.3填料拆除 1.5 4.4检修走道拆除业主负责 5改造部件安装 4 5.1检修走道安装业主负责 5.2轮毂(叶片)安装 1 5.3填料安装 2 5.4收水器、喷头安装 1.5 4 清扫及调试 1 清扫现场0.5 调试运行0.5 注:检修走道拆除安装施工及材料是由业主负责,可交叉施工,不含在施工周期内。

该冷却塔组单塔施工周期6天,总施工周期12天,雨天延顺(本施工周期不包含前期准备工作,不包含业主部分施工时间) 五、改造方案 (一)拆除旧塔 1、拆除顺序 由外协施工单位从凉水塔顶部向下进行拆除:先拆收水器、喷头,再拆凉水塔内部填料。 2、拆除填料 在1#循环水凉水塔上塔管线东侧的凉水塔壁上拆除4*4平方的运料孔(具体方位根据现场施工定),然后由外协施工人员人工从上往下拆除旧填料,为保证安全,拆空区域铺设跳板。 填料共分上下两层,拆除填料时,将填料按纵向分成两个部分,采用分段作业。 a、拆除上层填料,将填料通过运料口运出塔外。 b、将一半底层填料运至塔外,随机安装底层填料。 c、再拆除余下底层填料,再重新安装新填料。 d、拆除的旧填料由吊车从1#循环水凉水塔顶部吊装至循环水凉水塔南侧石子地面上,拆除彻底完成后用运输车装满后直接运至废料厂。 (二)安装新塔 旧塔拆除完毕后,应根据图纸核对基础尺寸,需整改的应及时整改并复验。施工顺序如下: 清理现场——粘接填料——安装填料——安装收水器——清理现场——单机试车 1、填料粘结 施工人员应熟悉填料粘接的特点,填料粘接前对成捆的填料片进行外观检查,填料片粘接前应将填料片上的风沙等污物抖落干净。要选择地面平整,四周通风的场地(循环水凉水塔南侧空地)作为填料粘接的场所,施工前应清扫场地。 填料粘接时,以二人为一组,使用一只专用粘接盘。将经搅拌均匀的粘接剂倒入粘接盘中,使盘中粘接剂存量控制在0.5~1cm深。填料粘接时,要做到片间的粘接点粘接牢固,不得有虚粘和脱开的现象,各片间的有效粘接点不少于粘接点总数的90%。粘接好的填料要堆放整齐,搬运时要轻拿轻放,不能在地面上拖,也不能抛落。 2、安装填料 填料通过运料口吊入塔内。按图纸要求,按规格、数量将填料顺序堆放在填料支承梁上。堆放时必须轻拿轻放,堆放排列整齐,间距均匀,紧松适宜,无透无缝隙。遇到塔内边角及塔周部位,可现场根据实际情况对填料进行局部切割。 安装过程中应对填料层间,分块内的残留碎屑清理干净,不能有遗留杂物。 填料安装检验完毕后,不得有人员在填料上随意走动。若确实需要在填料上行走或安装,需平铺木板。 3、验收开车 改造完成自检合格之后,经车间、运行保障部等多方验收,合格后开车检验改造性能,并作交付使用手续。 六、所需材料:

冷却塔性能参数说明

冷却塔性能参数说明

1.设备组成 1.1设备原产地及制造厂家 广东省广州市/斯必克(广州)冷却技术有限公司。 1.2供货明细 NC玻璃钢冷却塔/NC8330F/4台 SR玻璃钢冷却塔/SR-200/2台 SR玻璃钢冷却塔/SR-40/2台 1.3其他 2.设备性能及技术参数 2.1设备性能 1)NC系列产品简介 A、NC型横流式冷却塔系统性设计 横流式冷却塔是马利公司工程师通过 冷却塔多年热工测试试验,引进世界上最大 的冷却塔生产商斯必克公司的先进技术和 设备,对测试数据进行全面综合处理,参照 美国冷却协会CTI标准和GB7190-1997等 依据计算机运算得出的淋水填料的容积散 质系数 xv,选择最佳的水气比,最佳截面 水负荷,截面气负荷和填料的高度范围以确 定填料体积,并以流体力学、空气动力学、 材料学、建筑学等多种学科观点,综合设计 塔的外型与结构,根据测试计算通风阻力, 参考风机特性曲线和对测试数据进行优化, 选择符合风量和噪音要求的风机和匹配的 电机,使冷效、能耗、噪音达到一个优化的 系统设计效果。 B、NC型横流式冷却塔淋水填料 马利NC方形横流式冷却塔采用的 MX-75型高级薄膜式复合波淋水填料, 堪

称世界上薄膜式淋水填料的佼佼者,此填料片用于横流冷却塔, 由热处理PVC多层片构成,厚度0.38mm, 表面成波纹式, 相邻两层填料片形成的间隔,保证气流的通畅,经美国冷却塔协会(CTI)测试分析,其阻力特性和热力特性远远优于现有国内填料,使用寿命15年以上。 一般冷却塔产品填料均采用竖直放置,且无明显收水端。参考右下图,一般冷却塔的做法是布水盘偏向外侧安装,A、B、C、D、E、F这6个区域内充满了填料,而当冷却塔运行起来以后,由于风机向上排风,气流由外向内流经填料,在风力的带动下,实际冷却水流过的区域是C、D、E、F、G这5个区域,A、B两区无水。那么按照一般冷却塔 起不了作用,而有水的G区却又没有填料。 马利的工程师们对这个问题进行了深入的 研究,在千百次的实验之后,提出了冷却塔 填料倾斜悬挂式安装的方案,在马利冷却塔 当中C、D、E、F、G区充满填料,A、B 两区无填料,而倾斜的角度又根据不同的塔 型有十分严格的要求,这种方法有效地解决 了进风面下端“无水区”问题,且填料带有 明显的收水端,克服了竖直放置填料的缺 点。因此,倾斜悬挂放置的填料比竖直放置 填料漂水损失小,水与空气接触充分,热工 性能好。 马利冷却塔填料片高度是根据填料片特性、进风宽度、布水状况及与之相匹配的风量、电机功率、风机等,进行分析计算而得出的。其设计高度可保证热湿交换效率达到极限值,同时,MX-75型填料集均匀布风、换热、收水于一体,其卓越的收水性和导风性使冷却塔无需安装百叶窗,经测试其漂水损失小于循环水量的0.001%。实践证明,MX-75型填料片的亲水性和抗冰性能好,耐温-50~+70?C,适合于北方严寒气候的地区使用,是理想的进口填料片。 该填料以抗紫外线和抗腐蚀的聚氯乙烯(PVC)经热塑真空加压成型,其表面亲水性好,散热面积大、冷效高,在使用环境空间受限制多的热交换过程中更能体现其优越性。从而使整个填料体积发挥最有效的冷却作用,该填料无须胶水粘接,防止了由于粘接对填料造成的损坏,便于清洗安装,延长了使用寿命。 C、NC型横流式冷却塔的进风装置 此塔由于使用马利MX-75填料,无需另配进风百叶窗,该型填料将进风口百叶部位与填料淋水部位模塑成一体,这种美国马利公司获得专利的装置可以防止溅水漂出塔外,在多变的气流条件下保证配水的均匀性,无需再增加安装进风百叶窗的麻烦。 D、NC型横流式冷却塔除水系统 高效蜂窝式除水器与填料膜塑成为一体,属于美国斯必克公司专利产品, 其收水率比老式的半弧型收水器高出许多倍,大大降低了漂水损失,使水耗费

循环水冷却塔的漂水整治

循环水冷却塔的漂水整治 成果报告 编制单位:动力厂动氧车间 编制时间:2014年11月25日

目录 前言 (2) 一、立项背景 (2) 二、详细技术内容 (3) 三、主要技术创新点 (4) 四、应用情况 (5) 五、效益效果 (5)

循环水冷却塔的漂水整治 前言 动氧车间14000N m3/h制氧机组于2002年10月建成投产,主要为集团公司闪速炉冶炼系统提供冶金用氧。与机组配套的循环水冷却系统最初设计只有1台冷却塔,即目前的1#冷却塔。由于初设时对环境温度变化的范围选择不合理,造成在夏季循环水冷却后水温过高的现象,为了保证机组正常稳定的运行常常不得不降负荷运行。因此,通过仔细的分析计算于2005年重新设计建设了2#冷却塔,使循环水冷却系统冷却能力得以提升,制氧机组也能够安全稳定可靠的运行。 一、立项背景 14000Nm3/h制氧机组循环水系统自建设2#冷却塔后,在夏季高温天气采用双塔冷却,有效保证了机组循环冷却水的供应,也为机组的高效率运行提供了保障。在冬季环境温度大幅降低通常采用1#冷却塔单塔冷却即可满足机组冷却水的需求。但是随着系统投入使用时间较长后

1#冷却塔暴露出诸多问题,具体如下列所示: 1.冷却塔水池顶部安装的化冰管,通常在冬季投入使 用,来避免填料在极端天气时结冰。但是长期使用 后,严重腐蚀出现多处漏点,导致大量软化水飞溅 至水池外平台周围。造成软化水的浪费,引起冷却 塔平台及塔皮的严重冻蚀,且在冬季时便会在平台 上形成大量冰,造成安全隐患; 2.由于冷却塔结构设计存在,水池上部进风口过大及 冷却塔高度偏高的问题,致使冷却塔收水效果差, 风速过高,大量水蒸气被带走。长期存在软化水消 耗量大,系统飘水率较高的问题。而且,在冬季水 温很难控制,经常会出现冷却塔填料下部结冰的现 象。 二、详细技术内容 为了解决14000Nm3/h制氧机组循环水系统冷却塔存在的以上问题,通过仔细的分析和计算,采用如下所列措施: 2.1利用机组年修机会,拆除了冷却塔周围严重腐蚀

冷却塔使用说明书

用户使用维护手册

冷却塔使用维护说明书 一、冷却塔的工作原理 该设备是一种机力通风型冷却设备,其工作原理是把需要冷却处理的水压到冷却塔配水装置中,通过该装置将水均匀的喷洒于填料上,热水从填料上部落下,在填料上形成水膜,同时不饱和的冷空气由风机从塔下抽到塔中,进入填料并在填料间隙中流动,热水与不饱和空气在此进行交换,使不饱和的冷空气变成饱和的热空气,最后由风机抽到塔外,如此循环,从而达到降低水温的效果。 二、冷却塔的运行说明 1、冷却塔运行前准备 清理现场,保证塔内、塔顶无杂物;检查各部件安装位置是否符合安装要求,各部位坚固件连接是否松动。所有拉杆应收紧,并留有调节余量; 检查电动机绝缘电阻,以免电机工作时烧坏;冷却塔运行前必须清理配水装置内杂物,以免堵塞该装置的出水孔或喷头,从而造成配水不均匀。收水器定位应牢固u,片距均匀,方向正确。配水池盖板,各检修门开启应灵活; 检查风机叶片的叶尖与风筒间隙,小风机叶片尖与风筒间隙在10-22mm 之间,大风筒一般控制在规定要求范围内,达不到上述要求应调整,严禁在叶片上走人及搁置重物; 冷却塔风机采用皮带传动时,应检查轴承中是否已加润滑脂,三角皮带松紧是否合适,皮带盘是否水平,皮带型号是否一致,防止皮带松动打滑,保证风机运行平稳;冷却塔风机采用变速箱时,应检查油路是否畅通,油管是否保持在同一平面上,油位是否在规定的位置。电机输出轴及齿轮输入轴向轴允许差,连轴器平行允差,调整座纵、横方向、水平误差不大于1000(详细数据见风机厂家说明书)。检查风机输出端止动保险是否安装正确。以上情况应

全面检查,并按要求处理无问题后方可投入运行。 2、循环水系统试运行、逐步打开进水总管阀门,通过阀门将水量调节至额定值。、冷却塔采用旋转布水器配水时,应观察布水器旋转情况,布水器应运转平稳,布水均匀,如有异常情况,按常见故障及排除的规定排除。 、冷却塔采用管道配水,应检查配水是否均匀,如有异常情况,按常见故障及排除的规定排除。 、观察集水池积水高度,调节补给水浮球位置及溢流管高度,控制积水深度在设计范围内。、冷却塔出水应保证通畅,出水口设置格网等。、检查冷却塔塔体是否渗漏,如有渗漏应及时密封。 以上各项都运转正常后,关闭总管阀门进行下步工作。 3、风机系统试运行 、清理现场、复检各部件安装位置是否符合安装要求,各坚固件连接件是否松动。 、风机采用变速箱时复检传动应检查油路是否畅通,油位是否在规定的位置,采用皮带传动时应复检皮带松紧是否合适,传动装置中轴承座是否已经加注润滑脂。 、检查叶片安装角是否正确、一致,各叶片水平位置误差是否在公差允许范围内叶轮、叶片、配重是否按相应编号安装 、检查叶轮、叶片安装坚固螺栓是否牢固,轴端制动保险是否安装可靠,轴端压板连接是否牢固。 、检查电机绝缘电阻是否达到标准,电缆敷设固定是否牢固,接线是否良好。 、用手转动风机叶轮,风机运转应平顺均匀。 、启动电机,检查叶片旋转方向是否正确(从上往下为顺时针方向),如相反,应停车后调整电缆接线,保证方向正确。 、连续运转1 小时,测定、记录电机电流值、电压值。检查齿轮箱、电机是否有不正常响

循环水站冷却塔施工方案

循环水站冷却塔施工方案

1编制依据 ?《钢筋焊接及验收规范》JGJ18—96; ?《建筑工程施工质量验收统一标准》GB50300—2001; ?《建筑地基基础工程施工质量验收规范》GB50202—2002; ?《混凝土结构工程施工质量验收规范》GB50204—2002; ?《地下防水工程质量验收规范》GB50208—2002; ?《混凝土结构设计规范》GB50010-2002; ?工程招标文件 ?施工蓝图 ?其他与本工程有关的现行技术规范和评定标准 2工程概况 基础:集水池为现浇钢筋混凝土筏板基础,基础埋深为EL99.00,吸水池为现浇钢筋混凝土筏板基础,基础埋深EL96.2,水池底板混凝土C30 抗 渗等级P6抗冻等级F150,框架:柱梁板均采用C30混凝土,抗冻等级 F150,设备基础采用C30。地基采用天然地基,基础持力层为粉质粘土层, 地基承载力不小于160KPa,抗震设防烈度为八度,建筑结构安全等级为二 级,基础垫层以上及基础外表面与土壤接触部分上刷冷底子油一道、热沥青 二道进行防腐处理,基础防腐处理完毕后基坑应即时回填,回填土分层夯实, 压实系数≥0.94。 本工程抗震设防烈度为八度,基本风压0.55KN/M2,设计特征周期 0.45s。 3工程施工总体布置流程 根据本工程结构的特点:根据图纸要求基础在施工过程中应先深后浅,即先吸水池后集水池,吸水池根据图纸要求在筏板、墙壁、顶板均应设置后浇带,后浇带待两侧混凝土浇筑完毕28天后再浇筑混凝土,混凝土两侧表面凿毛并冲洗干净后用C40补偿收缩混凝土浇筑,振捣密实并加强养护,集水池根据图纸要求○5~○6底板及池壁设置通长伸缩缝,根据现场实际情况需分段进行施工以满足材料的周转

冷却塔循环水水质分析

摘要:在厦门烟草工业有限责任公司生产系统中,循环冷却水系统是指冷却水通过热交换器完成冷却作用后,进入冷却塔或喷水池中冷却,然后循环重复利用,在重复使用的过程中,循环水系统会出现结垢、腐蚀和产生藻类等多种现象,为了达到既节约用水又保护冷却水系统的目的,文章探讨通过哪些途径的改进来提高冷却循环水系统水质。 关键词:ph值电导率氯根总碱度大冷却水系统真空系统空压系统软化水中水深度处理。 一、冷却塔水质处理效果 冷却塔水质指标解析 ph:循环水ph与循环水中碱度有一定关系,对于加酸处理的循环水系统,应严格控制循环水的ph;当循环水ph有较大幅度变化时,循环水碱度也变化很大;循环水ph的变化,也可验证加酸的稳定性,当循环水ph有较大变化,则加酸不稳定,应调整加酸。合理、有效、及时地控制循环水ph值在适当范围,应当兼顾阻垢、缓蚀和防黏泥附着,是控制循环水水质的关键。 氯根:氯离子是引起铜管发生点蚀的主要因素之一。它会破坏氧化亚铜保护膜的形成,其腐蚀产物氯化亚铜会水解生成氧化亚铜和盐酸。因此,在任何一点上,如果氯化亚铜生成很快,而它的水解产物又没有被迅速去除,都要发生点蚀。在点蚀内部,铜、氯化亚铜和氧化亚铜同时存在,其溶液的ph值为2.5~4,这样基底金属处于酸性条件下所产生的自催化作用,使铜管逐渐为腐蚀穿透。 电导率:同一类型淡水,在ph值5~9的范围内,电导率和总溶解固形物含量大致成线性关系,其比例约为1:0.55~0.90。该比例随不通离子及离子含量高低而不同。但有少数系统的线性关系不明显或比例过低。因此,要准确地由电导率换算为总溶解固形物值,应由循环水系统积累运算数据找出准确的线性关系。一般可按循环水的总溶解固形物值=0.7×浓缩倍率×补充水电导率计算,但也有局限性。 总硬度:一般而言,当循环水补水碳酸盐硬度较低时,循环水的极限碳酸盐硬度也较低,但对应的循环水系统浓缩倍率较高;当循环水补水碳酸盐硬度较高时,循环水的极限碳酸盐硬度也较高,但对应的循环水系统浓缩倍率较低。硬度为结垢性离子,应控制在合理的范围内。 总碱度:采用碱度来控制循环水的加酸量,控制碱度值在 5.0~11.0mmol/l,在循环水碱度未达到极限碳酸盐碱度下碱度值的变化及波动幅度与加酸量的大小和加酸是否稳定、连续、恒流量有关,当循环水碱度变化较大时,应及时调整加酸量并保证加酸的稳定性,避免不均匀加酸对系统造成的结垢及腐蚀。 细菌:冷却塔当空气与水充分接触时,空气中的灰尘、细菌孢子、烟丝烟末都进入了系统;同时由于冷却塔周围适宜温度和湿度,适合细菌生长;浓缩后的循环水中含有丰富营养源,这些导致细菌大量繁殖,产生生物粘泥而使水质恶化,进而引起粘泥垢沉积同时发生垢下腐蚀。 各冷却塔系统水质分析 大冷却水系统电导率较高:周边存在粉尘,被吸入冷却塔内,悬浮在水中,无法从系统内清除掉,且大冷却水系统从来不排污,以及该冷却塔散失飞溅水量少,使浓缩倍数超高,旁路过滤器也较少开启,过滤浮渣的能力较低。 处理方法:应保证系统运行时开启旁路过滤器,并加强对旁滤过滤罐的反冲洗。若能定期排污便能够将电导率控制在指标范围内,但考虑到节水降耗的原因,故应在数值指标和能耗方面寻找一个平衡点。 大冷冻水系统总铁偏高:大冷冻水系统由于经常停机,导致每次停机后水的浊度和总铁

水池满水试验方案(2)

目录 一、工程概述及编制说明 (2) 1、工程概况 (2) 2、编制依据 (2) 二、施工组织及技术准备 (3) 1、施工组织 (3) 2、技术准备 (3) 3、人员准备 (3) 4、施工准备 (3) 三、满水试验步骤及检查测定方法 (4) 1、注水 (4) 2、水位观测 (4) 3、蒸发量的测定 (5) 4、水池渗水量的计算 (5) 5、满水试验的标准及记录表格 (5) 四、满水试验方案 (6) (一)、试验程序 (7) (二)、准备工作 (7) (三)、试验方法 (8) 五、水池渗漏处理 (10) 六、安全措施 (11)

晋中市城区第二污水处理厂二期工程 水处理构筑物满水试验专项施工方案 一、工程概述及编制说明 1、工程概况 晋中市城区第二污水处理厂厂址位于在城区西部总退水渠北侧。东距东贾村边约 370 米、南距总退水渠约 20 米、西至退水管理站约 300 米、北距8号公路约 260 米。污水处理厂整个厂区设计地面标高为770.50m。污水处理厂工程规模 10万m3/d,一次设计,分二期实施,一期工程已建设完成,运行良好,二期工程污水处理规模5万m3/d;再生水回用规模按4万m3/d规划。 本工程为二期工程,项目内容包括:生化池、沉淀池、回流污泥泵池、澄清池、滤站(反冲洗泵房、反冲洗鼓风机房、变配电站、控制室与一期共用)、再生水清水池。 2、编制依据 《给水排水构筑物施工及验收规范》(GB50141-2008)工程设计图纸《城市污水处理厂工程质量验收规范》(GB50334-2002) 以往类似工程施工经验 二、施工组织及技术准备 1、施工组织 在本工程中组织进行满水试验,本着对工程质量负责的态度,由项目经理组织、协调,各工序相关管理人员积极配合,认真对待积累经验,指导构筑物的满水试验。 2、技术准备

循环水系统换热效率降低的原因分析及对策

循环水系统换热效率降低的原因分析及对策 [摘要]介绍塔河分公司循环水系统运行的现状,分析影响循环水系统换热效率降低的主要因素,以及如何提高循环水系统换热效率的改进措施。 [关键词] 循环水换热效率结垢黏泥运行管理 在石化企业中循环冷却水系统运行的优异,对企业的产品质量、炼油收率、装置的能耗、以及节水等方面都有着较大的影响。因此,提高循环水的有效运行效率(维持循环水的换热效率达到或优于设计指标),对企业而言有着显著的经济效益、环境效益和社会效益。 1 系统现状 塔河分公司循环水系统是塔河分公司120万吨/年稠油技改项目的配套公用工程,主要承担为各生产装置提供循环冷却水的任务,设计供给量为4000m3/h,实际供给量3800m3/h。循环水进出口水温差6-8度;浓缩倍数4-6偏高;电导率2800-3400 us /Cm偏高;ph值7.6-9。从以上数据中可以看出循环水量与以往实际运行的水量相比(2800-3200 m3/h)偏大,进出口水温温差偏小(机械通风式为可大于8-10度)。 循环水系统热效率降低的主要因素是:1、循环水冷却塔的冷却效率下降;2、水质中的离子含量超过系统控制量,造成系统设备结垢趋势增大;3、系统细菌量超过控制量,引起大量黏泥产生,使系统的黏附速率增大等。对照循环水系统热效率降低的主要因素,塔河分公司循环水存在的主要问题是: 1、风损水量大,造成浓缩倍数上升较快易使设备结垢;2、循环水冷却塔的冷却效率下降;3、系统黏泥产生快,有异味,挂片的腐蚀速度快(主要以点蚀为主);4、装置高温高位换热器结垢快;5、药剂和运行成本增加。在存在问题中反映出循环水系统结垢和腐蚀的趋势在上升,逐渐破坏换热设备中的换热介质与被换热介质间的热传递,从而导致循环水系统换热效率的降低。 2 原因分析 2.1 风损水量大,造成浓缩倍数上升较快,易使设备结垢; 塔河分公司循环水系统在设计上虽考虑了当地的环境因素,但因设备制造、干燥的高温气候以及较大的风沙环境的原因,与其它地区的循环水系统相比存在蒸发和风损水量大;其次,09年5月大检修时,填料上面的吸水板的安装间隙较大,部分吸水板的安装方向不对,造成吸水板不能有效阻止水的外泄,在循环水机械风机的作用下,引起较多水的外泄。傍晚时分可明显看见风筒上部有大量的水汽排出,且水滴较大,在塔附近就能明显感觉到。这必然会造成循环水浓缩倍数的上升,而浓缩倍数的上升就会加剧系统的结垢趋势的增大。 在循环水的控制指标中,浓缩倍数表明了系统中盐分的浓缩程度,其值等于循环水的含盐量与补充水的含盐量之比,是循环水运行中一项重要指标。循环冷却水的浓缩倍数常通

相关文档
相关文档 最新文档