文档库 最新最全的文档下载
当前位置:文档库 › 高层建筑风荷载

高层建筑风荷载

高层建筑风荷载
高层建筑风荷载

高层建筑风荷载

摘要:文章主要介绍了风荷载对高层建筑的作用,关于风荷载研究的一些方法,并用我做过的北京中铁物流大厦的风洞试验为例说明风洞实验的研究方法。阐述了一些结构等效静力风荷载的计算方法以及抗风设计中应值得继续研究的问题。

关键字:高层建筑,抗风,风洞试验,等效静力风荷载,问题

1.引言

风是从高气压吹向低气压的一种气流。高层建筑是在特殊地区和时间下,为了满足社会和经济的需求而建造的,其独特性和各自特异的风格,增加了城市景观,吸引了大量的旅游观光者。而更具有实用意义的是满足了城市日益增长的工作、生活空间的需求。但任何建筑高度的增加必将会增加风荷载的力度。

风荷载是各类建筑物的主要侧向荷载之一, 对于高、大、细、长等柔性结构而言, 风荷载是起主要作用的, 且时常超过地震作用而成为决定性荷载, 复杂的动力风效应影响是结构设计的控制因素之一。灾害性台风可能导致结构主体开裂或损坏;长时间持续的风致振动则可能使结构某些部位如节点、支座等产生疲劳与损伤, 危及结构安全。随着新技术、新材料、新工艺、新型式、新设计方法的应用, 工程结构也朝着长大化、高耸化、复杂化、柔性化、小阻尼方向发展, 这使得其固有频率越来越接近强风的卓越频率, 对风的敏感性越来越强。因此重大的高耸柔性结构在风荷载作用下的动力效应特性研究也受到学术界和工程界的极大关注和重视。

2.风荷载的分类

风对高层建筑是一种持续时间较长的随机荷载。风对结构物的作用,使结构产生震动,其原因主要有:(1)有与风向一致的风力作用,它包括平均风和脉动风,其中脉动风要引起结构物的顺风向振动,这种形式的振动在一般工程结构中都要考虑;(2)结构物背后的漩涡引起结构物的横风向的振动;(3)由别的建筑物尾流中的气流引起的振动。

2.1 顺风向荷载

《建筑结构荷载规范》(GB50009-2012)明确给出了高层建筑顺风向等效荷载的计算方法,著名学者A.G.Davenport在60 年代建立了基于抖振理论的结构顺风向风荷载计算模型,成为风工程研究及各国制定风荷载规范的基础。由于对等效静力风荷载认识的差别,该计算模型在实际应用中又发展成阵风荷载因子(GLF)法、惯性风荷载(IWL)法、基底弯矩阵风荷载因子法(MGLF)等。GLF 法由Davenport于60 年代提出,现已成为公认的经典方法。该法认为背景和共振分量与平均分量服从同一分布,且与响应类型无关。IWL 法采用惯性力模型来计算背景和共振分量,我国规范采用这一方法。MGLF 法认为基底弯矩对应的背景等效风荷载可以近似作为实际的背景等效风荷载,根据脉动基底弯矩并按振型分解则可得到

共振等效风荷载。随着城市空间的日益紧凑,高层建筑之间的距离越来越小,因此相邻建筑之间顺向风的干扰越来越明显。

2.2横风向荷载

当高层建筑的高宽比大于4 时,横向风动力响应的干扰效应要远远大于顺向风荷载。但同时结构横向风响应的激励机制比较复杂,通常包括三种类型:与漩涡脱落有关的横向风激励、来流湍流引起的激励和结构横向风运动导致的激励,而有认为横向风激励由顺向风风湍流、横向风湍流和尾流激励产生,但是前两者的贡献很小,尾流激励是横风力的主要原因。

2.3 扭转风荷载

高层建筑扭转风振会增大截面边界附近的位移与加速度,对于高宽比大于3 的高层建筑物,尤其当迎风面较大,建筑物型状不规则时,扭转风荷载响应可成为建筑物边界点响应中的主要因素;又由于高层建筑中的居住者对建筑物的扭动比平动更为敏感,因此在高层建筑的设计中必须考虑到扭转风向动力风荷载的响应问题.我国对这方面内容的研究还比较少。扭转动力风荷载的机理非常复杂,Isyumov通过风洞试验研究不同长宽比的矩形建筑物在不同攻角下各个面动扭矩形成机制及其对全部动扭矩的贡献。Solan从理论上建立了动力扭矩的解析模型,认为扭转动力风荷载可视为顺风向风紊流、横风向风紊流和尾流激励三种机制分别作用的叠加,而不考虑三者之间的相关性。显然,风紊流(包括顺风向和横风向的风紊流)和尾流激励(包括旋涡脱落和再附)是形成动扭矩的两种主要机制。

3.结构在风荷载下的破坏形式

(1)高层建筑在风荷载下的破坏形式

1) 主体结构开裂或损坏, 如位移过大引起框架、剪力墙、承重墙裂缝或结构主筋屈服;

2) 层间位移引起非承重隔墙开裂;

3) 局部风压过大引起玻璃、装饰物、围护结构破坏;

4) 建筑物的频繁、大幅度摆动使居住者感到不适;

5) 长期的风致振动引起结构疲劳, 导致破坏。

(2)高耸结构在风荷载下的破坏形式

1) 频繁的大幅度摆动使结构不能正常工作;

2) 结构横截面或构件内力达到极限, 发生屈服、断裂、失稳甚至倒塌;

3) 结构长时间的风致振动造成材料的疲劳累积损伤, 引起结构的破坏。

4.风荷载测试技术

(1)风洞试验

风洞试验是开展风振研究与抗风设计的重要基础。风与结构相互作用十分复杂, 在理论上还不能建立完善的数学模型来描述实际风工程问题; 在现行的建筑结构荷载规范中没有明确直观的方法确定一些复杂结构的风荷载。风洞实验数据是研究风振机理、建立复杂计算

模型、验证计算方法的依据。Davenport 抖振理论、Scanlan颤振理论等, 都是基于风洞试验成果而得以形成、发展。

(2)现场实测

现场实测是指观测实际建筑物表面的风压分布, 测量结构各个部分的位移、变形等。通过现场实测, 可获得详细全面、可信度较高的数据资料, 加深对结构抗风性能的认识, 为制定建筑荷载规范提供依据。此外, 现场实测能够及时发现问题, 以便采取相应的处理措施。目前各种风速谱都是基于大量详实的观测资料,如Davenport 谱是在不同地点、不同条件下测得的90 多次强风记录的基础上归纳出来的, 大多数国家建筑荷载规范都采用此水平风速谱公式。由于现场实测受到一些条件的限制, 通常只对重大科研项目开展现场测试。

(3)CFD数值模拟

计算流体力学(computational fluid dynamic或简称CFD)是流体力学的一个分支。计算风工程(computational windengineering或简称CWE)是计算流体力学在风工程中的发展和应用。风工程研究的流体一般为低速流动,满足流体力学中不可压缩流动的假设,因此,计算风工程的任务是,用计算机和数值方法求解满足定解条件的描述不可压缩流动现象的流体动力学方程组,或其各种简化方程组来研究风工程的问题。由于风工程研究对象位于大气边界层中,而且研究的重点是钝体绕流,因此,流动一般为湍流,这就给计算风工程增加了困难。尽管如此,近年来由于计算流体力学的发展和计算机技术的进步,使计算风工程在建筑、桥梁、车辆和能源等工程领域中得到了很快的发展,并逐步进入了实用的阶段。

计算风工程是数值模拟,与理论分析相比,它给出的是流动区域内的离散解,而不是解析解,因此,它可以求解复杂的流动,但是必须与物理分析相结合,才能揭示流动的机理和特征。数值模拟与物理模拟(主要是风洞试验)相比,它具有费用低、周期短、便于模拟真实环境、描述流场细节和给出流场定量结果的优点,但是由于目前工程上还不能通过直接数值模拟研究复杂的湍流流动,因此,如何根据不同的研究对象选择湍流模型是一个难题。另外,由于在求解复杂的多维非线性偏微分方程组时,还缺乏严格的稳定性分析、误差估计、收敛性和惟一性理论。因此,数值模拟要与理论分析和物理模拟相互结合、相互补充,才能共同促进风工程的发展。

5.北京中铁物流大厦风洞试验

5.1实验概况

中国铁物大厦位于北京丰台区的丽泽金融区D03和D04地块,系三个新兴金融功能区之一。

中国铁物大厦总用地面积为2.11万㎡,总建筑面积21.85万㎡,地上建筑面积15.5万㎡,地下建筑面积6.35万㎡。中国铁物大厦由两栋高层建筑、会议中心部分、和公共空间部分组成,其中A座45层,高度为200米,B座为32层,高度为150米。裙楼部分最高为地上4层,屋顶最高为30米。

通过本项目的风洞试验研究,为中国铁物大厦设计提供可靠的风荷载设计参数,必要时提出改善抗风性能的建议,从而确保该大厦的抗风安全。对建筑物表面测压试验:目的是获得到结构外表面压力分布和压力时程。

5.2基本风度及基本风压

根据《建筑结构荷载规范GB 50009-2012》,查“全国基本风压分布图”,当重现期为100年时,北京市地区风压为0.5kN/m 2。由此推算得到基本风速U 10=28.6m/s 。

5.3模型设计及制作

鉴于试验既要模拟2栋塔楼,又要模拟底部裙楼,综合考虑需要模拟的结构几何尺寸和风洞试验段尺寸,模型的几何缩尺比暂按1:100考虑。模型在风洞中的阻塞比小于3%,满足风洞试验要求。模型根据设计院提供的建筑设计图纸,按几何外形相似要求制作。测压模型采用有机玻璃及复合材料等制成,模型图片见图1。

图1安装在风洞内的中国铁物大厦测压模型

实验在西南交通大学风工程试验研究中心XNJD-3工业风洞中进行,采用美国Scanvalve 电子扫描阀(型号:DSM3400)测风压力。

5.4大气边界层的模拟

大气边界层是指地球表面之上几百米到一千米的大气层,这个范围内的风特性对建筑物风效应的影响较为显著,因而在风洞试验中需要对其主要特性予以模拟。大气边界层内空气流动的特性受很多因素影响,如地表粗糙度、地形地物等。其主要特性表现为平均风速和紊流度沿高度的分布。

建筑结构荷载规范中用指数α作为区分不同地表的指标。针对该结构所处的位置,其边界层应属B 类地区,即α=0.16的流场。

大气边界层模拟装置由档板、尖塔、粗糙元组成。

在测压模型风洞试验中,最重要的是模拟平均风速剖面,其次是模拟风的紊流强度和积分尺度等。在大气边界层内,平均风速剖面符合如下的指数分布律:

()Z G G V V Z Z α

=

式中:Z V 为任一高度Z 处的风速;G V 为边界层顶部风速,Z 为离地高度;G Z 为边界层高度;α为风速剖面指数。 紊流强度定义为v V ',其中为v '脉动风速的均方根值;V 为平均风速。紊流强度随着粗糙度尺度的增加而增加,在近地面达到最大值,向上逐渐衰减。

流场校测试验结果表明,大气边界层风速剖面指数α为0.162,与目标值十分吻合,见图2。大气边界层底部紊流度为16%,稍高于目标值,但仍符合测压试验要求,见图3。

V/V G Z /Z G 图4.1 平均风速剖面,α=0.162 紊流度(%)Z /Z G

图3湍流度剖面

5.5实验安排

试验的重点是测量中国铁物大厦两栋塔楼外表面以及裙楼外表面的风压系数。400个测点布置在主楼外表面,320个测点布置在副楼外表面,82个测点布置在裙楼外表面。由于实验室每次最多测量420个点,实验进行两次,第一次只测量主楼,第二次测量副楼和裙楼。

5.6实验工况

试验时,对每个测点,采样时间为60秒,采样频率为200Hz 。所有压力测点的脉动压力时程均同步获得。试试验风向按36个罗盘方向设置,定义β = 0°,模型按图5.3的方向摆放,每间隔10°设置一个试验风向。试验参考点(取模型大约2/3高度:167cm)风速为10m/s,

每风向重复测量2次。

5.7试验数据处理方法

将风洞试验中所获得的各测压点的压力值由计算机进行处理,获得各测压点的风压系数,计算公式如下: 风压系数212

i i H p H p p C V ρ-= 式中,V H 为模型前方来流未扰动区、相当于站房/雨棚顶端高度处的平均风速,H p 为该高度处参考静压,i p 为模型各测压点处的压力,ρ为空气密度。

根据上述公式可得模型表面每个测压点的平均风压系数。由于风压系数为无量纲系数,故可将其直接用于计算结构表面的风压。

由于测点多,数据量大,风压系数不便于设计人员应用。为了给设计提供简单实用的数据,需要进行体型系数的计算。根据风压系数,按下式计算可得到建筑物表面各区域的体型系数

i p i

s i

C A A μ=∑∑ 式中:i A 为各测压点所覆盖面积,i A ∑为各测压点所属面积的总和,i p C 为各测压点

的风压系数。需要指出的是:风压系数的负值代表吸力,正值代表压力。

列出最后计算得到的主楼的0度风向角时各面的风压等值线图,见图4.

图4 主楼个表面风压等值线图

- 0 . 5 5

- 0 . 6 5 - 0 . 5 5

- 0 . 5 5 -

0. 4 5 - 0 . 6 5 - 0 .6 0 . 3 0 . 5

0 . 5

0 . 5 0 . 7 0 . 7

0. 9

6.等效静力风荷载计算

等效静力风荷载是一种静力荷载,但可以产生动力荷载作用下结构的最大响应,下面介绍一些计算等效静力风荷载的方法,由于方便,在结构设计过程中得到普遍应用。

对等效静力风荷载的研究始于高层建筑。Davenport 引入“阵风荷载因子”( Gust Loading Factor) 来考虑脉动风荷载对结构响应的放大 , 这种简单可行的方法得到发展并运用到实际工程中, 成为风荷载规范中计算风振响应的主要依据。目前, 在大跨度屋盖结构等效静力风荷载的研究中也多采用阵风荷载因子法。Marukawa 等针对来流紊流度、屋盖的几何特性和梁的结构特性为阵风荷载因子提供了经验公式。Ueda 等采用同步测压技术研究了梁柱框架结构平屋盖的风振响应, 特别研究了来流紊流对风荷载的影响。Uematsu 等( 1996~ 2001) 采用模态力法对封闭平坦矩形屋盖、圆形平屋盖、穹顶屋盖的风振响应进行研究, 提出的阵风荷载因子计算公式考虑了紊流度、结构跨高比、结构形式等因素。沈世钊等对于中小跨度悬索结构的风振响应进行了研究, 归纳了对于特定索网结构的位移和内力的阵风荷载因子。

近期的研究表明,阵风荷载因子法 理论和应用方面均存在不足,Kasperski 提出了用LRC 法,澳大利亚的Holmes 提出了采用LRC 法和共振等效惯性力相结合来描述高层建筑的等效静力风荷载。Holmes 也采用同样的方法来表示大跨度屋盖结构的等效静力风荷载,并继而给出了由平均风荷载、背景等效风荷载以及多阶共振响应分量产生的惯性风荷载组合而成的等效静力风荷载的计算方法, 但这一方法没有考虑多阶模态之间的耦合效应对共振响应的影响。这是一明显缺陷。如果能在此基础上进一步考虑共振分量的模态耦合效应( 也即建立一种修正的Holmes 方法) 无疑具有重要的实践意义。这种方法又被称为背景分量与共振分量组合法。其中背景分量是静力脉动风的响应分量,是脉动风的静力作用;共振分量是由于结构和脉动风荷载共振作用产生的响应分量,是脉动风的动力作用。

6.1LRC 法

Kasperski( 1992) 年提出了荷载-响应相关法, 即LRC 法。LRC 法利用准静力的方法计算背景响应,考虑荷载与响应之间的相关性能得到背景等效风荷载的分布形式。LRC 法给出的背景等效风荷载为

()()()B B pr p p z g z z ρσ=

其中, B g 表示背景响应的峰值因子; ()p z σ为脉动荷载的标准差; ()pr z ρ为脉动荷载p ( z , t ) 和z 1 处的背景响应之间的相关系数( z 及z 1 表示结构上的不同位置) , 其表达式为

1110,(,)(,)()()()L r pr p B r p z t p z t I z dz z z ρσσ=

? 式中,r I 为对应于响应r 的影响线; ,B r σ为背景响应标准差。

6.2 背景分量与共振分量的组合法

背景分量与共振分量的组合法用来表达平均风、背景与共振风响应对应的静力等效风荷载。上面已经讨论了用LRC 法表达平均风和背景响应对应的静力等效风荷载,而背景分量与共振分量的组合法是结合LRC 法一起考虑共振分量对应的等效风荷载。

澳大利亚Holmes 提出了采用LRC 法与等效风振惯性力相结合的方法来表示平均风响应、背景和共振响应对应的静力等效风荷载,给出了平均风荷载、背景风荷载和代表多阶共振分量的惯性风荷载一起组合的静力等效风荷载。

相应的等效静力风荷载为: 1()()()()m

B Rj Rj B j p z p z W p z W p z ==++∑ 式中,()p z 、 ()B p z 、()Rj p z 分别为平均风荷载、背景等效风荷载和第j 阶振型对应的等效惯性风荷载,B W 、Rj W 分别为背景风荷载和第j 振型惯性风荷载的权系数。

从Davenport 首先建立顺风向响应和等效风荷载的计算方法以来,在过去的几十年中,一直认为顺风向的风荷载占主要地位,是大部分结构的控制荷载,世界各个国家的规范也主要规定顺风向静动力风荷载的计算方法,该方法对结构风工程及其应用起到了非常重要的作用。但对高柔的竖向悬臂结构,例如200~300m 以上的高层建筑等,除顺风向的静动力风荷载作用外,横风向的动力风荷载作用增大,不能不略,如果结构外形复杂且周围环境干扰明显,其扭转动力风荷载也需要同时考虑。因而对于高耸结构这种方法更具合理性。

7.若干值得进一步研究问题

高层建筑的抗风研究,已有很多年的历史。虽然已经取得了不小进展,但总的来说它还是一门不够成熟的新兴学科,还有很多重要问题有待进一步研究解决。

1) 结构非线性风振理论的进一步研究。

基于线性叠加的频域分析方法及结构变形后状态的风振理论用于计算大跨高耸柔性结构将会产生很大误差, 需要进一步发展考虑各种非线性因素的时域风振理论, 直接来分析风振响应的时程。

2) 群体结构相互干扰的风振理论研究。

建筑群体结构干扰问题, 过去主要从静力风载角度考虑。随着大城市建筑物的高耸柔性化和密集化, 群体间复杂的动力风载效应可能成为结构控制设计的重要因素。

3) 计算风工程( 数值风洞) 。

数值风洞模型基于虚拟现实( VR) 技术, 集流体动力学计算、可视化及三维交互功能为一体。随着计算机硬件的迅猛发展和计算流体力学、计算结构力学等学科的深入研究, 很多学者特别是流体力学学者致力于计算机风洞仿真研究, 以期更精确地描述风与结构的相互作用。

4) 基于结构抗风可靠性分析的优化技术与实用方法研究。

5) 结构风振机理与响应计算方法的研究。

如高耸结构的二维风荷载模型与二维或三维风振响应计算方法的研究。

参考文献:

[1]毛风华,张喆,武可娟,《高层建筑抗风综述》,2009

[2] 顾明,《高层建筑抗风研究的理论和应用》,2002

[3] 甘凤林,潘兹勇,《高层建筑和高耸结构的抗风设计探讨》,2007

[4] 顾明, 周毅,《大跨度屋盖结构等效静力风荷载方法及应用》,2007

[5] 黄本才,汪从军,《结构抗风分析原理及应用》第二版,同济大学出版社,2008

[6] 建筑结构荷载规范,GB5009-2012

高层荷载估算

高层建筑结构方案设计荷载估算 高层建筑结构方案设计荷载估算 1.2 高层建筑结构作用效应的特点 1.2.1 高层建筑结构的受力特点 建筑结构所受的外力(作用)主要来自垂直方向和水平方向。在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。也就是说,竖向荷载往往是结构设计的主要控制因素。 建筑结构的这种受力特点随着高度的增大而逐渐发生变化。 在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为: 边柱N=wlH/2h 中柱N=wlH/h 即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。 其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为: 水平均布荷载Mmax=qH2/2 倒三角形水平荷载Mmax= Qh3/3 即结构底部产生的倾复弯矩与楼层总高度的平方成正比。就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。 1.2.2 高层建筑结构的变形特点 在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。在钢筋混凝土结构中,由于在施工过程中的找平,同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。 在水平荷载作用下,高层建筑结构最大的顶点位移为: 水平均布荷载△max=qH4/8EI 倒三角形水平荷载△max= 11qH4/120EI 式中EI为结构的 从以上可看出,结构顶点位移与其总高度的四次方成正比。则又比水平荷载作用下的内力累积效应增加更快,这就说明,高层建筑结构对结构的水平侧移是相当敏感的。水平荷载作用下所引起的结构内力及侧移是高层建筑结构设计的主要控制因素。结构应具备较大的抗侧刚度,而不仅仅满足强度、刚度和稳定要求。 在地震区,还要求建筑物能抗震。由于地震是一种瞬时作用,但作用所产生的效应非常强烈,故结构的过大变形是不可避免的(这种变形在不发生地震时是不允许的),这就要求结构有较好的延性,能在强烈地震作用下结构虽产生较大变形而不破坏。 2.3 我国现行规范中规定的主要限定标准 1.风荷载作用下房屋顶点质心位置的侧移应H/500(总高),各层质心层间位移H/400(总

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

高层建筑结构方案设计荷载估算

高层建筑结构方案设计荷载估算 1.2 高层建筑结构作用效应的特点 1.2.1 高层建筑结构的受力特点 建筑结构所受的外力(作用)主要来自垂直方向和水平方向。在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。也就是说,竖向荷载往往是结构设计的主要控制因素。 建筑结构的这种受力特点随着高度的增大而逐渐发生变化。 在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为: 边柱 N=wlH/2h 中柱 N=wlH/h 即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。 其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为: 水平均布荷载 Mmax=qH2/2 倒三角形水平荷载 Mmax= Qh3/3 即结构底部产生的倾复弯矩与楼层总高度的平方成正比。就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。 1.2.2 高层建筑结构的变形特点 在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。在钢筋混凝土结构中,由于在施工过程中的找平, 同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。 在水平荷载作用下,高层建筑结构最大的顶点位移为: 水平均布荷载△max=qH4/8EI 倒三角形水平荷载△max= 11qH4/120EI 式中EI为结构的 从以上可看出,结构顶点位移与其总高度的四次方成正比。则又比水平荷载作用下的内力累积效应增加更快,这就说明,高层建筑结构对结构

高层建筑风荷载

高层建筑风荷载 摘要:文章主要介绍了风荷载对高层建筑的作用,关于风荷载研究的一些方法,并用我做过的北京中铁物流大厦的风洞试验为例说明风洞实验的研究方法。阐述了一些结构等效静力风荷载的计算方法以及抗风设计中应值得继续研究的问题。 关键字:高层建筑,抗风,风洞试验,等效静力风荷载,问题 1.引言 风是从高气压吹向低气压的一种气流。高层建筑是在特殊地区和时间下,为了满足社会和经济的需求而建造的,其独特性和各自特异的风格,增加了城市景观,吸引了大量的旅游观光者。而更具有实用意义的是满足了城市日益增长的工作、生活空间的需求。但任何建筑高度的增加必将会增加风荷载的力度。 风荷载是各类建筑物的主要侧向荷载之一, 对于高、大、细、长等柔性结构而言, 风荷载是起主要作用的, 且时常超过地震作用而成为决定性荷载, 复杂的动力风效应影响是结构设计的控制因素之一。灾害性台风可能导致结构主体开裂或损坏;长时间持续的风致振动则可能使结构某些部位如节点、支座等产生疲劳与损伤, 危及结构安全。随着新技术、新材料、新工艺、新型式、新设计方法的应用, 工程结构也朝着长大化、高耸化、复杂化、柔性化、小阻尼方向发展, 这使得其固有频率越来越接近强风的卓越频率, 对风的敏感性越来越强。因此重大的高耸柔性结构在风荷载作用下的动力效应特性研究也受到学术界和工程界的极大关注和重视。 2.风荷载的分类 风对高层建筑是一种持续时间较长的随机荷载。风对结构物的作用,使结构产生震动,其原因主要有:(1)有与风向一致的风力作用,它包括平均风和脉动风,其中脉动风要引起结构物的顺风向振动,这种形式的振动在一般工程结构中都要考虑;(2)结构物背后的漩涡引起结构物的横风向的振动;(3)由别的建筑物尾流中的气流引起的振动。 2.1 顺风向荷载 《建筑结构荷载规范》(GB50009-2012)明确给出了高层建筑顺风向等效荷载的计算方法,著名学者A.G.Davenport在60 年代建立了基于抖振理论的结构顺风向风荷载计算模型,成为风工程研究及各国制定风荷载规范的基础。由于对等效静力风荷载认识的差别,该计算模型在实际应用中又发展成阵风荷载因子(GLF)法、惯性风荷载(IWL)法、基底弯矩阵风荷载因子法(MGLF)等。GLF 法由Davenport于60 年代提出,现已成为公认的经典方法。该法认为背景和共振分量与平均分量服从同一分布,且与响应类型无关。IWL 法采用惯性力模型来计算背景和共振分量,我国规范采用这一方法。MGLF 法认为基底弯矩对应的背景等效风荷载可以近似作为实际的背景等效风荷载,根据脉动基底弯矩并按振型分解则可得到

风荷载计算算例

.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= () s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》项次30,迎风面体型系数(压风指向建筑物内侧),背风面(吸风指向建筑外侧面),侧风面(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表确定。本工程结构顶端高度为+=米,建筑位于北京市郊区房屋较稀疏,由规范条地面粗糙度为B 类。 由表高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为和。 则米高度处的风压高度变化系数通过线性插值为: 对于高度大于30m 且高宽比大于的房屋,以及基本自振周期T1大于的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ () 式中: g ——峰值因子,可取 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取、、和;

R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取、、和; 1ζ——结构阻尼比,对钢结构可取,对有填充墙的钢结构房屋可取,对钢筋混凝土及砌体结构可取,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s = 脉动风荷载的背景分量因子可按下列规定确定: 式中: 1()z φ——结构第1阶振型系数 H ——结构总高度 (m ),对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不能大于300m 、350m 、450m 和550m ; x ρ——脉动风荷载水平方向相关系数; z ρ——脉动风荷载竖向方向相关系数; k 、1α—— 脉动风荷载的空间相关系数可按下列规定确定: (1)竖直方向的相关系数可按下式计算: 式中: H ——结构总高度 (m );对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不应大于300m 、350m 、450m 和550m ; (2) 水平方向相关系数可按下式计算: 式中:

【结构设计】高层建筑结构计算技巧分享

高层建筑结构计算技巧分享 高层结构设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中主要通过对一些目标参数的控制来达到这一目的. 一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求.见抗规6.3.7和 6.4.6,高规 6.4.2和 7.2.14及相应的条文说明.轴压比不满足规范要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积. 轴压比不满足规范要求时的调整方法: 1、程序调整:SATWE程序不能实现. 2、结构调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度.

二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全.见抗规5.2.5,高规3.3.13及相应的条文说明.剪重比不满足规范要求,说明结构的刚度相对于水平地震剪力过小;但剪重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积. 剪重比不满足规范要求时的调整方法: 1、程序调整:当剪重比偏小但与规范限值相差不大(如剪重比达到规范限值的80%以上)时,可按下列方法之一进行调整: 1)在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求. 2)在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数,增大地震作用,以满足剪重比要求. 3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求. 2、结构调整:当剪重比偏小且与规范限值相差较大时,宜调整增强竖向构件,加强墙、柱等竖向构件的刚度. 三、刚重比:规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计.见高规5.4.1和5.4.2及相应的条文说明.刚重比不满足规范上限要求,说明

高层建筑结构计算

结构计算是非常重要的,工欲善其事必先利其器,了解基础数据才能在实际施工的时候做好每个细节保障质量。小编就高层计算和大家说明一下。 高层建筑是一个复杂的空间结构。它不仅平面形状多变,立面体型也各种各样,而且结构形式和结构体系各不相同。高层建筑中有框架、和筒体等竖向抗侧力结构,又有水平放置的楼板将它们连为整体。这样一种高次超静定、多种结构形式组合在一起的三维空间结构,要进行内力和位移计算,就必须进行计算模型的简化,引入不同程度的计算假定。简化的程度视所用的计算工具按必要和合理的原则决定。 结构计算的基本假定为: 1.计算的内力和位移时,用弹性方法及取用结构的弹性刚度,并考虑各抗侧力结构的共同工作。 2.框架梁及剪力墙的连梁等构件,可按有关规定考虑局部塑性变形的内力重分布。 3.计算结构的内力和位移时,一般情况下可假定楼板在自身平面内为绝对刚性,但在设计中应采取保证楼面整体刚度的构造措施。 4.下列情况宜考虑楼板在自身平面内的变形影响: (1)楼板整体性较弱; (2)楼板有很大的开洞或缺口,宽度削弱; (3)楼板平面上有较长的外伸段; (4)作为结构转换层的楼板,对于上述情况,须考虑楼板实际刚度,对采用刚性楼面假定算得的结果进行调整。 5.结构计算中,各类构件均需考虑弯曲变形,构件其他变形按有关规定考虑。对竖向荷载还宜考虑施工过程中逐层加载的影响。 6.构件刚度的取用。 (1)框架梁的惯性矩: 现浇板边框架梁I=1.5I↓r 现浇板中部框架梁I=2.0I↓r 式中I↓r——梁截面矩形部分的惯性矩。 (2)连梁刚度。或中的连梁刚度,可乘≥0.55的折减系数。 (3)剪力墙的有效翼缘宽度。剪力墙可考虑纵墙或横墙的翼缘作用,其有效翼缘宽度可按有关规定取用。 (4)错位剪力墙的等效刚度。错位剪力墙(错位值a≤2.5m,a≤8t,t为墙厚)的等效刚度应乘以折减系数0.8。 (5)折线形剪力墙的简化处理。当折线形剪力墙的各墙段总转角≤15°时,可按平面剪力墙考虑。 (6)壁式框架的刚域长度及杆件的等效刚度,按有关规定取用。

一般情况下的风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

风荷载取值规范

3.1.3 风荷载 建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。 1、风荷载标准值计算 垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算: βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。多层建筑,建筑物高度<30m ,风振系数近似取1。 (1)风荷载体型系数μS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规 表3.1.10 建筑物体型系数取值表 注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。 注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。 注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。 W W z s z k μμβ=)21.3(-

注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。 (2)风压高度变化系数μz 设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。 对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。 表3.1.11 风压高度变化系数 关于地面粗糙程度的分类: A类:近海海面、海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:有密集建筑群的城市市区; D类:有密集建筑群和且房屋较高的城市市区。 (3)基本风压值W0 基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照《荷载规范》附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表。 2、基本风压的取值年限 《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限: ①临时性建筑物:取n=10年一遇的基本风压标准值; ②一般的工业与民用建筑物:取n=50年一遇的基本风压标准值; ③特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取 表3.1.12 浙江省主要城镇基本风压(kN/m2)取值参考表

风荷载特点

高层建筑横向承载力 摘要:随着经济的发展,近年来高层建筑尤其是体型复杂的超高层建筑得到了蓬勃的发展。一般而言,高层建筑物占地面积少,建筑面积大,造型独特,相对集中。这一特点使得高层建筑物在人口稠密的大城市迅速发展。但是高层建筑物上风荷载也越来越大,导致水平荷载不断增大。因此,高层建筑物需要较大的承载力和刚度来解决水平荷载的问题。关键词:风载荷高层建筑物影响 在高层建筑中,竖向荷载对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。对一些较柔的高层建筑,风荷载是结构设计的控制因素,随着建筑物高度的增高,风荷载的影响越来越大。高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。因此,高层建筑在风荷载作用下的结构分析与设计引起了研究人员和工程师们的重视。 建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。高层建筑不应采用严重不规则的结构体系,应符合下列要求:1、应具有必要的承载能力、刚度和变形能力;

2、应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力; 3、对可能出现的薄弱部位,应采取有效措施予以加强。 高层建筑的结构体系尚宜符合要求:结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效应而形成薄弱部位。风荷载是结构的重要设计荷载,特别对于高耸结构(如烟囱、塔架、桅杆等)、高层建筑、大跨度桥梁、冷却塔、屋盖等,有时甚至起到决定性的作用,因而抗风设计是工程结构中的重要课题。 近二十年来,国内外建造了超高层建筑和大跨度结构。对这些限高层建筑结构风荷载和风震响应的计算分析,确保高层建筑物的质量是十分必要的。 参考文献: [1]黄本才,结构抗风分析原理及应用[M],天津:同济大学出版社,2001,1-7 [2]张向庭.工程抗风设计计算手册[M],北京:中国建筑工业出版社,1998 [3]GB50009)2001建筑结构荷载规范[S],2001,北京:中国建筑工业出版社,2002

高层建筑结构思考题答案—最新无错版

1.高层建筑有哪些常用结构体系?试述每种结构体系的优缺点。 1) 框架结构 优点:平面布置灵活,可提供较大的室内空间。 缺点:抗侧移刚度较小,主要用在层数不多、水平荷载较小的情况。 2) 剪力墙结构 优点:抗侧移刚度较大,可承受较大的水平荷载。用于层数较多,水平荷载较大的情况。 缺点:墙体多,难于布置面积较大的房间,主要用于住宅、公寓、旅馆等对室内面积要求不大的建筑物。 3) 框架-剪力墙结构 优点:综合了框架和剪力墙结构的优点,既具有较大的抗水平力能力,又可提供较大的室内空间和较灵活的平面布置。 4) 筒体结构 优点:具有更大的抗侧移刚度。 缺点:框筒体系在水平荷载下外框筒的剪力滞后效应较大,结构的潜能和空间效应发挥较差。 2.高层建筑的结构平面布置原则? 结构平面形状宜简单、规则,质量、刚度和承载力分布宜均匀。不应采用严重不规则的平面布置。否则会产生过大的偏心,导致扭转过大。 3.分别叙述何时需设防震缝、伸缩缝和沉降缝?缝宽如何确定? 伸缩缝:高层建筑结构未采取可靠的构造或施工措施来防止建筑物在温度变化过程中产生的温度应力时,需设伸缩缝。 沉降缝:在高层建筑中,当建筑物相邻部位层数或荷载相差悬殊或地基土层压缩性变化过大,从而造成较大差异沉降时,宜设沉降缝将结构划分为独立单元。 防震缝:当建筑物平面形状复杂而又无法调整其平面形状和结构布置使之成为较规则的结构时,宜设防震缝将其划分为较简单的几个结构单元。 伸缩缝宽度由线膨胀系数经计算求得。 沉降缝宽度由沉降转角计算后,建筑顶部不接触求得。 防震缝的最小宽度是根据地震中缝两侧的房屋不发生碰撞的条件确定的。 框架,当H≤15m时,δ=100mm 设防烈度为6 7 8 9度 H每增加5m 4m 3m 2m 防震缝宽度增加20mm 框架--剪力墙,缝宽为框架的70%,剪力墙,缝宽为框架的50%,缝宽均应≥100mm 两侧房屋高度不同时,按较低的房屋高度确定;当两侧结构体系不同时,按不利的不 利体系确定。 需抗震设防的建筑,其伸缩缝、沉降缝宽度应按防震缝宽度确定。 4.采用何种措施可增大伸缩缝的间距? 1) 顶层、底层、山墙和纵墙端开间等温度变化影响较大的部位提高配筋率; 2) 顶层加强保温隔热措施,外墙设置外保温层; 3) 每30~40m 间距留出施工后浇带,带宽800~1000mm,钢筋采用搭接接头,后浇带混凝 土宜在45天后浇筑; 4) 采用收缩小的水泥、减少水泥用量、在混凝土中加入适宜的外加剂; 5) 提高每层楼板的构造配筋率或采用部分预应力结构。 5.采用何种措施可不设沉降缝? 1)采用桩基,桩支承在基岩上;或采取减少沉降的有效措施,并经计算,沉降差在允许范

高层建筑结构复习题

一、填空题 1、我国《高层建筑混凝土结构技术规程》规定:10层及10层以上或房屋高度 超过__28m_的住宅建筑和高度大于_24m__的其它民用建筑结构为高层建筑。 2、高层建筑常见的结构体系有_框架结构体系_、剪力墙结构体系、框架剪力墙 结构体系和_钢结构体系_。 3、在水平荷载作用下,高层框架结构以剪切变形为主,其整体位移曲线呈剪切 型,特点是结构层间位移随楼层增高而__增加__。 4、在水平荷载作用下,高层剪力墙结构以_弯曲变形为主,其整体位移曲线呈 弯曲型,特点是结构层间位移随楼层增高而___增加____。 5、在水平荷载作用下,框架的侧移曲线为剪切型,剪力墙结构的侧移曲线 为型,两种结构共同工作时的侧移曲线为弯剪型。 6、高层结构平面布置力求简单、规则、对称,竖向体型尽量避免外挑、内收, 力求刚度均匀渐变。 7、结构平面不规则类型包括扭转不规则、凹凸不规则和楼板局部不连 续。 8、结构竖向不规则类型包括刚度突变_ 、尺寸突变和楼层承载力突变。 9、高层建筑结构中常用的结构缝有_伸缩缝、沉降缝_和防震缝。 10、现浇框架结构当长度超过___55___米应设伸缩缝。 11、高层建筑的分析和设计比一般的多层建筑复杂得多,水平荷载是高层结构 的控制因素。 12、矩形、鼓形、十字形平面建筑(H/B≤4)风荷载体型系数为 1.4 。

13、高层建筑地震作用计算方法包括底部剪力法、震型分解反应谱法和弹性 时程分析法。 14、计算地震作用时,建筑结构的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。 15、地震作用影响系数应根据烈度、场地类别、设计地震分组和结构自震周期 及阻尼比确定。 16、抗震设防目标为小震不坏、中震可修、大震不倒。 17、框架结构在竖向荷载作用下的内力计算可近似的采用分层法。 18、框架结构在水平荷载作用下的内力计算可近似的采用反弯法和D值法。 19、采用分层法计算时,除低层以外其它各层柱的线刚度均乘0.9 的折减系数, 柱的弯矩传递系数数取为1/3 。 20、影响框架梁延性的因素主要有:纵筋配筋率、剪压力、跨高比和 塑性铰区的箍筋用量。 21、影响框架柱延性的因素主要有剪跨比、轴压比、箍筋配筋率和纵筋配筋率。 22、剪力墙按受力特性可分为:整体剪力墙、小口开整体剪力墙、双肢墙(多肢墙)和壁式框架 二、判断题 1、建筑物高度超过100m时,不论住宅建筑或公共建筑,均为超高层建筑。(√) 2、高层框架结构,在水平荷载作用下,其整体位移曲线呈弯曲型。(╳) 呈反S形的弯剪型位移曲线。 3、剪力墙结构比框架结构刚度大,空间整体性好,用钢量较省。(√) 4、框架-剪力墙结构中,主要利用剪力墙来承担大部分的水平向荷载。(√) 5、高层建筑结构布置时,楼电梯间宜设在凹角和结构端部。(╳)

第3章高层建筑结构的荷载和地震作用

第3章 高层建筑结构的荷载和地震作用 [例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030?,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。已知基本风压为2 045.0m kN w =,建筑场地位于大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。 解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=?== 222210m s kN 62.19.145.0T w ?=?= (2)风荷载体型系数:对于矩形平面,由附录1可求得 80.01=s μ 57040120030480L H 03 04802s .....-=?? ? ?? ?+-=??? ??+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =?,i H 为第i 层标高;H 为建筑总高度。则由式(3.2.8)可求得风振系数为: H H 478050211H H 11i z i z ? ?+=?+=+=μμξνμ?νξβ.. z z z (4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为: ()z z z z ....)z (q βμβμ6624=40×570+80×450= 按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。 表3.2.4 风荷载作用下各区段合力的计算 (a ) (b ) (c ) 图3.2.4 高层结构外形尺寸及计算简图

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

高层建筑风荷载计算

高层建筑风荷载计算 风荷载是空气流动对工程结构所产生的压力。风荷载与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。 高层建筑风荷载需要结合建筑物实际情况进行判定,也需要符合相关的内容要求,主要的基本要求如下: 对一些较柔的高层建筑,风荷载是结构设计的控制因素随着建筑物高度的增高,风荷载的影响越来越大。高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。因此,高层建筑在风荷载作用下的结构分析与设计引起了研究人员和工程师们的重视。 基本风压值wo系以当地比较空旷平坦地面上离地lOm高统计所得的50年一遇10rain平均最大风速vo为标准,按WO 1/2pv确定的风压值。它应根据《荷载规范》中附表D.4采用,但不得小于0.3kN.对一般的高层建筑,用《荷载规范》中所给的wO乘以1.1后采用;对于特别重要或对风荷载比较敏感的高层建筑,其基本风压值应按年重现期的风压值采用。 风荷载体型系数确定风荷载体型系数us是一个比较复杂的问题,它不但与建筑的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物密集程度及其高低等有关。当风流经建筑物时,对建筑物不同部位会产生不同的效果,即产生压力和吸力。空气流动产生的涡流,对建筑物局部则会产生较大的压力或

吸力。 ①整个迎风面上均受压力,其值中部最大,向两侧逐渐减小。沿高度方向风压的变化很小,在整个建筑物高度的言一号处稍大,风压分布近似于矩形。 ②整个背风面上还受吸力,两侧大、中部略小,其平均值约为迎风面风压平均值的75%左右。沿高度方向,风压的变化也很小,更近似于矩形分布。 ③整个侧面,在正面风力作用下,全部受吸力,约为迎风面风压的80%左右。

关于高层建筑结构计算的分析与探讨

关于高层建筑结构计算的分析与探讨 发表时间:2017-04-18T16:03:30.550Z 来源:《基层建设》2017年2期作者:尹志斌[导读] 在高层建筑结构计算中,由于国内高层建筑发展迅速,建筑高度及层数增加,体型及平面形状日趋复杂,因此它的计算也面临更多挑战,文章对此进行了探讨。 深圳华新国际建筑工程设计顾问有限公司广东深圳 518000 摘要:高层建筑承担着城市高级偶像的作用,它是城市规划宏观把握申必不可少的参照,也是一座城市的文化与美学的体现。在高层建筑结构计算中,由于国内高层建筑发展迅速,建筑高度及层数增加,体型及平面形状日趋复杂,因此它的计算也面临更多挑战,文章对此进行了探讨。 关键词:高层建筑;结构计算;设计引言 随着建设用地的日趋紧张,加之轻质高强材料的开发和设计,计算理论的完善,特别是结构分析手段不断提高,使得高层建筑如雨后春笋般日益增多。建筑高度不断增加,建筑风格日益多样,对高层结构设计提出了新的挑战。本文主要就高层建筑的结构设计与计算进行讨。 1高层建筑结构计算的基本要求如何正确进行结构计算,以满足新规范的要求是每个结构设计人员都必须面对的问题。要做好一个高层建筑的结构设计首先应满足以下基本要求:必须要有规则的结构。高层建筑不应采用严重不规则的结构体系。应具有必要的承载能力、刚度和变形能力,避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力,采取有效措施加强可能出现的薄弱部位。规则平面布置需满足的要求是:结构平面布置必须考虑有利于抵抗水平和竖向荷载,受力明确,传力直接,力争均匀对称减少扭转的影响。在高层建筑的一个独立结构单元内,应使结构平面形状简单、规则,刚度和承载力分布均匀,不可以采用严重不规则的平面布置。抗震设计的B 级高度钢筋混凝土高层建筑、混合结构高层建筑,其平面布置应简单、规则,减少偏心。 2高层建筑结构分析 2.1高层建筑结构分析的基本假定 高层建筑结构是由竖向抗侧力构件(框架、剪力墙、简体等) 通过水平楼板连接构成的大型空间结构体系要完全精确地按照三维空间结构进行分析是十分困难的各种实用的分析方法都需要对计算模型引同程度的简化。下面是常见的一些基本假定: 2.1.1 弹性假定 目前工程上实用的高层建筑结构分析方法均采用弹性的计算法。在垂直荷载或一般风力作用下。结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况但是在遭受地震或强台风作时,高层建筑结构往往会产生较大的位移,出现裂缝,进入到弹塑性工作阶段。此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态的,我们应按弹塑性动力分析方法进行设计。 2.1.2变形假定 小变形假定也是各种方法普遍采用的基本假定但有不少人对几何非线性问题( P -△效应) 进行了一些研究。一般认为,当顶点水平位移△与建筑物高度 H的比值A/ H> F 500时. P 一△效应的影响就不能忽视了。 2.1.3刚性楼板假定 许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计这一假定大大减少了结构位移的自由度。简化了计算方法。并为采用空间薄壁杆件理论计算简体结构提供了条件。 2.1.4计算图形的假定 高层建筑结构体系整体分析采用的计算图形有三种: ①维协同分析。按一维协同分析时,只考虑各抗侧力构件在一个位移自由度方向上的变形协调。在水平力作用下,将结构体系简化为由平行水平力方向上的各榀抗侧力构件组成的平面结构根据刚性楼板假定,同一楼面标高处各榀抗侧力构件的侧移相等吗,由此即可建立一维协同的基本方程在扭矩作用下则根据同层楼板上各抗侧力构件转角相等的条件建立基本方程一维协同分析是各种手算方法采用最多的计算图形。 ②二维协同分析。二维协同分析虽然仍将单榀抗侧力构件视为平面结构,但考虑了同层楼板上各榀抗侧力构件在楼面内的变形协调。纵横两方向的抗侧力构件共同工作同时计算:扭矩与水平力同时计算。在引入刚性楼板假定后,每层楼板有三个自由度 u,v,0 当考虑楼板翘曲是有四个自由度) .楼面内各抗侧力构件的位移均由这三个自由度确定剪力楼板位移与其对应外力作用的平衡方程,用矩阵位移法求解。二维协同分析主要为中小微型计算机上的杆系结构分析程序所采用。 ③三维空间分析。二维协同分析并没有考虑抗侧力构件的公共节点在楼面外的位移协调( 竖向位移和转角的协调),而且,忽略抗侧力构件平面外的刚度和扭转刚度对具有明显空间工作性能的简体结构也是不妥当的三维空间分析的普通杆单元每一节点有6个自由度。按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,应有7个自由度。 3结构整体计算的方法 3.1结构整体计算 3.1.1适用高度和高宽比。在带有大型裙房的复杂高层建筑中,计算高宽比的房屋高度和宽度可按裙房以上部分考虑。对于带悬挑的结构,结构房屋宽度应按扣除悬挑宽度厚的结构宽度计算。 3.1.2周期比。如果周期比不满足规范的要求,设计人员就需要增加结构周边构件的刚度,或者在结构的刚度有富余时,适当地降低结构中间构件的刚度,使得结构符合规范要求。 3.1.3位移比(层间位移比)是控制结构平面不规则性的重要指标。位移比的大小是判断结构是否规则的重要依据,设计人员应该正确选用考虑偶然偏心影响的单向地震下的位移比。 3.1.4刚度比是控制结构竖向不规则,避免竖向刚度突变而形成薄弱层的重要指标。限值详见《抗震规范》第3. 4.2 条和《高规》第 4.4.2条规定。

风荷载计算算例

3.6.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= (8.1.1-1) s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》表7.3.1确定。本项目建筑平面为规则的矩形,查表8.3.1项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表8.2.1确定。本工程结构顶端高度为3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范8.2.1条地面粗糙度为B 类。 由表8.2.1高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为1.93和2.00。 则90.6米高度处的风压高度变化系数通过线性插值为: 90.690(2.00 1.93) 1.93 1.934210090z u -=-+=-

对于高度大于30m 且高宽比大于1.5的房屋,以及基本自振周期T1大于0.25s 的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ (8.4.3) 式中: g ——峰值因子,可取2.5 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取0.12、0.14、0.23和0.39; R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: R = (8.4.4-1) 115x x => (8.4.4-2) 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取1.28、1.0、0.54和0.26; 1ζ——结构阻尼比,对钢结构可取0.01,对有填充墙的钢结构房屋可取0.02,对钢筋混凝土及砌体结构可取0.05,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s =

相关文档
相关文档 最新文档