文档库 最新最全的文档下载
当前位置:文档库 › 函数周期性复习练习题

函数周期性复习练习题

函数周期性复习练习题
函数周期性复习练习题

函数周期性

一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立

则f (x )叫做周期函数,T 叫做这个函数的一个周期。

二.重要结论

1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;

2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数

4、 y=f(x)满足f(x+a)=

()

x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。 5、若函数y=f(x)满足f(x+a)= ()

x f 1-(a>0),则f(x)为周期函数且2a 是它的一个周期。 6、1()()1()

f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1()()1()

f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数. 8、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一个周期。 9、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;

10、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;

11、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。

12、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。

13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

14、若奇函数y=f(x)满足f(x+T)=f(x)(x ∈R ,T≠0), 则f(2

T )=0. 一、选择题

1. 已知定义在R 上的奇函数f(x)满足f(x+2)=-f(x),则,f(6)的值为 ( )

A .-1

B .0

C .1

D .2

2.已知函数)(x f y =是一个以4为最小正周期的奇函数,则=)2(f ( )

A .0

B .-4

C .4

D .不能确定

3.(2009江西)已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=)

, 且当[0,2)x ∈时,2()log (1f x x =+)

,则(2008)(2009)f f -+的值为 ( ) A .2- B .1- C .1 D .2

4. 函数)x (f 对于任意实数x 满足条件)

x (f 1)2x (f =

+,若5)1(f -=,则))5(f (f 等于 ( ) A. 5 B. 5- C. 51 D. 5

1- 5. ()f x 是定义在R 上的函数,(10)(10)f x f x +=-且(20)(20)f x f x -=-+,则()f x 是( ) A. 周期为20的奇函数 B. 周期为20的偶函数

C. 周期为40的奇函数

D. 周期为40的偶函数

6. 偶函数()f x 是以2为周期的函数,且当()0,1x ∈时,()21x f x =-,则2(log 10)f 的值为( )

.A 35 .B 85 .C 38- .D 53

7.已知偶函数)x (f y =满足)1x (f )1x (f -=+,且当]0,1[x -∈时,943)x (f x +

=, 则)5log (f 3

1的值等于 ( )

A. 1-

B. 5029

C. 45

101 D. 1 8.设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线

x=3对称,则下面正确的结论是 ( )

A .()()()1.5 3.5 6.5f f f <<

B .()()()3.5 1.5 6.5f f f <<

C .()()()6.5 3.5 1.5f f f <<

D .()()()3.5 6.5 1.5f f f <<

9(07安徽)定义在R 上函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为 ( )

A.0

B.1

C.3

D.5

10.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内解的个数的最小值( )

A .6

B .7

C .4

D .5

11.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x ) =1)1(),2

3(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为 ( )

A .–2

B .–1

C .0

D .1

【答案】 B A C D C A D B D D C

二、填空题

1、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()

5f f = 。 2.R 上的函数()f x 是以2为周期的奇函数,则方程()0f x =在[2,2]-上至少有_____个实数根.

3. ()(5)()0,(2)1(2008)f x x f x f x f f ∈+-=== R R 为上的奇函数,对任意,都有若, .

4. 设函数()y f x =定义在R 上的奇函数,且()y f x =图像关于直线12x =

对称, 则=++++)5(f )4(f )3(f )2(f )1(f .

5.设函数)x (f 为R 上的奇函数,且0)3x (f )x (f =++-,若1)1(f -=-, 2l o g )2(f a <,

则a 的取值范围是 .

6. 定义在),(∞+∞-上的偶函数)x (f 满足)x (f )1x (f -=+,且在]0,1[-上是增函数,

下面是关于)x (f 的判断:

① )x (f 是周期函数; ② )x (f 的图象关于直线1x =对称;

③ )x (f 在]1,0[上是增函数; ④ ).0(f )2(f =

其中正确的判断是 (把你认为正确的判断都填上)。

7.设函数()f x 是定义在R 上的奇函数,对于任意的x R ∈,都有1()(1)1()

f x f x f x -+=+, 当0x <≤1时,()2f x x =,则(11.5)f = 。

【答案】1.1-5;2. 5; 3. -1; 4. 0; 5.10,12a a <<

>; 6.①②④; 7.-1. 三、解答题

1.函数f x ()定义在R 上,且满足f x f x f x ()[()]()+-=+211,(1)12f =,求(2011)f 的值。(1311)

2. 已知函数()f x 的图象关于点3,04??-

???对称,且满足3()()2f x f x =-+,又(1)1f -=,(0)2f =-, 求(1)(2)(3)f f f +++…(2006)f +的值。 (0)

3. 设函数)x (f 在),(∞+∞-上满足)x 2(f )x 2(f +=-,)x 7(f )x 7(f +=-,且在闭区间

]7,0[上只有.0)3(f )1(f ==

⑴ 试判断函数)x (f y =的奇偶性; (非奇非偶函数)

⑵ 试求方程0)x (f =在闭区间]2005,2005[-上的根的个数,并证明你的结论. (802个根)

4. 设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式. (2()(2)f x x k =-)

5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,

.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式. (2()2(1)4(12).f x x x =--+≤≤)

*4.设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称 对任意121

,[0,]2

x x ∈,都有 1212()()()f x x f x f x +=+,且(1)0f a =>.

(Ⅰ)求11(),()24f f ; (Ⅱ)证明()f x 是周期函数; **(Ⅲ)记n a =1(2)2f n n

+,求n a . ( 答 :(1) 112411()=,()24f a f a =; (2)周期为2; (3) 12n n a a =。)

函数周期性结论总结

精品文档 . 函数周期性结论总结 ① f(x+a)=-f(x) T=2a ② f(x+a)=±) (1x f T=2a ③ f(x+a)=f(x+b) T=|a-b| 证明: 令x=x-b 得 f(x-b+a)=f(x-b+b) f(x-b+a)=f(x) 根据公式f(x)=f(x+T)=f(x+nT) 得 T=-b+a 即a-b ④f(x)为偶函数,且关于直线x=a 对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为 偶函数,所以 f(-x)=f(x) 因为 关于x=a 对称 所以 f(a+x)=f(a-x) (对称性质)设 x=x+a 所以 f(x+2a)=f(x) 所以 周期T=2a) ⑤f(x)为奇函数,且关于直线x=a 对称,T=4a 证明:f(x+2a)=f(-x)=-f(x) 根据①可知T=2·2a=4a 证明:由于图像关于直线x=a 对称、所以f(a+x)=f(a-x) 令x=x+a 得:f(x+2a)=f(-x) 又f(x)= - f(-x)故f(x)= - f(x+2a) 代换x=x+2a 得: f(x+2a)= - f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a) 有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a) 换元:令x-a=t 那么x=a+t f(t+3a)=-f(t) 根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b 对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x) 假设a >b (当然假设a <b 也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 f(x+2a-2b) =f[a+(x+a-2b)] =f[a-(x+a-2b)] =f(2b-x) =f(x) ⑧f(x)的图像关于(a,0) (b,0)对称,T=2a-2b(a >b) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x ) f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)] =-f(2b-x) =f(x) 关于直线x=a 对称 关于直线x=b 对称

三角函数地公式+五点作图+奇偶性+周期性

三角函数的公式 一、扇形的公式 若扇形的圆心角为a (a 为弧度制),半径为r ,弧长为l ,周长为C ,面积为S ,则l=______________;C=___________________;S=________________ 二、三角函数的定义 (1)设a 是一个任意大小的角,a 的终边上任意一点R 的坐标是(x, y ),它与原点的距离是 r,则sin a=_________;cosa =________;tana=____________. (2)设a 是一个任意大小的角,a 的终边与单位圆的交点R 的坐标是(x, y ),它与原点的距 离是r,则sin a=_________;cosa =________;tana=____________. 三、 同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin α cos α =tan α. 四、诱导公式 诱导公式(一) tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k 诱导公式(二) )tan()cos( sin )sin(=+= +-=+απαπααπ 诱导公式(三) )tan(cos )cos( )sin(=-=-=-αα αα 诱导公式(四) tan )tan()cos( )sin(ααπαπαπ-=-=-=-

诱导公式(五) =-=-)2 cos( cos )2sin( απ ααπ 诱导公式(六) =+=+)2 cos( cos )2sin(απ ααπ 【方法点拨】 把α看作锐角 前四组诱导公式可以概括为:函数名不变,符号看象限 符号。 看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k 公式(五)和公式(六)总结为一句话:函数名改变,符号看象限 口诀: 变 不变,符号看象限 五:求特殊角的三角函数值 特殊角的三角函数值 1、,0sin tan >θθ则θ在 ( )

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

函数周期性公式大总结

竭诚为您提供优质文档/双击可除函数周期性公式大总结 篇一:函数周期性结论总结 函数周期性结论总结 ①f(x+a)=-f(x)T=2a ②f(x+a)=±1T=2af(x) ③f(x+a)=f(x+b)T=|a-b|证明:令x=x-b得 f(x-b+a)=f(x-b+b)f(x-b+a)=f(x)根据公式 f(x)=f(x+T)=f(x+nT)得T=-b+a即a-b ④f(x)为偶函数,且关于直线x=a对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为偶函数,所以f(-x)=f(x)因为关于x=a对称 所以f(a+x)=f(a-x)(对称性质)设x=x+a所以 f(x+2a)=f(x)所以周期T=2a)⑤f(x)为奇函数,且关于直线x=a对称,T=4a 证明:f(x+2a)=f(-x)=-f(x)根据①可知T=2·2a=4a 证明:由于图像关于直线x=a对称、所以f(a+x)=f(a-x)令x=x+a得:f(x+2a)=f(-x)又f(x)=-f(-x)故f(x)=-f(x+2a)

代换x=x+2a得: f(x+2a)=-f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a)有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a)换元:令x-a=t那么x=a+t f(t+3a)=-f(t)根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x)假设 a>b(当然假设a<b也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 ⑧f(x)的图像关于(a,0)(b,0)对称,T=2a-2b(a> b)f(x+2a-2b)=f[a+(x+a-2b)]关于直线x=a对称 =f[a-(x+a-2b)]关于直线x=b对称=f(2b-x)=f(x) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x)f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)]

函数的单调性·典型例题精析

2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间 (1)y=|x2+2x-3| (2)y (3)y = = x x x x x 2 2 2 11 23 - -- --+ || 解(1)令f(x)=x2+2x-3=(x+1)2-4. 先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示. 由图像易得: 递增区间是[-3,-1],[1,+∞) 递减区间是(-∞,-3],[-1,1] (2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x. 当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2. ∴增区间是(-∞,0)和(0,1) 减区间是[1,2)和(2,+∞) (3)解:由-x2-2x+3≥0,得-3≤x≤1. 令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1] 上是在x∈[-1,1] 上是. 而=在≥上是增函数. y u0 u ∴函数y的增区间是[-3,-1],减区间是[-1,1]. 【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范

围. 解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数. 当≠时,对称轴= , 若>时,由>≤,得<≤. a 0x a 0a 0 3a 10a 131212a a a --??? ?? 若a <0时,无解. ∴a 的取值范围是0≤a ≤1. 【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小: (1)f(6)与f(4) (2)f(2)f(15)与 解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4) (2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而< <,函数在≥15 时为减函数. ∴>,即>.f(15)f(4)f(15)f(2) 【例4】判断函数= ≠在区间-,上的单调性.f(x)(a 0)(11)ax x 2 1 - 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2. ∵-= ∵-<<<,+>,->,-<,-<.∴ >f(x )f(x )1x x 1x x 10x x 0x 10x 100 12121221a x x x x x x x x x x x x ()()()() ()()()() 122112 22 12 12 122112 22 111111+---+--- 当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数. 【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数. 证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2. ∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 0 2112221212 1212 1222 122 121212 1222证法一

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

函数的单调性知识点总结与经典题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的 (2)在哪些区间上升哪些区间下降 解:(1)从左向右看,图形先下降,后上升,再下降;

(2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降 ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化 (2)f (x )=x 2. ①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么变化 ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么变化 解:(1)①从左至右图象是上升的; ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大. (2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小; ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大. 【例3】函数()y f x =在定义域的某区间D 上存在12,x x ,满足12x x <且12()()f x f x <,那么函 数()y f x =在该区间上一定是增函数吗 解:不一定,例如下图: 【例4】下图是定义在闭区间[5,5]-上的函数()y f x =的图象,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数. 解:函数()y f x =的单调区间有[5,2),[2,1),[1,3),[3,5)---; 其中在区间[5,2),[1,3)--上是减函数,在区间[2,1),[3,5)-上是增函数. 【例5】证明函数()32f x x =+在R 上是增函数. 证明:设12,x x 是R 上的任意两个实数,且12x x < (取值) 则1212()()(32)(32)f x f x x x -=+-+ (作差)

高中数学 函数周期性总结

函数的周期性 一、周期函数的定义 对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值.... 时,都有()()f x T f x +=, 那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。 说明:(1)T 必须是常数,且不为零; (2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。 二、常见函数的最小正周期 正弦函数 y =sin (ωx +φ)(w>0)最小正周期为T= ωπ2 y=cos (ωx+φ)(w>0)最小正周期为T= ω π 2 y =tan (ωx +φ)(w>0)最小正周期为T= ω π y =|sin (ωx +φ)|(w>0)最小正周期为T= ω π f(x)=C(C 为常数)是周期函数吗?有最小正周期吗? 三、抽象函数的周期总结 1、)()(x f T x f =+ ?)(x f y =的周期为T 2、)()(x b f a x f +=+ )(b a < ?)(x f y =的周期为a b T -= 3、)()(x f a x f -=+ ?)(x f y =的周期为a T 2= 4、) ()(x f c a x f =+ (C 为常数) ?)(x f y =的周期为a T 2= 5 ) (1) (1)(x f x f a x f +-=+ ?)(x f y =的周期为a T 2= 6、 1)(1 )(+- =+x f a x f ?)(x f y =的周期为a T 4= 7、) (1) (1)(x f x f a x f -+=+ ?)(x f y =的周期为a T 4= 8、)()()2(x f a x f a x f -+=+ ?)(x f y =的周期为a T 6= 9、)1()()2(++=++++n x f n x f n x f ;(它是周期函数,一个周期为6) 10、)(x f y =有两条对称轴a x =和b x =()b a < ?)(x f y = 周期)(2a b T -= 11、)(x f y =有两个对称中心)0,(a 和)0,(b ?)(x f y = 周期)(2a b T -=

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

函数对称性、周期性和奇偶性的规律总结大全

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上, 通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =- 也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x += -++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+=+或 C 、 )(1)(1)2(x f x f T x f -+=+ 或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

1.3.1函数的单调性例题

1.3.1函数的单调性 题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; (2)322++-=x x y ; (3)2 )2(1-++=x x y ; (4)969622++++-=x x x x y 相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性 用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 ?取值,即_____________________________; ?作差变形,作差____________,变形手段有__________、_____、_____、_______等; ?定号,即____________________________________________________________; ④下结论,即______________________________________________________。 例2.用定义法证明下列函数的单调性 (1)证明:1)(3 +-=x x f 在()+∞∞-,上是减函数.

▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么 [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?>--? >--在[]b a ,上是增函数; [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?<--? <--在[]b a ,上是减函数. (2)证明:x x x f -+=1)(2在其定义域内是减函数; (3)证明:21 )(x x f = 在()0,∞-上是增函数; 法一: 作差 法二:作商

高中数学知识点;抽像函数周期性公式(基础知识总结)

高中数学抽线函数周期性难题解题技巧(名师总结) 今天跟同学们分享一个专题就是抽象函数怎么想周期,同学们抽象等式给到我们的时候有的时候,有得时候让我们找周期性、找对称中心、看奇偶函数等等一系列的问题,同学内题型还是比较困扰同学们的,今天就给同学分享一下抽象函数找周期性的问题!今天通过4个例题的讲解,同学们在遇到这类题型的时候,就知道是找抽象函数周期行的题型! 函数周期性技巧原理讲解: 首先这是定义是对每一位同学基本的要求,你必须要要掌握,同学们考试的时候给我们的周期式肯定不会这样简单,比如说f(x+8)=f(x)那么一目了然就知道周期式8,同学们这类题的考察本质是函数周期,那么它一定不会给那么简单地式子,而他会隐身给周期的解析式;接下来老师会分享四个抽象等式的式子,同学能够完全记住,在以后做题的时候才能节约时间; 接下看一下不等式的两种出现方式;

同学先讲两个f()型的题型,两个f()型我们要找到周期原本的定义,那怎么来找出周期的本质定义了,这里来看老师的具体讲解,怎样来理解; 接下来;老师会由浅入深给同学讲一些难点,能够做到循序渐进;

接下来要注意了,重点来了,这个式子两两个都是复杂,

同学们分享到这里,同学以后做题的时候对函数周期的了解、掌握不仅仅局限于定义式,而是这四个你都要记住,这里重要说一个知识点:第二个式子与第三个式子其实是一个类型的, 二式m为正、三式前面有负号,这里正负其实没有关系,只要是这种形式那么周期一定等于a的2倍:第四式是绝对值括号内部相减,绝对值括号内x+a-x-b,这个时候正x、负x约掉就是绝对值a减b或者b减a, 接下来要解决这样的问题,就要掌握什么样的情况想周期、什么情况想奇偶性、什么情况想对称轴、什么情况想对称中心,要解决这些问题老师给同学们总结了一句话,这句话是非常重要的。只要把这句话掌握清楚明白周期一眼就能看出来; 此类抽象等式:当f()内x前系数相同时一定想周期!

三角函数的公式+五点作图+奇偶性+周期性

三角函数的公式+五点作图+奇偶性+周期性 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数的公式 一、扇形的公式 若扇形的圆心角为(为弧度制),半径为r ,弧长为l ,周长为C ,面积为S ,则l=______________;C=___________________;S=________________ 二、三角函数的定义 (1)设是一个任意大小的角,的终边上任意一点?的坐标是(x, y ),它与原点的距离是r,则 sin =_________;cos?=________;tan?=____________. (2)设是一个任意大小的角,的终边与单位圆的交点的坐标是(x, y ),它与原点的距离是r, 则sin =_________;cos?=________;tan?=____________. 三、 同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin α cos α=tan α. 四、诱导公式 诱导公式(一) tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k 诱导公式(二) )tan()cos( sin )sin(=+=+-=+απαπααπ 诱导公式(三) )tan(cos )cos( )sin(=-=-=-αα αα 诱导公式(四) tan )tan()cos( )sin(ααπαπαπ-=-= -=- 诱导公式(五) =-=-)2 cos( cos )2sin( απ ααπ 诱导公式(六) =+=+)2cos( cos )2sin( απ ααπ 【方法点拨】 把α看作锐角 前四组诱导公式可以概括为:函数名不变,符号看象限 符号。 看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k 公 式(五)和公式(六)总结为一句话:函数名改变,符号看象限 口诀: 变 不变,符号看象限

奇偶性与单调性与典型例题

奇偶性与单调性及典型例题 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数. 案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)3a2-2a+1.解之,得0

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

高中数学周期函数、公式总结、推导、证明过程

高中数学涉及周期的公式,例题,证明 1

2 以上基本是高中阶段遇到的各种周期公式及其变形的总结。 解周期问题,两种方法:1.列举多个数据,找寻规律和周期;2.通过抽象函数直接得到周期。 1. 已知f(X)是R 上不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(x +1)f(x),则f [f (5 2)]= 解:令x=0,f(0)=0; 令x =?1 2,f (?1 2)=0; 令x =1 2,f (32)=0; 令x =3 2,f (5 2)=0; ∴ f [f (52)]=f (0)=0 2. 定义在R 上的函数f(x)满足f (x )={log 2(1?x ),x ≤0 f (x ?1)?f (x ?2),x >0,则f(2009)= 解:整理f (x )=f (x ?1)?f (x ?2), 得到f (x ?1)=f (x )+f (x ?2) 令x=x+1得到,f (x )=f (x +1)+f (x ?1) 由公式6知道周期为6,即f (x +6)=f(x),x>0 f(2009)=f (334×6+5)=f(5)。 由公式f (x )=f (x ?1)?f (x ?2)

得f(5)=f(4)?f(3)=(f(3)?f(2))?f(3)=?f(2) =?(f(1)?f(0))=?((f(0)?f(?1))?f(0)) =f(?1)=0 ,4f(x)f(y)=f(x+y)+f(x?y),x,y∈R,则f(2010)= 3.已知函数f(x)满足f(1)=1 4 思路:消元和赋值。 令x=x,y=1,则f(x)=f(x+1)+f(x?1), 根据公式6知道,f(x+6)=f(x), ∴f(2010)=f(335×6)=f(0)。 令y=0,则4f(x)f(0)=2f(x), ∵ x不恒为零,∴f(0)=1 2 ∴f(2010)=1 。 2 下面两页是周期函数公式的周期推导证明过程,并总结了推导周期过程的一般思路。因为word 输入数学公式太过麻烦,所以手写了出来,以图片的形式奉上。 3

相关文档
相关文档 最新文档