文档库 最新最全的文档下载
当前位置:文档库 › 导线安全系数取值

导线安全系数取值

导线安全系数取值
导线安全系数取值

规程规定导线的设计安全系数不应小于2.5. 控制微风振动的年均气温气象条件下的年均运行应力,在采取防振措施的情况下,不得超过σp的25%,即此时的设计安全系数不应小于4.0.

所以2.5和4 并不是不变的,根据实际工程情况,会有所变化

控制工况根据特定环境,特定代表档距来选择,作为防震要求诞生的年平均气温条件,在其控制条件下,无论线路安全系数多大,导线的最大张力都不能超过年平均气温的要求分别为25% 18%等等,根据线路的防震设计,等选择!总之不能超过25%,如果选择过大怎平均气温条件控制的档距就会越小,甚至不做控制,这样的话,就必须在导线上做很多的防震措施!

安全系数和年平均运行张力是两个控制条件,计算时利用安全系数得出低温、大风、覆冰三个比较条件最后再加上年均运行条件,四个控制条件参与比较,最终推算出控制工况,之后利用控制工况推算各个工况的张力

年平运行张力的选取与某种防振措施对应,大的用处仅知用于防振计算并作为架空线受力状态的控制条件之一。。

选25%,意味着每档均需装防振锤,无论档距大小。

6.2 架线设计

6.2.1 导线的张力弧垂计算,在各种气象条件下应采用最大使用张力和平均运行张力作为控

制条件。

地线的张力弧重计算可采用最大使用张力、平均运行张力和导线与地线间的距离作为控制条件。

注:平均运行张力为年平均气温工况的导线或地线的张力。

6.2.2 导线与地线在档距中央的距离,应符合下式要求:

S≥0.012L+1 (1)

式中

S——导线与地线在档距中央的距离,m;

L——档距,m。

6.2.3 导线或地线的最大使用张力,不应大于绞线瞬时破坏张力的40%。

6.2.4 导线或地线的平均运行张力上限及防震措施,应符合表2 的要求。

Q / GDW 180 —2008

5

表2 导线或地线平均运行张力上限及防震措施

平均运行张力上限

档距和环境状况(瞬时破坏张力的百分数)(%)

钢芯铝绞线镀锌钢绞线

防震措施

开阔地区档距<500m 16 12 不需要

非开阔地区档距<500m 18 18 不需要

档距<120m 18 18 不需要

不论档距大小22 —护线条

不论档距大小25 25 防震锤(线)或另加护线条

6.2.5 35kV 和66kV 架空电力线路的导线或地线的初伸长率应通过试验确定,导线或地线的

初伸长对

弧垂的影响,可采用降温法补偿。当无试验资料时,初伸长率和降低的温度可采用表3 所列数值。

表3 导线或地线的初伸长率和降低的温度

类型初伸长度

降低的温度

(℃)

钢芯铝绞线3×10?4~5×10?4 15~25

镀锌钢绞线1×10?4 10

注:截面铝钢比小的钢芯铝绞线应采用表中的下限数值;截面铝钢比大的钢芯铝绞线应采用表中的上限数值。

6.2.6 10kV 及以下架空电力线路的导线初伸长对弧垂的影响,可采用减少弧垂法补偿。弧

垂减小率应

符合下列规定:

6.2.6.1 铝绞线或绝缘铝绞线采用20%;

6.2.6.2 钢芯铝绞线采用12%。

材料的许用应力和安全系数计算三角

第四节 许用应力·安全系数·强度条件. 强度计算。三角函数 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 (5-8) 对于塑性材料,许用应力 (5-9) 其中、分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方 面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成 , 由强度条件确定杆件所需的横截面面积。 3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件 确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的 最大许可载荷。 例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。在 b b n σσ= ][s s n σσ= ][b n s n 0.2~5.1=s n 0.5~0.2=b n ][max max σσ≤= A N ][σN A ≥ ][max σA N ≤

安全系数、抗压计算与纸箱配纸计算

安全系数、抗压计算与纸箱配纸计算 二、耐压强度安全率之设计:瓦楞纸箱耐压强度之安全决定于大气的湿度、纸箱的含水率、仓储时间、堆存方式、输送方式、瓦楞纸箱制造条件等因素,安全率设定过高时成本提高、不经济,过低时在储存及运输过程中,纸箱易被压溃而致内容物发生破损现象。基于前列各因素之影响,瓦楞纸箱之安全率于堆积最下层纸箱之荷重约在2-8倍,一般可分下列数种情形: 1、内容物本身能承受部分重力,运输条件和仓储条件良好之场合,其安全率为2.0-2.5倍。 2、普通条件之场合,安全率为3.0-3.5倍。 3、大气湿度高,内容物具有放湿性之情形,安全率为4.0-8.0倍。 根据瓦楞纸箱强度的计算公式: P=AW(N-1) 式中:P为瓦楞纸箱应达到的耐压强度(Kg) W为单个纸箱的毛重(Kg) A为安全系数。 N为堆码层数。 三、◎影响因子与耐压强度之关系性 A、水分与压缩强度之关系: 原纸长时间处在大气湿度相同之状况下,其含水率会达到平衡状态,瓦楞纸箱亦具有此种性质,瓦楞纸箱之水分含量随大气湿度之增减而增减,又由于瓦楞纸箱之耐压强度亦随水分含量之增减而增减,其变化如下: B、堆积日数与耐压强度之关系:

瓦楞纸箱在荷重状态下,长时间堆积保存会产生疲劳现象,纸箱耐压强度逐渐下降。 C、堆积方式对耐压强度之影响: 通常堆积方式分为(a)上下平行堆积(b)井字堆积(c)砌砖式堆积(d)中间堆积(e)十字堆积,耐压强度以(a)之方式最优,但是,纸箱长度太长时容易倒,(b)(c)之堆积方式较为稳固,耐压强度约减少20-30%,(d)之堆积方式,耐压强度降低约30-40%(e)之堆积最差,耐压强度仅为(a)之20-30%。如在每一层之间加放一层垫片,则其耐压强度均增强(a)方式增加10-15%,(b)方式增加30-40%,(d)方式增加50-60%。 D、印刷方式对耐压强度之影响: (印刷过程:制版→排版→贴板→上机调试→印刷→模切),印刷过程中要严格控制好压力,一般压印2mm,纸箱之耐压强度受印刷方式、印刷面积及印压之影响最大。(1)印刷方式:油性印刷和Flexo印刷可分为二种方式比较(a)两侧面呈带状印刷(b)两侧面和两端面呈带状印刷,印刷面积逐渐扩大。 (a)情况:Flexo印刷约降低10%,油性印刷约降低25% (b)情况:Flexo印刷约降低15%,油性印刷约降低38% (2)印刷面积: (a)整版印刷约降低40% (b)横带状印刷:纸箱中央部位,宽度5cm时约降低35% 纸箱上缘部位,宽度5cm时约降低30% 纸箱上缘及下缘不为各宽5cm时约降低37% (3)印压:印压大小与耐压强度之变化取决于文字印刷、图案印刷之深浅。 E、纸箱之初期耐压强度及残余耐压强度: 纸箱在使用过程中,于堆存初期所能承受之耐压强度称为初期耐压强度,此强度为纸箱设计时所需之耐压强度。纸箱在压溃前所能承受之耐压强度称为残余耐压强度,约为初期耐压强度之50%,此转折点为纸箱设计上十分重要的一环。 初期提高残余耐压强度有下列方法: (a)提高瓦楞芯纸之基重,由125g/m2提高为160g/m2,其残余耐压强度可由50%提高为60%。 (b)选择强防水性之原纸。 (8)、瓦楞纸箱之压缩变形量: 瓦楞纸箱的设计除要注意纸箱本身的各种强度外,同时亦应注意受压变形量的问题,变形量最大为A瓦楞,其次为C瓦楞,再次为B瓦楞,其情形和各型承受压力之大小相反,如已知B瓦楞之耐压强度已够用,则采用B瓦楞,因B瓦楞之变形量最小。 F、必要耐压强度: 前述各种因素均足以影响瓦楞纸箱耐压强度,且分别导致耐压强度呈不同比例之劣化,所以,瓦楞纸箱之必要耐压强度公式如下: P=X/(1-a)(1-b)(1-c)(1-d)(1-e) P:瓦楞纸箱之必要耐压强度 X:最底部纸箱之荷重 a-e:各种条件之劣化率 a:储存条件劣化率(10日)--35% b:大气条件劣化率(90%R.H.)--35% c:正常堆积劣化率--20% d:装卸输送之振动与冲击劣化率--15% e:印刷劣化率--10%

安全系数算法

3 安全度分析 根据标准图的设计说明,隧道按照喷锚构筑法原理,衬砌结构由初支和二次衬砌组成,支护参数主要以工程类比为主,并辅以结构数值分析检算。计算时,初期支护为主要承载结构。Ⅱ~Ⅲ级围岩二次衬砌作为安全储备,按承受围岩荷载的30% 检算;Ⅳ~Ⅴ级围岩二次衬砌作为承载结构,分别按承受围岩荷载的50%~70% 检算,得出荷载与结构安全系数。 3.1 围岩压力计算 衬砌荷载根据隧道的地形和地质条件、埋置深度、结构特征和施工方法等因素,按有关公式计算或按工程类比确定,主要考虑围岩压力、结构自重、围岩约束衬砌变形的弹性反力等,不考虑列车活载、冻胀力、地下水压等附加荷载。当施工发现其与设计不符时,应及时修正。对复杂地质条件的隧道,必要时应通过实地量测确定荷载的计算值及其分布规律,本图考虑在浅埋地段的隧道视具体情况采用加强衬砌。 3.1.1 深埋隧道围岩压力计算 计算深埋隧道衬砌时,围岩压力按松散压力考虑,其垂直及水平匀布压力可按下列规定确定。 (1)竖直压力 10.452S q h γγω-=?=??? (3-1) 式中: q ——围岩垂直匀布压力(kPa ); γ——围岩重度(kN/m3); h ——围岩压力计算高度(m ); S ——围岩级别; ω——宽度影响系数,1(5)i B ω=+-; B ——坑道宽度(m ); i ——坑道宽度每增减1m 时的围岩压力增减率。当B<5m 时,取i =0.2, B>5m 时,可取i =0.1。 (2)侧压力 水平匀布压力可按下式计算确定。

e q λ=? (3-2) 式中:λ——侧压力系数,其取值参照围岩级别分别取值。 3.1.2 浅埋隧道围岩压力计算 地面基本水平的浅埋隧道,所受的荷载具有对称性。其计算为: (1)竖直压力 tan 1h q h B γθγ?? =- ?? ? (3-3) [] θ?θ?ββ?βλtan tan )tan (tan tan 1tan tan tan c c c +-+-= (3-4) θ ????βtan tan ) tan()1(tan tan tan 2-++=c c c c (3-5) a h h 5.2= (3-6) 10.452S a h ω-=?? (3-7) ()10.10.5B ω=+?- (3-8) (2)侧压力 λγi i h e = (3-9) 式中: q ——垂直压力(N/m 2); γ——围岩重度(N/m3); h ——洞顶地面高度(m); θ——洞顶土柱两侧摩擦角(°); λ——侧压力系数,按照围岩级别分别取值; h i ——内外侧任意点至地面的距离(m); c ?——围岩计算摩擦角(°); β——产生最大推力时的破裂角(°); a h ——深埋隧道垂直荷载计算高度(m ); S ——围岩级别; ω——深埋隧道的宽度影响系数; B ——隧道开挖跨度(m )。

安全系数计算

第四章安全系数计算 根据行业标准《高处作业吊篮安全规则》相关规定:钢丝绳的直径不小于6mm,钢丝绳安全系数不小于9等要求 我公司在此方案中选用8mm的钢丝绳, 钢丝绳选用2*8mm的钢丝绳; 吊篮自重1.3KN,吊篮内活荷载考虑5KN计算 则垂直力:1.3x1.2+1.2x5=7.56KN 钢丝绳受力简图 当吊篮在最右侧时钢丝绳受力最大,只有F2一根钢丝绳承担荷载,用此工况对钢丝绳金星受力计算,对此种工进行节点力分析:F2=W=7.56KN 钢管按照等厚焊接焊角尺寸t=2.0mm,钢管焊接以直角焊缝处理。F=N/helw=8.56/5x2.0x200=3.424N/mm2<160N/mm2 满足焊缝设计值。 吊篮架在使用过程中应每日做到检查一遍,确保安全后才能进入操作,吊篮架需进行定期检查和维护,以避免事故的发生。 第五章吊篮的安全维护和注意事项 (1)加强现场安全检查,使用吊篮前必须由专业人员检查吊篮包括:钢丝绳、焊接缝、U型卡环、工作平台、机械等是否安全可靠;对吊篮的焊缝和用于吊篮悬吊的屋面钢结构的焊缝都需要进行全面检查;对施工工人安全带安全性进行检查,不符合要求的及时更换。 (2)在吊篮施工中施工工人必须戴好安全帽和安全带。安全带挂在结构檩条钢结构 (3)作业前有工长进行安全讲话,挺醒工人对当日工作环境进行安全检查,坚决杜绝违章指挥及违章作业。 (4)坚决杜绝在吊篮作业时打闹或干扰他人工作,禁止在作业时间向下扔物料及传递工具。零散物件放入工具包。 (5)五级(含五级)以上大风机下雨严禁使用吊篮。 (6)严禁随意自拆自改任何吊篮配件,严禁超载运行。 (7)施工吊篮下方必须挂警示牌或安全警示旗进行隔离,并派人监护。 (8)完工后把吊篮内工具及物品清理完毕,用绳子与建筑物固定,并认真做好场地清理。 (9)明确每一个吊篮的编号和负责人。每天上下班都由安全负责人,发现问题及时处理。 (10)吊篮吊挂前应全面检查焊缝是否脱焊和漏焊。 (11)吊篮架在安装操作中遇4级以上大风应停止作业,并安排专人将吊篮架用棕绳与钢结构栓牢固定。 (12)施工过程中施工人员不得在两吊篮间跨越。 (13)吊篮移位时,篮内严禁站人。

许用应力和安全系数的计算-推荐下载

许用应力和安全系数的计算 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

套管安全系数计算

套管安全系数计算如下表: 抗拉安全系数=68.6710008.95011.8185.02286=? ??KN KN P P = 拉 额 8 .72 .1110008.9- =: 其中浮力系数下深每米重量=浮力系数钢 拉P P m ρ??? 36.20383 .0791.7== 抗挤系数=抗拉 额 MPa P P P 抗挤力=0.00981×〔1.2-(1-0.65)×1.2〕×50=0.383 P 抗挤力=0.00981×〔×ρ固井时的泥浆密度-(1-掏空系数0.65)×ρ下次泥浆密度 〕 32588.0823.18==抗内压系数=抗内压额内 MPa MPa P P 井底最大内压力=0.00981×1.20×50=0.588MPa P 内压力=0.00981×(ρ下次最大泥浆-ρ地层水)×套管下深 23.31000 8 .9202053.5985.09.3233=抗拉系数= ???KN ()[]38.12020 2.165.012.100981.0305.21=抗挤系数=??--?MPa 67.12020 2.100981.0645 .139=抗内压系数= ?? 油套φ139.7 N80×9.17

38.41000 8 .9175076.2985.08.1903=抗拉系数= ???KN ()[]21.23600 2.165.012.100981.0881.60=抗挤系数=??--?MPa 50.13600 2.100981.0363 .63=抗内压系数= ?? 〔S 抗挤〕=1.0~1.125 〔S 抗内压〕=1.05~1.15 〔S 抗拉〕=1.60~2.00 说明: ①本井在计算最大内压力时忽略了地层水产生液柱压力; ②泥浆密度均采用1.2g/cm ; ③各额定压力查钻井手册表3-8(第160~180页)。

钢丝绳安全系数计算2

绞车计算 富源县祥达煤矿机运部二〇〇八年十二月

绞车计算 一、副井提升系统概况 1、初步设计为:JTP1.6×1.5-24绞车提升,提升速度2.5m/s,铺设18Kg/m钢轨提升容器:4辆MF0.75-6型翻斗式矿车串车提矸,2辆XRC15-6/6人行车提人,提升钢丝绳为21.5NAT6×19+NF1665ZS320-Ⅰ,钢丝绳安全系数:提矸7.14,提人10.2,生产能力15万t/a。 2、实际安装为:JKY2.0/1.5液压绞车,提升速度3m/s, 铺设24kg/m 钢轨,提升容器7辆MF0.75-6型翻斗式矿车提矸,2辆XRB-6/6人行车提人,人行车规格:头车,尾车规格:3960×1222×1538mm,提升斜长:L物=684m、L人=660m;提升容器重量:矿车自重G0=445kg、矿车载重G=1020kg,提升车数n=8;人行车:人行车头车重量G头=2200kg、乘人重量G人=30×75=2250kg;提升钢丝绳为26NAT6T ×7+NF1770 ZS,钢丝绳重量Pk=2.744kg/m,钢丝绳公称抗拉强度R0=1770MPa,钢丝绳最小破断拉力总和(查贵州钢丝绳产品质量证明书)Fh=449KN,实际值为469KN,散煤密度1100kg/m3,散矸密度1600kg/m3,矿车装满系数0.85。 二、计算钢丝绳安全系数 ㈠挂8辆矿车: 1、计算钢丝绳提矸时的安全系数 ⑴钢丝绳最大静张力计算 Q j=P k L物(sinα+f2cosα)+n(G0+G)(sinα+f1cosα)

=2.744×684(sin25°+0.20cos25°)+8(445+1020)(sin25°+0.01cos25°) =6193 (kg) 式中P k---------------钢丝绳重量(kg/m) L物--------------提升距离(m) α---------------井巷倾角 n----------------串车数 f1----------------提升容器在倾斜轨道上运行的摩擦系数:0.01 f2----------------钢丝绳的摩擦系数:0.2 ⑵钢丝绳安全系数 理论计算值:m L=F h/Q j=449×103/(6193×9.81)=7.39﹤7.5不合格挂绳时:m G=F h′/Q j=469×103/(6193×9.81)=7.72合格 2、提人时钢丝绳安全系数 ⑴钢丝绳最大静张力计算 Q j′=P k L人(sinα+f2cosα)+ (2G头+ G人)(sinα+f1cosα) =2.744×660(sin25°+0.20cos25°)+ (2×2200+2250)(sin25°+0.01cos25°) =3964(kg) ⑵钢丝绳安全系数 理论计算值:m′L= F h/Q j=449×103/(3964×9.81)=11.54 挂绳时:m′G= F h′/Q j′=469×103/(6193×9.81)=12.06>9.0合格 三、连接装置计算

机械设计中的安全系数选择问题

工程中的材料强度、刚度、稳定性。 强度-构件在确定的外力作用下,不发生破坏或过量塑性变形的能力。 杆-拉杆与压杆。 工程中承受拉伸的杆件统称为拉杆,受压的杆件成为杆或柱,承受扭转的杆件称为轴,承受弯曲的杆件统称为梁。 在工程力学中,把一些杆轴交汇于一点的工程结构称为桁架结构,这种结构受力特征是内力只有轴力,没有弯矩和剪力。如:井架的主体桁架、建筑脚手架、三角形屋架梁等。 许用应力与安全系数 最近听到对于建井结构安全的一些言论,有的说安全凭经验即可,我原来怎样用的,现在怎样用是没有问题的;有的说,计算是什么结果,应该遵守。 用伟人毛泽东的哲学思想是“实践—理论—实践”, 我们正常工作中选用的钢丝绳安全系数、钢材安全系数许用应力和安全系数都是比较成熟的,是规范推荐值或强制值。 在非标准或特殊情况下,安全应由自己评估。许用应力与安全系数常常应由自己选取决策。强度—在确定的外力作用下,不发生破坏的能力。 刚度—在确定的外力作用下,变形或位移在工程允许的范围内。 稳定性—在可能的外力作用下不会发生突然转变的能力。例如:建筑施工脚手架,强度、刚度能满足,但由于局部结构不稳定,使整个脚手架倾覆或塌陷。 材料名称屈服点σs抗拉强度σb抗剪强度τ单位材料使用地点 Q235235375MPa或N/mm^2普通结构 45355600轴类件 30CrMnTi1470? 60Si2CrVA16781865钢丝 安全系数S应该综合荷载确定的准程度、材料性能数据的可靠性、所有计算方法的合理性、加工装配精度以及所设计的零件的重要性来确定。各行各业都有一些经验的安全系数,目前均偏于保守。目前,流行的安全系数法是部分系数法,他将各个对安全系数有影响的因素分别用一个分系数如:S1、S2、……标示,这些系数的乘积即即为安全系数:S=S1S2S3。。。。在实际应用中,取大取小带有一定主观性,即一般取大值或中间值,考虑的因素越多,系数值越大。 名称S? 抗疲劳计算系数~3? 抗变形计算系数~2? 抗断裂计算系数2~4? 抗不稳定计算系数3~5? 工作重要性系数~? 计算误差系数~? 轧制工艺可靠性系数~? 锻造工艺可靠性系数~? 铸造工艺可靠性系数~? 使用磨损系数~? 锈蚀系数~? 钢丝绳结构系数? 案例:凿井提升钩头的安全系数S怎样确定?

钢丝绳安全系数计算

绞车计算 富源县祥达煤矿机运部二00八年九月

绞车计算 一、副井提升系统概况 1、初步设计为:JTP1.6X 1.5-24绞车提升,提升速度2.5m/s,铺设 18Kg/m钢轨提升容器:4辆MF0.75-6型翻斗式矿车串车提矸,2辆XRC15-6/6 人行车提人,提升钢丝绳为21.5NAT6X 19+ NF1665ZS320- 1,钢丝绳安全系数:提矸7.14,提人10.2,生产能力15万t/a。 2、实际安装为:JKY2.0/1.5 液压绞车,提升速度3m/s, 铺设24kg/m 钢轨,提升容器8 辆MF0.75-6 型翻斗式矿车提矸, 2 辆XRB-6/6 人行车提人,人行车规格:头车,尾车规格:3960X 1222X 1538mm提升斜长:L物=684m L人=660m提升容器重量:矿车自重G0=445kg 矿车载重G=1020kg提升车数n=6;人行车:人行车头车重量G头=2200kg、乘人重量G人=30X 75= 2250kg;提升钢丝绳为26NAT& 19+ NF1670 ZS320-I,钢丝绳重量Pk=2.51kg/m,钢丝绳公称抗拉强度R0=1670MPs 钢丝绳最小破断拉力总和(查贵州钢丝绳产品质量证明书)Fh=414KN实际值为459KN散煤密度1100kg/m3,散矸密度1600kg/m3,矿车装满系数 0.85。 二、计算钢丝绳安全系数 ⑴、计算钢丝绳提矸时的安全系数 钢丝绳最大静张力计算60KN Q=P k L 物(sin a +f2cos a )+n(G o+G)(sin a +f i cos a ) =2.75 x 684(sin25 °+0.20cos25 °)+11000(sin25 +0.01cos25 ° )

起重机械计算的基本原则及安全系数

起重机械计算的基本原则及安全系数(图文) 1.计算的基本原则 为保证起重机安全、正常地工作,其金属结构和机构的零部件应满足强度、稳定性和刚度的要求。强度和稳定性要求是指结构构件在载荷作用下产生的内力不应超过许用的承载能力(指强度、疲劳强度和稳定性方面的许用承载能力);刚度要求是指结构在载荷作用下产生的变形量不应超过许用的变形值,以及结构的自振周期不应超过许用的振动周期。(最专业的安全生产管理-风险世界网) 起重机的零部件和金属结构应进行以下计算:①疲劳、磨损或发热的计算;②强度计算;③强度验算。与这三类计算相适应,起重机的计算载荷有下列三种组合: (1)寿命(耐久性)计算载荷--第Ⅰ类载荷。该载荷是用来计算零部件或金属结构的耐久性、磨损或发热的。按正常工作时的等效载荷进行计算,不仅计算载荷大小,还要考虑它们的作用时间。 对于受变载荷作用的机构零件和金属结构,当应力变化循环次数足够多时,应进行疲劳计算;当应力变化循环次数较少或很少时,就不必进行疲劳计算。工作级别是A6,A7,A8级起重机的金属结构构件和机构零件应验算疲劳。 (2)强度计算载荷--第Ⅱ类载荷。该类载荷是用来计算零部件或金属结构的强度、受压和平面弯曲构件的稳定性、结构件的刚度、起重机的整体稳定性与轮压的,按工作状态最大载荷进行强度计算。确定强度计算载荷时,应选取可能出现的最不利的载荷组合。 (3)验算载荷--第Ⅲ类载荷。该类载荷是用来验算起重机的某些装置(如夹轨器)、变幅机构、支承旋转装置的某些零件和金属结构的强度和构件的稳定性,以及起重机的整体稳定性的,按非工作状态最大载荷及特殊载荷(安装载荷、运输载荷及冲击载荷等)进行强度验算。 在起重机事故处理时,由金属结构和机构的零部件破坏导致的事故,应进行必要的验算。验算时,按实际工况的实际载荷进行。 2.计算方法 目前起重机的计算采用许用应力法,即在强度计算中以材料的屈服极限,在稳定性计算中以稳定临界应力,在疲劳强度计算中以疲劳强度极限除以一定的安全系数,分另得到强度、稳定性和疲劳强度的许用应力。结构构件的计算应力不得超过其相应的许用值。 许用应力法计算的步骤是:根据相应的计算载荷确定计算应力、根据所用材料的机械特性确定强度极限,然后进行比较,使强度极限与计算应力的比等于或大于安全系数。强度验算应满足不等式:

相关文档