文档库 最新最全的文档下载
当前位置:文档库 › 挑战高中物理压轴题

挑战高中物理压轴题

挑战高中物理压轴题
挑战高中物理压轴题

挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求:

(1)被释放前弹簧的弹性势能?

(2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件?

(3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道

高为0.01m的某一点P?

2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.

.将一根质量为有一匀强磁场垂直于导轨平面,磁感应强度为B

m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求:

(1)金属棒达到的稳定速度;

(2)金属棒从静止开始运动到cd的过程中,电

阻R上产生的热量;

(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

3、如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为

冲上轨道,通过圆形质点的小物块从轨道右侧A点以初速度v

轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知

=6m/s,物块质量m=1kg,与PQ段间的动摩R=0.4m,l=2.5m,v

擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:(1)物块经过圆轨道最高点B时

对轨道的压力;

(2)物块从Q运动到P的时间及

弹簧获得的最大弹性势能;

度是多少时,物块恰能不脱离轨道返回A点继续向右运动.

4、如图所示,倾角300的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接,轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直B

1

=1T.现将两质量均为m=0.2kg,于倾斜轨道平面向下,大小B

2

水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.(1)求导体棒cd沿斜轨道下滑的最大速度的大小;

(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁

场Ⅱ的磁感应强度随时间变化,将cd棒开始

运动的时刻记为t=0,此时磁场Ⅱ的磁感应

=1T,试求cd棒在倾斜轨道上下滑

强度为B

的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.

5、如图所示质量为m=1kg的滑块(可视为质点)由斜面上P点以初动能E

K0

=20J沿斜面向上运动,当其向上经过Q点时动能

E

KQ =8J,机械能的变化量ΔE

=-3J,斜面与水平夹角α=37°。

PA间距离l

=0.625m,当滑块向下经过A点并通过光滑小圆弧后

滑上质量M=0.25kg的木板 (经过小圆弧时无机械能损失),滑上木板瞬间触发一感应开关使木板与斜面底端解除锁定(当滑块滑过感应开关时,木板与斜面不再连接),木板长L=2.5m,木板与

滑块间动摩擦因数μ

1

=0.20,木板与地面的动摩擦因数μ2=0.10。滑块带动木板在地面上向右运动,当木板与右侧等高光滑平台相碰时再次触发感应开关使木板与平台锁定。滑块沿平台向右滑上光滑的半径R=0.1m的光滑圆轨道(滑块在木板上滑行时,未从木板上滑下)。

求:(1)物块与斜面间摩擦力大小;

(2)木块经过A点时的速度大小v

1

(3)为保证滑块通过圆轨道最高点,

AB间距离d应满足什么条件?

6、如图甲所示,弯折成90°角的两根足够长金属导轨平行放置,形成左右两导轨平面,左导轨平面与水平面成53°角,右导轨平面与水平面成37°角,两导轨相距L=0.2m,电阻不计。质量均为m=0.1kg,电阻均为R=0.1

Ω的金属杆ab、cd与导轨垂直接

触形成闭合回路,金属杆与导轨间

的动摩擦因数均为μ=0.5,整个装

置处于磁感应强度大小为B=1.0T,方向平行于左导轨平面且垂直右导轨平面向上的匀强磁场中。t=0时刻开始,ab杆以初速度沿右导轨平面下滑。t=ls时刻开始,对ab杆施加一垂直ab v

1

杆且平行右导轨平面向下的力F,使ab开始作匀加速直线运动。cd杆运动的v﹣t图象如图乙所示(其中第1s、第3s内图线为直线)。若两杆下滑过程均保持与导轨垂直且接触良好,g取10m/s2,sin37°=0.6,cos37°=0.8.

(2)ab杆的初速度v

1

(3)若第2s内力F所做的功为9J,求第2s内cd杆所产生的焦耳热。

7、如图所示是倾角θ=37o的固定光滑斜面,两端有垂直于斜面的固定挡板P、Q,PQ距离L=2m,质量M=1.0kg的木块A(可

靠在挡板P处,A木块与斜面顶端的电动机间用平行于斜面不可伸长的轻绳相连接,现给木块A沿斜面向上的初速度,同时开动

=1.6m/s沿斜面向上做匀速直电动机保证木块A一直以初速度v

=0.5,线运动,已知木块A的下表面与木板B间动摩擦因数μ

1

经过时间t,当B板右端到达Q处时刻,立刻关闭电动机,同时锁定A、B物体此时的位置。然后将A物体上下面翻转,使得A 原来的上表面与木板B接触,已知翻转后的A、B接触面间的动

=0.25,且连接A与电动机的绳子仍与斜面平摩擦因数变为μ

2

行。现在给A向下的初速度v

=2m/s,同时释放木板B,并开动

1

沿斜面向下做匀速直线运动,直到电动机保证A木块一直以v

1

木板B与挡板P接触时关闭电动机并锁定A、B位置。求:(1)B木板沿斜面向上加速运动过程的加速度

大小;

(2)A、B沿斜面上升过程所经历的时间t;

(3)A、B沿斜面向下开始运动到木板B左端与P接触时,这段过程中A、B间摩擦产生的热量。

8、如图甲所示,两根足够长的平行光滑金属导轨MN 、PQ 被固定在水平面上,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表V ,电阻为r =2Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2,已知R 1=2Ω,R 2=1Ω,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场,CE =0.2m ,磁感应强度随时间的变化规律如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右的恒力F ,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场区域内运动的过程中电压表的示数始终保持不变.求:

(1)t =0.1s 时电压表的示数; (2)恒力F 的大小;

(3)从t =0时刻到金属棒运动出磁场的过程中整个电路产生的热量.

9、如图所示·固定在竖着平面内的光滑绝缘管道ABCDQ的A、Q 两端与倾角θ=37°的传送带相切。不计管道内外径的差值.AB =0.4 m的圆弧,CDQ部分也是圆

部分为半径R

1

弧.D为最高点,BC部分水平,且仅有BC段处于

场强大小E=4×103 N/C,方向水平向右的匀强

电场中,传送带长L=1.8 m,传送轮半径忽略不

计。现将一可视为质点的带正电滑块从传送带

上的Q处由静止释放,滑块能从A处平滑进入管道。已知滑块的质量m=l kg、电荷量q=5×10-4C.滑块与传送带之间的动摩擦因

电荷量始终保持不变,最大静摩擦力等于滑动摩擦力.g=10 m /s2。

(1)若传送带不动,求滑块第一次滑到A处的动能;

(2)若传送带不动·求滑块第一次滑到C处时所受圆弧轨道的弹力;

(3)改变传送带逆时针的转动速度以及滑块在Q处滑上传送带的初速度,可以使滑块刚滑上传送带就形成一个稳定的逆时针循环(即滑块每次通过装置中同一位置的速度相同)。在所有可能的循环中,求传送带速度的最小值。(结果可用根号表示)

10、如图所示,宽为L=2m、足够长的金属导轨MN和M′N′放在倾角为θ=30°的斜面上,在N和N′之间连有一个阻值为R=1.2

m=0.8kg、电阻为r=0.4Ω的金属滑杆,导轨的电阻不计.用轻绳通过定滑轮将电动小车与滑杆的中点相连,绳与滑杆的连线平行于斜面,开始时小车位于滑轮的正下方水平面上的P处(小车可视为质点),滑轮离小车的高度H=4.0m.在导轨的NN′和OO′所围的区域存在一个磁感应强度B=1.0T、方向垂直于斜面向上的匀强磁场,此区域内滑杆和导轨间的动摩擦因数为μ=,此区域外导轨是光滑的.电动小车沿PS方向以v=1.0m/s的速度匀速前进时,滑杆经d=1m的位移由AA′滑到OO′位置.(g取10m/s2)求:

(1)请问滑杆AA′滑到OO′位置时的速度是多大?

(2)若滑杆滑到OO′位置时细绳中拉力为10.1N,滑杆通过OO′位置时的加速度?

(3)若滑杆运动到OO′位置时绳子突然断了,则从断绳到滑杆回到AA′位置过程中,电阻R

上产生的热量Q为多少?(设

导轨足够长,滑杆滑回到AA’

时恰好做匀速直线运动.)

11、如图所示,如图,长为L 的一对平行金属板平行正对放置,间距33 d ,板间加上一定的电压.现从左端沿中心轴线方向入射一个质量为m 、带电量为+q 的带电微粒,射入时的初速度大小为v 0.一段时间后微粒恰好从下板边缘P 1射出电场,并同时进入正三角

形区域.已知正三角形区域内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板平齐,底边BC 与金属板平行.三角形区域的右侧也存在垂直纸面向里、范围足够大的匀强磁场B 2,且B 2=4B 1.不计微粒的重力,忽略极板区域外部的电场.

(1)求板间的电压U 和微粒从电场中射出时的速度大小和方

感应强度B1的大小.

(3)若微粒最后射出磁场区域时与射出的边界成30°的夹角,求三角形的边长.

12、如图所示,两块相同的薄木板紧挨着静止在水平地面上,每块木板的质量为M=1.0 kg,长度为L =1.0 m,它们与地面间的动摩擦因数μ1=0.10。木板1的左端放有一块质量为m=1.0 kg的小铅块(可视为质点),它与木板间的动摩擦因数为μ2=0.25。现突然给铅块一个水平向右的初速度,使其在木板1上滑行。假设最大静摩擦力与滑动摩擦力大小相等,取重力加速度g=10 m/s2。

(1)当铅块的初速度v0=2.0 m/s时,铅块相对地面滑动的距离是多大?

(2)若铅块的初速度v1=3.0 m/s,铅块停止运动时与木板2左端的距离是多大?

13、如图1所示,匀强磁场的磁感应强度B为0.5T,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨MPN(电阻忽略不计),MP和NP长度均为2.5m,MN 连线水平,长为3m,以MN的中点O为原点,OP为x轴建立一维坐标系Ox,一根粗细均匀的金属杆CD,长度d为3m,质量m为1kg,电阻R为0.3Ω,在拉力F的作用下,从MN处以恒定速度v=1m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好),g 取10m/s2.

(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8m处电势差U

CD

(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出F﹣x关系图象;

(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.

14、如图所示,某货场需将质量为m的货物(可视为质点)从高处运送至地面,现利用固定于地面的倾斜轨道传送货物,使货物由轨道顶端无初速滑下,轨道与水平面成θ=37°角。地面上紧靠轨道依次排放两块完全相同木板A、B,长度均为l=2m,厚度不计,质量均为m,木板上表面与轨道末端平滑连接。货物与

倾斜轨道间动摩擦因数为μ

0=0.125,货物与木板间动摩擦因数为μ

1

,木板与地面间动摩擦因数μ

2

=0.2。

回答下列问题:(最大静摩擦力与滑动摩擦力大小相等,sin37°=0.6,cos37°=0.8,g=10m/s2)

(1)若货物从离地面高h

0=1.5m处由静止滑下,求货物到达轨道末端时的速度v

(2)若货物滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求μ

1

应满足的条件;

(3)若μ

1

=0.5,为使货物恰能到达B的最右端,货物由静止下滑的高度h应为多少?

15、下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=)的山坡C,上面有一质量为m 的石板B,其上下表面与斜坡平行;B上有一碎石

堆A(含有大量泥土),A和B均处于静止状态,

如图所示.假设某次暴雨中,A浸透雨水后总质

量也为m(可视为质量不变的滑块),在极短时间

内,A、B间的动摩擦因数μ

1减小为,B、C间的动摩擦因数μ

2

减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B 的上表面突然变为光滑,μ

2

保持不变.已知A开始运动时,A 离B下边缘的距离l=27m,C足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=10m/s2.求:

(1)在0~2s时间内A和B加速度的大小;(2)A在B上总的运动时间。

16、如图所示,斜面倾角为θ,在斜面底端垂直斜面固定一挡板,轻质弹簧一端固定在挡板上,质量为M=1.0 kg的木板与轻弹簧接触但不拴接,弹簧与斜面平行且为原长,在木板右上端放一质量为m=2. 0 kg的小金属块,金属块与木

板间的动摩擦因数为μ

=0.75,木板与斜

1

=0.25,

面粗糙部分间的动摩擦因数为μ

2

系统处于静止状态.小金属块突然获得一个大小为v

=5.3

1

m/s、方向平行斜面向下的速度,沿木板向下运动.当弹簧被压缩x=0.5 m到P点时,金属块与木板刚好达到相对静止,且此

高考物理压轴题集(精选)

1(20分) 如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 图12 2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止,C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、 ,放手后,木板沿斜面下滑,稳定后弹小球放在斜面上,用手固定木板时,弹簧示数为F 1 簧示数为F ,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地 2 面上)

高考物理复习资料高中物理综合题难题汇编(三)高考物理压轴题汇编

高考物理复习资料高考物理压轴题汇编高中物理综合题难 题汇编(3) 1. (17分)如图所示,两根足够长的光滑直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆达到最大速度v m,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,重力加速度为g。求: (1)金属杆达到最大速度时安培力的大小; (2)磁感应强度的大小; (3)金属杆从静止开始至达到最大速度的过程中杆下降的高度。 2. (16分)如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数 =0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量 m=1.0kg。带正电的小滑块A质量 B m=0.60kg,其受到的电场力大小F=1.2N。假设A所带的电量不影响极板间的电场分布。 A t=0时刻,小滑块A从B表面上的a点以相对地面的速度 v=1.6m/s向左运动,同时,B A (连同极板)以相对地面的速度 v=0.40m/s向右运动。(g取10m/s2)问: B

(1)A 和B 刚开始运动时的加速度大小分别为多少? (2)若A 最远能到达b 点,a 、b 的距离L 应为多少?从t=0时刻至A 运动到b 点时,摩擦力对B 做的功为多少? 3. (18分)如图所示,一个质量为m 的木块,在平行于斜面向上的推力F 作用下,沿着倾角为θ的斜面匀速向上运动,木块与斜面间的动摩擦因数为μ.(θμtan <) (1)求拉力F 的大小; (2)若将平行于斜面向上的推力F 改为水平推力F 作用在木块上,使木块能沿着斜面匀速运动,求水平推力F 的大小。 4. (21分)如图所示,倾角为θ=30°的光滑斜面固定在水平地面上,斜面底端固定一垂直斜面的挡板。质量为m =0.20kg 的物块甲紧靠挡板放在斜面上,轻弹簧一端连接物块甲,另一端自由静止于A 点,再将质量相同的物块乙与弹簧另一端连接,当甲、乙及弹簧均处于静止状态时,乙位于B 点。现用力沿斜面向下缓慢压乙,当其沿斜面下降到C 点时将弹簧锁定,A 、 C 两点间的距离为△L =0.06m 。一个质量也为m 的小球丙从距离乙的斜面上方L =0.40m 处由静止自由下滑,当小球丙与乙将要接触时,弹簧立即被解除锁定。之后小球丙与乙发生碰撞(碰撞时间极短且无机械能损失),碰后立即取走小球丙。当甲第一次刚要离开挡板时,乙的速度为v =2.0m/s 。(甲、乙和小球丙均可看作质点,g 取10m/s 2)求:

2019浙江高考物理压轴题练习

浙江高考物理压轴题练习 1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量04.0=m kg 、电量4102-?+=q C 的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B 点,并沿轨道滑下。已知AB 的竖直高度h =0.45m ,倾斜轨道与水平方向夹角为0 37=α、倾斜轨道长为2.0=L m ,带电小球与倾斜轨道的动摩擦因数5.0=μ。倾斜轨道通过光滑水平轨道CD 与光滑竖直圆轨道相连,在C 点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强3100.2?=E V/m 。(cos37°=0.8,sin37°=0.6,取g=10m/s 2 ) 求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径9.0=R m ,小球进入轨道后可以有多 少次通过竖直圆轨道上距水平轨道高为0.01m 的某一点P ? 解:(1)A 到B 平抛运动:gh v y 22 = 解得: 3=y v m/s 1分 A x v v ==4 m/s 2分 2分 33.01=R m 2分 825.02=R m 2分

要使小球不离开轨道,竖直圆弧轨道的半径33.0≤R m 或825.0≥R m 2分 (3) 9.0=R m >R 2,小球冲上圆轨道H 1=0.825m 高度时速度变为0,然后返回倾斜轨道h 1高处再滑下,然后再次进入圆轨道达到的高度为H 2。 之后物块在竖直圆轨道和倾斜轨道之间往返运动 , 当n =4时,上升的最大高度小于0.01m 则小球共有6次通过距水平轨道高为0.01m 的某一点。 2分 2、如图所示,MN 、PQ 是足够长的光滑平行导轨,其间距为L ,且MP ⊥MN .导轨平面与水平面间的夹角θ=30°.MP 接有电阻R .有一匀强磁场垂直于导轨平面,磁感应强度为B 0.将一根质量为m 的 金属棒ab 紧靠MP 放在导轨上,且与导轨接触良好,金属棒的电阻也为R ,其余电阻均不计.现用与导轨平行的恒力F =mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP 平行.当金属棒滑行至cd 处时已经达到稳定速度,cd 到MP 的距离为S .已知重力加速度为g ,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd 的过程中,电阻R 上产生的热量; (3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B 随时间t 变化的关系式. 解:(1)当金属棒稳定运动时做匀速运动,则有 F =mg sin θ+F 安 又安培力 F 安=R v L B 222 解得:2 2L B mgR v = (2)金属棒从静止开始运动到cd 的过程,由动能定理得:

高考物理压轴题和高级高中物理初赛难题汇集一

高考物理压轴题和高级高中物理初赛难题汇集 一 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

高考物理压轴题和高中物理初赛难题汇集-1 1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定 物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -G r Mm .国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能 解析: 由G 2r Mm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 = G ) (2h R Mm +。 卫星在空间站上的引力势能在 E p = -G h R Mm + 机械能为 E 1 = E k + E p =-G ) (2h R Mm + 同步卫星在轨道上正常运行时有 G 2r Mm =m ω2 r 故其轨道半径 r = 3 2 ω MG 由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G 2 Mm 3 2 GM ω =-2 1 m (3ωGM )2

卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离 开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -21 32ωGM +G h R Mm + 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=,cos37°=,求: (1)物块与斜面间的动摩擦因数μ; (2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力) 解析: (1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡 解得 f=20N N=40N 因为N F N =,由N F f μ=得5.02 1 === N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。当物体匀速上行时力F '取最小。由平衡条件 且有N f '='μ 联立上三式求解得 N F 100=' 3. 一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m·s-2.由于受到空气阻力的作用,在一年时间内,人造卫星的高度要下降△H=0.50km .已知物体在密度为ρ的 流体中以速度v 运动时受到的阻力F 可表示为F =21 ρACv2,式中A 是物体的

挑战高中物理压轴题

挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道 高为0.01m的某一点P?

2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R. .将一根质量为有一匀强磁场垂直于导轨平面,磁感应强度为B m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd的过程中,电 阻R上产生的热量; (3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P? 2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一根质量为m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd的过程中,电阻R上产生的热量; (3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使 金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

(完整版)高中物理压轴题精选

50 (22分)如图所示,电容为C 、带电量为Q 、极板间距为d 的电容器固定在绝缘底座上, 两板竖直放置,总质量为M ,整个装置静止在光滑水平面上。在电容器右板上有一小孔,一质量为m 、带电量为+q 的弹丸以速度v 0从小孔水平射入电容器中(不计弹丸重力,设电容器周围电场强度为0),弹丸最远可到达距右板为x 的P 点,求: (1)弹丸在电容器中受到的电场力的大小; (2)x 的值; (3)当弹丸到达P 点时,电容器电容已移动的距离s ; (4)电容器获得的最大速度。 51两块长木板A 、B 的外形完全相同、质量相等,长度均为L =1m ,置于光滑的水平面上.一小物块C ,质量也与A 、B 相等,若以水平初速度v 0=2m/s ,滑上B 木板左端,C 恰好能滑到B 木板的右端,与B 保持相对静止.现在让B 静止在水平面上,C 置于B 的左端,木板A 以初速度2v 0向左运动与木板B 发生碰撞,碰后A 、B 速度相同,但A 、B 不粘连.已知C 与A 、C 与B 之间的动摩擦因数相同.(g =10m/s 2 )求: (1)C 与B 之间的动摩擦因数; (2)物块C 最后停在A 上何处? 52(19分)如图所示,一根电阻为R =12Ω的电阻丝做成一个半径为r =1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0.2T ,现有一根质量为m =0.1kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r /2时,棒的速度大小为v 1=3 8 m/s ,下落到经过圆心时棒的速度大小为v 2 = 3 10 m/s ,(取g=10m/s 2) 试求: ⑴下落距离为r /2时棒的加速度, ⑵从开始下落到经过圆心的过程中线框中产生的热量. 53(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作 C B A 2v 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? B o

历年高考物理压轴题精选(三)详细解答

历年高考物理压轴题精选(三) (宁夏卷) 23.(15分) 天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。(引力常量为G ) 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。 质点到达x 轴上A 点时,速度方向与x 轴的夹角?,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角为?,求 (1)粒子在磁场中运动速度的大小: (2)匀强电场的场强大小。 24.(17分) (1)质点在磁场中的轨迹为一圆弧。由于质点飞离磁场时,速度垂直于OC ,故圆弧的圆心在OC 上。依题意,质点轨迹与x 轴的交点为A ,过A 点作与A 点的 速度方向垂直的直线,与OC 交于O '。由几何关系知,AO '垂直于OC ',O '是圆弧的圆心。设圆弧的半径为R ,则有 R =dsin ? ? 由洛化兹力公式和牛顿第二定律得 R v m qvB 2 = ②

将?式代入②式,得 ?sin m qBd v = ③ (2)质点在电场中的运动为类平抛运动。设质点射入电场的速度为v 0,在电场中的加速度为a ,运动时间为t ,则有 v 0=v cos ? ④ v sin ?=at ⑤ d =v 0t ⑥ 联立④⑤⑥得 d v a ??cos sin 2= ⑦ 设电场强度的大小为E ,由牛顿第二定律得 qE =ma ⑧ 联立③⑦⑧得 ??cos 3sin 2m d qB E = ⑨ (海南卷) 16.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x=R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求 (I)粒子到达x=R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (Ⅱ)M 点的横坐标x M . 16.(I)设粒子质量、带电量和入射速度分别为m 、q 和v 0,则电场的场强E 和磁场的磁感应强度B 应满足下述条件 qE=qv o B ①

高考物理压轴题电磁场大全

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方 向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电 量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O / Q ,设O /Q =R /。 由几何关系得: /OQO ?∠= 由余弦定理得:2 /22//()2cos OO R R RR ?=+ - 解得:[] /(2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电场, 电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转 90o ,半径qB mv d r = =φsin ,得m qBd v φsin =; v

高考物理压轴题解析及题型特点-教育文档

2019年高考物理压轴题解析及题型特点 2019年高考物理压轴题特点与解答思路 一份试卷的压轴题,难度大,分值也大,是用来鉴别考生掌握知识与综合应用能力高下的分档题。所以,拿下压轴题,就能胜券在握。 压轴题显著特点 综合的知识多一般是三个以上知识点融汇于一题。譬如:电磁感应综合的压轴题,可以渗透磁场安培力、闭合电路欧姆定律、电功、电功率、功能原理、能量转化与守恒定律、牛顿定律、运动学公式,力学平衡等多个知识点。 物理技能要求高解题时布列的物理方程多,需要等量代换,有时用到待定系数法;研究的物理量是时间、位移或其他相 关物理量的函数时,则通过解析式进行分析讨论;当研究的 物理量出现极值、临界值,可能涉及三角函数,也有用到判别式、不等式性质等。 难易设计有梯度虽说压轴题有难度,但并不是一竿子难到底,让你望题生畏,而是先易后难。通常情况下的第(1)、(2)问,估计绝大多数考生还是有能力和信心完成的,所以,绝对不能全部放弃。 压轴题解答思路 压轴题综合这么多知识点,又能清晰地呈现物理情境。其中,物理问题的发生、变化、发展的全过程,正是我们研究问题

的思路要沿袭的。 分析物理过程根据题设条件,设问所求,把问题的全过程分解为几个与答题有直接关系的子过程,使复杂问题化为简单。有时压轴题的设问前后呼应,即前问对后问有作用,这样子过程中某个结论成为衔接两个设问的纽带;也有的压轴题设 问彼此独立,即前问不影响后问,那就细致地把该子过程分析解答完整。分析过程,看清设问间关系才能使解答胸有成竹。 分析原因与结果针对每一道压轴题,无论从整体还是局部考虑,物理过程都包含有原因与结果。所以,分析原因与结果成为解压轴题的必经之路。譬如:引起电磁感应现象的原因,是导体棒切割磁感线、还是穿过回路的磁通量发生变化,或者两者同作用。导体棒切割磁感线,是受外作用(恒力、变力),还是具有初速度。正是原因不同、研究问题所选用的 物理规律就不同,进而,我们结合题意分析这些原因导致怎样的结果。针对题目需要我们回答的问题,不外乎从受力情况、运动状态、能量转化等方面着手研究,最终得出题目要求的结果。 确定思路方法解压轴题不必刻意追求方法的创新,因为试题知识容量大,综合性强,很难做到解题方法大包大揽的巧妙与简捷。还是踏踏实实地从读题、审题开始。提取复杂情境中有价值信息,明确已知条件、挖掘隐含条件、预测临界条

高中物理常见的物理模型-附带经典63道压轴题

高三物理第二轮总复习 (大纲版) 第9专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、理综卷第18题、天津理综卷第1题、物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、理综卷第20题、物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦

高考物理法拉第电磁感应定律-经典压轴题含答案

一、法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==? 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==?=? (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -?===? 2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α =?,两 侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高 (2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q

高三物理压轴题及其答案

高三物理压轴题及其答案(10道) 1(20分).如图12所示,PR 是一块长为L =4m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1kg ,带电量为q =0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其 正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某 同学设计如图所示实验,在小木板上固定一个轻弹簧, 弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行, 现将木板连同弹簧、小球放在斜面上,用手固定木板 时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后 弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动 摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,图12

历年高考物理压轴题精选(一)详细解答

页眉内容 历年高考物理压轴题精选 (一) 一、力学 2001年全国理综(江苏、安徽、福建卷) 31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H 11、He 4 2等原子核组成。维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 4 2+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 1 1核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H 1 1核组成。 (1)为了研究太阳演化进程,需知道目前太阳的质量M 。已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。试估算目前太阳的质量M 。 (2)已知质子质量m p =1.6726×10 -27 kg ,He 42质量m α=6.6458×10 -27 kg ,电子质量m e =0.9 ×10- 30 kg ,光速c =3×108 m/s 。求每发生一次题中所述的核聚变反应所释放的核能。 (3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。试估算太阳继续保持在主序星阶段还有多少年的寿命。 (估算结果只要求一位有效数字。) 参考解答: (1)估算太阳的质量M 设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知 ① 地球表面处的重力加速度 2R m G g ② 由①、②式联立解得 ③ 以题给数值代入,得M =2×1030 kg ④

高考物理磁场压轴题参考-word

2019高考物理磁场压轴题参考 高考将至,2019年高考将于6月7日如期举行,以下是一篇高考物理磁场压轴题,详细内容点击查看全文。 1如图12所示,PR是一块长为L=4 m的绝缘平板固定在水 平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为 m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为=0.4,取g=10m/s2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 2(10分)如图214所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰 撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大?

(2)到A、B都与挡板碰撞为止,C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F ,放手后,木板沿斜面下滑,稳定后弹簧示数为F ,测得斜面斜角为,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质 量分别为m =m =m,m =3 m,它们与斜面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v 向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好能回到Q点.若木块A静止于P点,木块C从Q点开始以初速度向下运动,经历同样过程,最后木块C停在斜面上的R点,求P、R 间的距离L的大小。 5 如图,足够长的水平传送带始终以大小为v=3m/s的速度向

最新高考物理压轴题常考点及解题方法汇总

最新高考物理压轴题常考点及解题方法汇 总 1,力学综合型 力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高.具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及到运动学、动力学、功能关系等多个规律的综合运用。 应试策略: (1)对于多体问题:要灵活选取研究对象,善于寻找相互联系。 选取研究对象和寻找相互联系是求解多体问题的两个关键.选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。 (2)对于多过程问题:要仔细观察过程特征,妥善运用物理规律。

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键.分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。 (3)对于含有隐含条件的问题:要注重审题,深究细琢,努力挖掘隐含条件。 注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键。通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。 (4)对于存在多种情况的问题:要认真分析制约条件,周密探讨多种情况。 解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。 2,带电粒子运动型 带电粒子运动型计算题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场区.近年来高考重点就是

高考物理压轴题30道

高考物理压轴题 (30道) 1(20分) 如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为 q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用 下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 1.(1)由于物体返回后在磁场中无电场,且仍做 匀速 运动,故知摩擦力为0,所以物体带正电荷.且: mg =qBv 2…………………………………………………………① (2)离开电场后,按动能定理,有:-μ mg 4L =0-2 1mv 2………………………………② 由①式得:v 2=22 m/s 图12

(3)代入前式①求得:B = 2 2 T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向 水 平 向 右 , 且 :( Eq -μmg ) 2 12=L mv 12 -0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq =μ (qBv 1+mg )……………………………④ 由以上③④两式得:?? ?==N/C 2.4m/s 241E v 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为 零,故两物块与挡板碰撞后,C 的速度为零,即0=C v (2)炸药爆炸时有 B B A A v m v m = 解得s m v B /5.1= 又B B A A s m s m =

历年高考物理压轴题精选(二)详细解答

历年高考物理压轴题精选(二) 20XX 年理综(全国卷Ⅰ)(河南、河北、广西、新疆、湖北、江西、等省用) 25.(20分)有个演示实验,在上下面都是金属板的玻璃盒内,放了许多锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。 如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m 的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。不计带电小球对极板间匀强电场的影响。重力加速度为g 。 (1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少? (2)设上述条件已满足,在较长的时间间隔T 内小球做了很多次往返运动。求在T 时间内小球往返运动的次数以及通过电源的总电量。 解析25.解:(1)用Q 表示极板电荷量的大小,q 表示碰后小球电荷量的大小。要 使小球能不停地往返运动,小球所受的向上的电场力至少应大于重力,则 q ε d >mg ① 其中 q=αQ ② 又有 Q=C ε ③ 由以上三式有 ε> mgd αC ④ (2)当小球带正电时,小球所受电场力与重力方向相同,向下做加速运动。以a 1表示其加速度,t 1表示从A 板到B 板所用的时间,则有 q ε d +mg=ma 1郝双制作 ⑤ d=12 a 1t 12 ⑥ 当小球带负电时,小球所受电场力与重力方向相反,向上做加速运动,以a2 表示其

加速度,t 2表示从B 板到A 板所用的时间,则有 q ε d -mg=ma 2 ⑦ d=12 a 2t 22 ⑧ 小球往返一次共用时间为(t 1+t 2),故小球在T 时间内往返的次数 n=T t 1+t 2 ⑨ 由以上关系式得: n= T 2md 2 αC ε2+mgd + 2md 2 αC ε2-mgd ⑩ 小球往返一次通过的电量为2q ,在T 时间内通过电源的总电量 Q'=2qn ○11 由以上两式可得:郝双制作 Q'= 2αC εT 2md 2 αC ε2+mgd + 2md 2 αC ε2-mgd 2007高考北京理综 25.(22分)离子推进器是新一代航天动力装置,可用于卫 星姿态控制和轨道修正。推进剂从图中P 处注入,在A 处电离出正离子,BC 之间加有恒定电压,正离子进入B 时的速度忽略不计,经加速后形成电流为I 的离子束后喷出。已知推进器获得的推力为F ,单位时间内喷出的离子质量为J 。为研究方便,假定离子推进器在太空飞 行时不受其他阻力,忽略推进器运动的速度。⑴求加在B C 间的电压U 离子推进器正常运行,必须在出口D 处向正离子束注入电子,试解释其原因。 ⑴JI F U 22=(动量定理:单位时间内F=Jv ;单位时间内2 2 1Jv UI =,消去v 得 U 。)⑵推进器持续喷出正离子束,会使带有负电荷的电子留在其中,由于库仑力作 用,将严重阻碍正离子的继续喷出。电子积累足够多时,甚至会将喷出的正离子再吸引回来,致使推进器无法正常工作。因此,必须在出口D 处发射电子注入到正离子束中,以中和正离子,使推进器持续推力。 难 三、磁场 20XX 年理综Ⅱ(黑龙江、吉林、广西、云南、贵州等省用) 25.(20分) 如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别 x O P

相关文档
相关文档 最新文档