文档库 最新最全的文档下载
当前位置:文档库 › 回归中缺失值处理方法

回归中缺失值处理方法

回归中缺失值处理方法
回归中缺失值处理方法

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考:

新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种:

①Series mean:表示用整个序列的均值作为替代值。

②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k个数的平均数。也可以选择All,作用同Series mean选项。

“附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。

若选择“全部”,即将所有的观察值作为临近点。

③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。

④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。

线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。

⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。

缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。

*注意:如果序列的第一个和最后一个数据为缺失值,只能利用序列均值和线性趋势值法处理,其他方法不适用。

心理学研究中缺失值处理方法比较

Advances in Psychology 心理学进展, 2019, 9(11), 1843-1849 Published Online November 2019 in Hans. https://www.wendangku.net/doc/227839282.html,/journal/ap https://https://www.wendangku.net/doc/227839282.html,/10.12677/ap.2019.911222 Comparison of Methods for Processing Missing Values in Psychological Research An Wang Hangzhou College of Preschool Teacher Education of Zhejiang Normal University, Hangzhou Zhejiang Received: Oct. 9th, 2019; accepted: Oct. 31st, 2019; published: Nov. 7th, 2019 Abstract Missing data is a common but difficult problem to deal with. This paper briefly introduces several mechanisms of missing data and some general methods to deal with missing data. And the charac-teristics of all kinds of missing data processing method and the suitable conditions are compared. Keywords Missing Value, Missing Mechanism, Filling Methods 心理学研究中缺失值处理方法比较 王安 浙江师范大学杭州幼儿师范学院,浙江杭州 收稿日期:2019年10月9日;录用日期:2019年10月31日;发布日期:2019年11月7日 摘要 数据缺失是一个常见但难以处理的问题。文章简要介绍了数据缺失的几种机制,以及处理缺失数据的一般性方法,并对各种缺失数据的处理方法的特点及适用情况进行了比较。 关键词 缺失值,缺失机制,填补方法

回归中缺失值处理方法

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。

若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。 *注意:如果序列的第一个和最后一个数据为缺失值,只能利用序列均值和线性趋势值法处理,其他方法不适用。

回归中缺失值处理方法

回归中缺失值处理方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k 个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。

spss缺失值处理

spss数据录入时缺失值怎么处理 录入的时候可以直接省略不录入 分析的时候也一般剔除这样的样本。但也有替换的方法,一般有: 均值替换法(mean imputation),即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。 个别替换法(single imputation)通常也被叫做回归替换法(regression imputation),在该个案的其他变量值都是通过回归估计得到的情况下,这种 方法用缺失数据的条件期望值对它进行替换。这虽然是一个无偏估计,但是却倾向于低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。 多重替代法(multiple imputation)(Rubin, 1977) 。 ?它从相似情况中或根据后来在可观测的数据上得到的缺省数据的分布情况给每个缺省数据赋予一个模拟值。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断(Little and Rubin,1987; ubin,1987, 1996)。 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。 (二)均值替换法(Mean Imputation) 在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。 (三)热卡填充法(Hotdecking)

几种常见的缺失数据插补方法

几种常见的缺失数据插补方法 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。 (二)均值替换法(Mean Imputation) 在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。 (三)热卡填充法(Hotdecking)

缺失值处理

缺失值 1. is.na 确实值位置判断 注意: 缺失值被认为是不可比较的,即便是与缺失值自身的比较。这意味着无法使用比较运算 符来检测缺失值是否存在。例如,逻辑测试myvar == NA的结果永远不会为TRUE。作为替代,你只能使用处理缺失值的函数(如本节中所述的那些)来识别出R数据对象中的缺失值。 2. na.omit() 删除不完整观测 manyNAs library(DMwR) manyNAs(data, nORp = 0.2) Arguments data A data frame with the data set. nORp A number controlling when a row is considered to have too many NA values (defaults to 0.2, i.e. 20% of the columns). If no rows satisfy the constraint indicated by the user, a

warning is generated. 按照比例判断缺失. 3. knnImputation K 近邻填补 library(DMwR) knnImputation(data, k = 10, scale = T, meth = "weighAvg", distData = NULL) ? 1 ? 2 Arguments Arguments data A data frame with the data set k The number of nearest neighbours to use (defaults to 10) scale Boolean setting if the data should be scale before finding the nearest neighbours (defaults to T) meth String indicating the method used to calculate the value to fill in each NA. Available values are ‘median’ or ‘weighAvg’ (the default). distData Optionally you may sepecify here a data frame containing the data set that should be used to find the neighbours. This is usefull when filling in NA values on a test set, where you should use only information from the training set. This defaults to NULL, which means that the neighbours will be searched in data Details This function uses the k-nearest neighbours to fill in the unknown (NA) values in a data set. For each case with any NA value it will search for its k most similar cases and use the values of these cases to fill in the unknowns.

大数据缺失值处理

这些缺失值不仅意味着信息空白,更重要的是它会影响后续数据挖掘和统计 分析等工作的进行。一般对缺失值处理的方法包括删除不完整记录、当作特殊值处理或者插补空值。显然,插补的方法不管从量上还是质上,对数据的处理结果都要好于前两种。目前国内外已提出了很多有关缺失值填充的方法。尽管这些方法在各自的应用环境下都得到了很好的效果,但仍然存在一些不足。比如,一些模型像决策树需要指定类属性与条件属性,这样的模型每处理一个属性就要训练一次模型,效率很低。其次,很多算法对高维数据的处理能力有限,引入无用的变量不仅影响执行效率,而且会干扰最终填充效果。第三、在没有真值作为对比的情况下,无法评价不同属性的填充效果。最后,很多算法只适用于小数据集,远远无法满足目前对大量数据的处理要求。为解决上述问题,本文给出了一个基于贝叶斯网和概率推理的填充方法。与常用的贝叶斯网构建算法不同,本文针对缺失值填充这一特定的应用前提,从挖掘属性相关性入手构建网络。建立贝叶斯网时不设定任何目标属性,由影响最大的属性作为根。这一过程不需要用户对数据有太多了解,完全由算法自动完成。根据贝叶斯网自身的条件独立性假设可以分解对多维联合概率的求解,降低在处理高维数据时的复杂度。填充值根据概率推理结果得到。推理产生的概率信息能够反映填充值的不确定程度,即概率越小,准确率越低,反之,准确率越高。这就为评价填充质量提供了一个参考。为使算法适用于混合属性集,本文在贝叶斯网中加入了对连续属性的处理,所有属性的填充均在一个模型下完成。针对大数据集,应用并行技术来解决效率问题。本文给出了算法在Map-Reduce 中的实现。实验部分分别验证了贝叶斯网构建算法和概率推理算法的有效性并对比分析了整个填充算法的准确率;并行处理部分给出了并行效率并分析了影响并行性能的因素。

(完整word版)造成数据缺失的原因

造成数据缺失的原因 在各种实用的数据库中,属性值缺失的情况经常发全甚至是不可避免的。因此,在大多数情况下,信息系统是不完备的,或 者说存在某种程度的不完备。造成数据缺失的原因是多方面的,主要可能有以下几种: 1)有些信息暂时无法获取。例如在医疗数据库中,并非所有病人的所有临床检验结果都能在给定的时间内得到,就致使一部 分属性值空缺出来。又如在申请表数据中,对某些问题的反映依赖于对其他问题的回答。 2)有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写了或对数据理解错误而遗漏,也可能是由于数据采集设备 的故障、存储介质的故障、传输媒体的故障、一些人为因素等原因而丢失了。 3)有些对象的某个或某些属性是不可用的。也就是说,对于这个对象来说,该属性值是不存在的,如一个未婚者的配偶姓名 、一个儿童的固定收入状况等。 4)有些信息(被认为)是不重要的。如一个属性的取值与给定语境是无关的,或训练数据库的设计者并不在乎某个属性的取 值(称为dont-care value)。 5)获取这些信息的代价太大。 6)系统实时性能要求较高,即要求得到这些信息前迅速做出判断或决策。 处理数据缺失的机制 在对缺失数据进行处理前,了解数据缺失的机制和形式是十分必要的。将数据集中不含缺失值的变量(属性)称为完全变量

,数据集中含有缺失值的变量称为不完全变量,Little 和Rubin定义了以下三种不同的数据缺失机制: 1)完全随机缺失(Missing Completely at Random,MCAR)。数据的缺失与不完全变量以及完全变量都是无关的。 2)随机缺失(Missing at Random,MAR)。数据的缺失仅仅依赖于完全变量。 3)非随机、不可忽略缺失(Not Missing at Random,NMAR,or nonignorable)。不完全变量中数据的缺失依赖于不完全变量 本身,这种缺失是不可忽略的。 空值语义 对于某个对象的属性值未知的情况,我们称它在该属性的取值为空值(null value)。空值的来源有许多种,因此现实世界中 的空值语义也比较复杂。总的说来,可以把空值分成以下三类: 1)不存在型空值。即无法填入的值,或称对象在该属性上无法取值,如一个未婚者的配偶姓名等。 2)存在型空值。即对象在该属性上取值是存在的,但暂时无法知道。一旦对象在该属性上的实际值被确知以后,人们就可以用 相应的实际值来取代原来的空值,使信息趋于完全。存在型空值是不确定性的一种表征,该类空值的实际值在当前是未知的。但它 有确定性的一面,诸如它的实际值确实存在,总是落在一个人们可以确定的区间内。一般情况下,空值是指存在型空值。 3)占位型空值。即无法确定是不存在型空值还是存在型空值,这要随着时间的推移才能够清楚,是最不确定的一类。这种空值

数学建模缺失大数据补充及异常大数据修正

题目:数据的预处理问题 摘要 关键词:多元线性回归,t检验法,分段线性插值,最近方法插值,三次样条插值,三次多项式插值

一、问题重述 1.1背景 在数学建模过程中总会遇到大数据问题。一般而言,在提供的数据中,不可避免会出现较多的检测异常值,怎样判断和处理这些异常值,对于提高检测结果的准确性意义重大。 1.2需要解决的问题 (1)给出缺失数据的补充算法; (2)给出异常数据的鉴别算法; (3)给出异常数据的修正算法。 二、模型分析 2.1问题(1)的分析 属性值数据缺失经常发生甚至不可避免。 (一)较为简单的数据缺失 (1)平均值填充 如果空值为数值型的,就根据该属性在其他所有对象取值的平均 值来填充缺失的属性值;如果空值为非数值型的,则根据众数原 理,用该属性在其他所有对象的取值次数最多的值(出现频率最 高的值)来补齐缺失的属性值。 (2) 热卡填充(就近补齐) 对于包含空值的数据集,热卡填充法在完整数据中找到一个与其 最相似的数据,用此相似对象的值进行填充。 (3) 删除元组 将存在遗漏信息属性值的元组删除。 (二)较为复杂的数据缺失 (1)多元线性回归 当有缺失的一组数据存在多个自变量时,可以考虑使用多元线性回归模型。将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。 2.2问题(2)的分析 属性值异常数据鉴别很重要。 我们可以采用异常值t检验的方法比较前后两组数据的平均值,与临界值相

2.3问题(3)的分析 对于数据修正,我们采用各种插值算法进行修正,这是一种行之有效的方法。 (1)分段线性插值 将每两个相邻的节点用直线连起来,如此形成的一条折线就是分段线性插值函数,记作()x I n ,它满足()i i n y x I =,且()x I n 在每个小区间[]1,+i i x x 上是线性函数()x I n ()n i ,,1,0???=。 ()x I n 可以表示为 ()x I n 有良好的收敛性,即对于[]b a x ,∈有, 用 ()x I n 计算x 点的插值时,只用到x 左右的两个节点,计算量与节点个数n 无关。但n 越大,分段越多,插值误差越小。实际上用函数表作插值计算时,分段线性插值就足够了,如数学、物理中用的特殊函数表,数理统计中用的概率分布表等。 (2) 三次多项式算法插值 当用已知的n+1个数据点求出插值多项式后,又获得了新的数据点,要用它连同原有的n+1个数据点一起求出插值多项式,从原已计算出的n 次插值多项式计算出新的n+1次插值多项式很困难,而此算法可以克服这一缺点。 (3)三次样条函数插值[4] 数学上将具有一定光滑性的分段多项式称为样条函数。三次样条函数为:对于[]b a ,上的分划?:n x x x a

缺失值的处理方法

缺失值的处理方法 对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。 1.删除含有缺失值的个案 主要有简单删除法和权重法。简单删除法是对缺失值进行处理的最原始方法。它将存在缺失值的个案删除。如果数据缺失问题可以通过简单的删除小部分样本来达到目标,那么这个方法是最有效的。当缺失值的类型为非完全随机缺失的时候,可以通过对完整的数据加权来减小偏差。把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或probit回归求得。如果解释变量中存在对权重估计起决定行因素的变量,那么这种方法可以有效减小偏差。如果解释变量和权重并不相关,它并不能减小偏差。对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。 2.可能值插补缺失值 它的思想来源是以最可能的值来插补缺失值比全部删除不完全样本所 产生的信息丢失要少。在数据挖掘中,面对的通常是大型的数据库,它的属性有几十个甚至几百个,因为一个属性值的缺失而放弃大量的其他属性值,这种删除是对信息的极大浪费,所以产生了以可能值对缺失值进行插补的思想与方法。常用的有如下几种方法。 (1)均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值) 来补齐缺失的值。 (2)利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X= (X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。 (3)极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。该方法比删除

缺失值处理方法比较研究

352 《商场现代化》2007年5月(下旬刊)总第504 期 缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类,分组,删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。数据挖掘所面对的数据不是特地为某个挖掘目的收集的,所以可能与分析相关的属性并未收集(或某段时间以后才开始收集),这类属性的缺失不能用缺失值的处理方法进行处理,因为它们未提供任何不完全数据的信息,它和缺失某些属性的值有着本质的区别。 一、缺失值产生的原因 缺失值的产生的原因多种多样,主要分为机械原因和人为原因。机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间数据未能收集(对于定时数据采集而言)。人为原因是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失,比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。 二、缺失值的类型 缺失值从缺失的分布来讲可以分为完全随机缺失,随机缺失和完全非随机缺失。完全随机缺失(missing completely at random,MCAR)指的是数据的缺失是随机的,数据的缺失不依赖于任何不完全变量或完全变量。随机缺失(missing at random,MAR)指的是数据的缺失不是完全随机的,即该类数据的缺失依赖于其他完全变量。完全非随机缺失(missing not at random,MNAR)指的是数据的缺失依赖于不完全变量自身。 从缺失值的所属属性上讲,如果所有的缺失值都是同一属性,那么这种缺失成为单值缺失,如果缺失值属于不同的属性,称为任意缺失。另外对于时间序列类的数据,可能存在随着时间的缺失,这种缺失称为单调缺失。 三、缺失值的处理方法对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。 1.删除含有缺失值的个案主要有简单删除法和权重法。简单删除法是对缺失值进行处理的最原始方法。它将存在缺失值的个案删除。如果数据缺失问题可以通过简单的删除小部分样本来达到目标,那么这个方法是最有效的。当缺失值的类型为非完全随机缺失的时候,可以通过对完整的数据加权来减小偏差。把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或 probit回归求得。如果解释变量中存在对权重估计起决定行因素的 变量,那么这种方法可以有效减小偏差。如果解释变量和权重并不相关,它并不能减小偏差。对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。 2.可能值插补缺失值 它的思想来源是以最可能的值来插补缺失值比全部删除不完全样本所产生的信息丢失要少。在数据挖掘中,面对的通常是大型的数据库,它的属性有几十个甚至几百个,因为一个属性值的缺失而放弃大量的其他属性值,这种删除是对信息的极大浪费,所以产生了以可能值对缺失值进行插补的思想与方法。常用的有如下几种方法。 (1)均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值)来补齐缺失的值。 (2)利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。 (3)极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Littleand Rubin)。这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。该方法比删除个案和单值插补更有吸引力,它一个重要前提:适用于大样本。有效样本的数量足够以保证ML估计值是渐近无偏的并服从正态分布。但是这种方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。 (4)多重插补(Multiple Imputation,MI)。多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。 多重插补方法分为三个步骤:①为每个空值产生一套可能的插补值,这些值反映了无响应模型的不确定性;每个值都可以被用来插补数据集中的缺失值,产生若干个完整数据集合。②每个 缺失值处理方法比较研究 [摘 要] 在数据收集过程中,由于各种原因可能造成数据集包括有噪声、不完整,甚至不一致的数据。这些问题将严重影响数据挖掘的质量和结果的稳健性,因此,对数据挖掘的对象进行预处理就显得尤为重要。数据的预处理分为数据清洗、数据集成、数据转换和数据消减。缺失值的处理是数据的清洗的第一步。对缺失值的处理有多种方法,本文将主要分析多重插补的方法。 [关键词] 缺失值 插补 多重插补胡红晓 河北医科大学图书馆 谢 佳 韩 冰 西南财经大学统计学院

数据缺失处理方法

关于数据缺失问题的总结 造成数据缺失的原因 在各种实用的数据库中,属性值缺失的情况经常发全甚至是不可避免的。因此,在大多数情况下,信息系统是不完备的,或者说存在某种程度的不完备。造成数据缺失的原因是多方面的,主要可能有以下几种: 1)有些信息暂时无法获取。例如在医疗数据库中,并非所有病人的所有临床检验结果都能在给定的时间内得到,就致使一部分属性值空缺出来。又如在申请表数据中,对某些问题的反映依赖于对其他问题的回答。 2)有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写了或对数据理解错误而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障、一些人为因素等原因而丢失了。 3)有些对象的某个或某些属性是不可用的。也就是说,对于这个对象来说,该属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入状况等。 4)有些信息(被认为)是不重要的。如一个属性的取值与给定语境是无关的,或训练数据库的设计者并不在乎某个属性的取值(称为dont-care value)[37]。 5)获取这些信息的代价太大。 6)系统实时性能要求较高,即要求得到这些信息前迅速做出判断或决策。 2.2.2数据缺失机制 在对缺失数据进行处理前,了解数据缺失的机制和形式是十分必要的。将数据集中不含缺失值的变量(属性)称为完全变量,数据集中含有缺失值的变量称为不完全变量,Little 和 Rubin定义了以下三种不同的数据缺失机制[38]: 1)完全随机缺失(Missing Completely at Random,MCAR)。数据的缺失与不完全变量以及完全变量都是无关的。 2)随机缺失(Missing at Random,MAR)。数据的缺失仅仅依赖于完全变量。 3)非随机、不可忽略缺失(Not Missing at Random,NMAR,or nonignorable)。不完全变量中数据的缺失

16种常用的数据分析方法汇总

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。

缺失值及其处理方法

缺失值的几类处理方法 一、缺失值产生的原因 缺失值的产生的原因多种多样,主要分为机械原因和人为原因。机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间数据未能收集(对于定时数据采集而言)。人为原因是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失,比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。 二、缺失值的类型 缺失值从缺失的分布来讲可以分为完全随机缺失,随机缺失和完全非随机缺失。完全随机缺失(Missing Completely At Random, MCAR)指的是数据的缺失是随机的,数据的缺失不依赖于任何不完全变量或完全变量。随机缺失(missing at random,MAR)指的是数据的缺失不是完全随机的,即该类数据的缺失依赖于其他完全变量。完全非随机缺失(missing not at random,MNAR)指的是数据的缺失依赖于不完全变量自身。 从缺失值的所属属性上讲,如果所有的缺失值都是同一属性,那么这种缺失成为单值缺失,如果缺失值属于不同的属性,称为任意缺失。另外对于时间序列类的数据,可能存在随着时间的缺失,这种缺失称为单调缺失。 三、缺失值的处理方法 对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。 1.删除含有缺失值的个案 主要有简单删除法和权重法。简单删除法是对缺失值进行处理的最原始方法。它将存在缺失值的个案删除。如果数据缺失问题可以通过简单的删除小部分样本来达到目标,那么这个方法是最有效的。当缺失值的类型为非完全随机缺失的时候,可以通过对完整的数据加权来减小偏差。把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或probit回归求得。如果解释变量中存在对权重估计起决定性因素的变量,那么这种方法可以有效减小偏差。如果解释变量和权重并不相关,它并不能减小偏差。对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。 2.可能值插补缺失值 它的思想来源是以最可能的值来插补缺失值比全部删除不完全样本所产生的信息丢失要少。在数据挖掘中,面对的通常是大型的数据库,它的属性有几十个甚至几百个,因为一个属性值的缺失而放弃大量的其他属性值,这种删除是对信息的极大浪费,所以产生了以可能值对缺失值进行插补的思想与方法。常用的有如下几种方法。 (1)均值插补。 数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值)来补齐缺失的值。

数学建模缺失数据补充及异常

数学建模缺失数据补充及异常数据修正

题目:数据的预处理问题 摘要 数据处理贯穿于社会生产和社会生活的各个领域。数据处理技术的发展及其应用的广度和深度,极大地影响着人类社会发展的进程。数据补充,异常数据的鉴别及修正,在各个领域也起到了重要作用。 对于第一问,我们采用了多元线性回归的方法对缺失数据进行补充,我们将1960-2015.xls (见附表一)中的数据导入matlab 。首先作出散点图,设定y(X59287)与x1(X54511)、x2(X57494)的关系为二元线性回归模型,即y=b0+b1x1+b2x2。之后作多元回归,求出系数b0=18.014,b1=0.051,b2=0.354,所以多元线性回归多项式为:Y=18.014+0.051*x1+0.354*x2。再作出残差分析图验证拟合效果,残差较小,说明回归多项式与源数据吻合得较好。若x1=30.4,x2=28.6时,y 的数据缺失,则将x1,x2带入回归多项式,算出缺失值y=29.6888。类似地,若x1=40.6,x2=30.4时,y 的数据缺失,则将x1,x2带入回归多项式,算出缺失值y=30.8462,即可补充缺失数据。 对于第二问,我们使用了异常值检验中标准差未知的t 检验法。将除可疑测定值d x 以外的其余测定值当做一个总体,并假设该总体服从正态分布。由这些测定值计算平均值x 与标准差s ,而将可疑值d x 当做一个样本容量为1的特殊总体。如果d x 与其余测定值同属于一个总体,则它与其余测定值之间不应有显著性差异。检测统计量为:σx x k d -=,假设可由标准差s 替代σ来进行检验,则检测统计量可视为:s x x k d -=。若统计量值大于相应置信度α下的t 检验法的临界值αT (该临界值通过查表法得出),则将d x 判为异常值。由此算法即可鉴别出相应的异常数据。 对于第三问,对于问题三,我们采用了分段线性插值,最近方法插值,三次样条函数插值以及三次多项式方法插值法来修正数据异常。同时也需利用外插法修正最后一个数据的异常。通过各种插值方法的比较,发现三次样条方法较为准确,并较好的对异常数据进行修正。 关键词:多元线性回归,t 检验法,分段线性插值,最近方法插值,三次样条插值,三次多项式插值

三种常用的缺失值填充方法_刘爱鹏

三种常用的缺失值填充方法 刘爱鹏 (华北电力大学 北京 102206) 摘 要: 介绍在遇到蛋白质数据链在同源建模中缺失数据需要填充的时候所使用的常用方法,其中包括线性的KNN 、SKNN 方法和非线性的SVD 方法,以及他们相比较起来的优缺点。 关键词: 缺失值;KNN ;SKNN ;SVD 中图分类号:TP311.13 文献标识码:A 文章编号:1671-7597(2011)1210188-01 在生物学发展中对蛋白质的研究越来越多,各种针对蛋白质的同源建其中*就是缺失的数值。我们的就是要找到一个矩阵Y ,使得它可以把模的结构数据的实验研究也越来越多,可是在我们使用同源建模的方法的数据填满,而且能够尽量的近似于原始的数据。 时候,由于蛋白质演化或变异的时候将会出现缺失值的情况。例如经过因为数据是缺失的,我们没有办法得到数据的平均值,我们以 来表PCA 处理降维处理过的蛋白质链可以分为严格保守部分和非保守部分,严示,代表平均值的最大似然估计。于是我们的问题就是要求 ,使格保守部分基本不缺值,大概占60%左右,而非保守部分则会含有缺失得 最小,其中 。我们先把平均值减值,当我们填补缺失值后将能够把可以利用的蛋白质数据链的百分比提高去,为的是免去位移向量的动作,不过现在平均值不知道,所以当作未知到80%左右,所以缺失值的填充问题很重要。针对生物数据缺失值的填充数一起求解。 问题的处理上要与一般的统计方法处理数据的形式不同,需要利用数据之根据SVD 方法,任何一个 的 矩阵都可以分解成 间的关系来准确的,合理的填充缺失值。 近年来,在处理这个问题上出现了一些填充缺失值比较准确地方法,我们另外令 如K 个最近邻的缺失值填充法(KNN )、有序的K 个最近邻填充法(SKNN )和奇异值分解法(SVD )。在这里,我分别的简单介绍下这三种方法。 1 KNN算法 基于K 个最近邻的缺失值填充算法其实是在考虑了生物蛋白质表达数所以我们就不用求整个的矩阵 据之间的相关性,因而预测结果较为准确。通过选定需要多少个最近邻的所以现在我们要求的有三个向量,分别是 , 和 ,蛋白质数据链,根据这些个近邻蛋白质链提供的信息,对缺失数据的目标而且我们只能根据已知的资料求解。我们把问题改成下面的样子: 蛋白质链的缺失值进行预测和估计。 首先我们要计算目标蛋白质链(也就是包含有缺失值的链)与其他链之间的欧式距离,然后在所有计算出来的距离中找到距离目标蛋白质链距离最小的K 个最近邻的蛋白质链,然后对选择出的K 个最近邻蛋白质链赋予与 相比,我们现在要把X 中有值的输入进去,去累加他的误差,并相应的权值,其相应位置(即目标链的缺失值位置)的加权平均值即为目使得误差最小。其实 就是 。 标蛋白质缺失值的估计值。 我们可以把有值的部分拉成一个向量,举个例子: 这个方法的好处就是简单、快速,缺点就是在对缺失数据较多的链填充的时候,性能和准确度不高。 2 SKNN算法 有序的最近邻的缺失值填充算法SKNN 是在KNN 算法的基础上提出而来显然,如果Y 中有P 个位置是有值的,那么我们就会得到一个向量 的,总的来说,两者在选择最近邻的蛋白质链和计算邻近蛋白质链加权系 其中 。当然,经过这样的调整,数的方法都是相同的。不同之处主要是SKNN 算法首先要根据数据集中的各 也必须重新定义为 条链的缺失率进行排序,从缺失率最小的蛋白质链开始填充。还有就是SKNN 算法不仅利用数据集中原有的蛋白质链,它还会将经过填充的蛋白质链也加入到相似的蛋白质的选择范围内。 SKNN 算法是KNN 算法的改进算法,在数据缺失率比较大的情况下具有继续上个例子,如果该矩阵相对应的 是平均值,而且假设 较好的填充效果。 ,则 。同时我们也需要对v 和u 做出一点修正 上面的两种方法都是基于线性的方法,在实际应用的时候,都是比较简单,方便的,但是填充精度比其非线性的方法来说都低了很多。 3 SVD算法(wiberg’s method) 这个方法主要是在使用pca 的时候,数据是需要完整的,如果出现了缺失怎么办,那就使用wiberg ’s method ,也就是SVD 算法。 我们先假设有n 个m 维的数据,分别是x 1,x 2,,x n ,令X= ,只是我们还无法直接拿X 来用,因为里面很多的缺失值。给个具体的例子,我们可能要处理这样的数据。 定义B 和G (下转第165页)

相关文档
相关文档 最新文档