文档库 最新最全的文档下载
当前位置:文档库 › 砂层中三联拱暗挖地铁隧道中洞法施工技术

砂层中三联拱暗挖地铁隧道中洞法施工技术

砂层中三联拱暗挖地铁隧道中洞法施工技术
砂层中三联拱暗挖地铁隧道中洞法施工技术

砂层中三联拱暗挖地铁隧道中洞法施工技术

[摘要]三联拱结构在暗挖地铁车站浅埋暗挖中已经越来越普遍的被采用,该结构的暗挖大多采用安全性高,灵活性好,可操作性强,机械化程度低,出土效率高,工序间干扰较少的中洞法施工技术。北京地铁四号线石榴庄路站三联洞暗挖段穿越粉质粘土和中粗砂地层,采用中洞法施工,即中洞先行开挖,然后开挖两侧隧道,分

部衬砌,施工过程中受力转换复杂,分部沉降对地层影响大,通过采用合理施工方法,信息化调整支护参数,有效控制了地面沉降,确保了结构的安全稳定。

[关键词]三联拱;中洞法;浅埋暗挖;地铁

矿山法是暗挖法中目前最为常用的一种开挖方法,特点如下:施工工艺简单,应用灵活,减少拆迁和交通

疏解及造价合理等。中洞法作为矿山法的一种,具有:①安全性好,在先完成中墙和第一期底板,后再进行开挖时可将临时支撑和拱架都支撑于坑道中墙及第一期底板上;②灵活性好,可因地制宜地选择断面形状和尺寸;

③可操作性强、机械化程度低,挖土可用人工采用简便挖掘机具;④出土效率高,开挖上部断面时的大量石渣可通过上下导坑间一系列漏渣孔装车后从下导坑运出;⑤工序间干扰较少,完成中洞后,可左右侧同时施工;

⑥造价低、经济性强。中洞法适用于软岩类的地质条件较好且施工受地下水影响较少的工程项目。

1 工程概况

北京地铁四号线石榴庄路站位于马家堡西路与石榴庄路交叉口地下,车站主体在马家堡西路路面下,车站有效站台中心里程为K1+539. 28。车站采用明暗挖结合的施工方法,南北基坑采用明挖法施工,车站主体中部穿越石榴庄路,为了不影响道路交通并避免地下管线的改迁,采用暗挖三联拱中洞法施工。该暗挖段为单层三联拱结构,长31. 5m,跨度为22. 1m,高13.2m,顶板埋深7.75m。

2 地质情况

石榴庄路站地层自地表以下依次为:人工填土、第四纪全新世冲洪积地层(厚度约为10m)、以下为晚更新世冲洪积地层,基岩埋深即为第四系覆盖层厚度。车站主要修建在粉质粘土、粉细砂、圆砾卵石和粘土层中,底板进入圆砾卵石层中。在车站范围内,自地面下20m范围内的饱和粉土及砂类土不液化(见表1)。地下车站的水位为地下22m,在车站底板以下。

3 模拟计算

三联拱结构开挖采用中洞先行法施工,共分12部分,由于分部较多,力学转换复杂,施工时累计沉降将会较大,支护结构的稳定性十分重要。施工时采用有限元法对各步序工况进行模拟分析,确定临时支撑的强度、刚度,以此作为安全保证的理论基础。根据监控量测、信息反馈、位移反分析来调整支护参数,达到安全施工的目的。

分析过程中地层选用弹塑性模型实体单元模拟、永久初支护采用壳体单元模拟、临时初支护采用梁体单元模拟(见图1),结构近似按平面应变问题处理,环向单元(格栅+喷射混凝土)宽取1m,纵向单元(连接筋+喷射混凝土)宽取0.3m,弹性模量取2.8×107,泊松比取0.2。

考虑施工中的不利影响,荷载分项系数取1. 2,刚度折减系数取0. 8,地层按均质连续介质,粘聚力

c=28kPa,内摩擦角φ=30°,天然重度γ=19kN/m3取值。考虑到计算方便,周围地层划分为3 000个有限单元,用ANSYS软件进行分析,开挖后的地层屈服如图2所示。计算结果表明。

1)由于围岩条件差,拱部土体破坏接近度很高,必须对地层进行预注浆加固,并采取超前支护措施。

2)在地层没进行加固前施工,地表沉降位移较大,达到27.1mm。在地层进行预加固时(隧道周围地层弹性模量达到1GPa),地表沉降得到较好控制,经按改变弹性模量后的地层计算,沉降为5.5mm。

4 施工步骤

石榴庄路站三联拱隧道施工步骤如下:①第1步进行中洞及侧洞拱部大管棚超前支护(见图3a);②第2步小导管注浆加固地层,依次进行CRD法施工中洞,并及时支护(见图3b);③第3步:依次跳槽破除临时中隔壁,施工二衬底纵梁及底板A、框架柱B、顶纵梁及顶拱C(见图3c);④第4步按图3所示依次对称开挖10、11、12号导洞,并进行相应的超前支护施工,及时施作封闭初期支护(见图3d);⑤第5步拆除中洞下部临时支护,铺设两侧边跨底板D、侧墙E及侧拱F防水层,施作相应部位二衬,必要时在中隔壁下加临时支撑(见图3e);⑥第6步跳槽拆除临时支护,铺设防水层,施作侧洞二次衬砌,二衬封闭成环。二衬完成后应及时注浆,拆除临时支护(见图3f)。

5 关键技术

5.1 中洞隧道施工

5.1.1 拱部超前大管棚施工

超前支护采用大管棚、超前小导管及部分地面注浆加固,管棚选用Φ108mm×8mm的热轧钢管,长度过8m,搭接6m,无缝钢管沿车站开挖轮廓倾角20°~30°设置,环向间距500mm,钢管内灌注水泥砂浆。管棚间插Φ42mm的小导管超前预注浆加固地层。

5.1.2 拱部小导管注浆

拱部超前小导管选用壁厚3.5mm的热轧钢管,长度过3. 0m,纵向每两榀一道。小导管外插角30°~45°,根据地层条件调整外插角的参数。浆液选用水泥-水玻璃双液浆,利用浆液凝胶时间可调、结石率高、抗压强度大的特点,在隧道结构外形成1. 5m厚的土体改良加固圈。

5.1.3 CRD开挖

中洞采用交叉中隔壁法施工,将隧道分成4个部分开进行分部开挖,部与部相隔1~2倍开挖洞径,开挖进尺为每榀格栅间距0.5m,严禁多榀一次开挖。

开挖施工时主要采取以下措施。

1)严格控制先行导洞的开挖中线和水平高程,确保开挖断面圆顺,钢格栅安装位置正确。

2)尽可能缩短开挖台阶和各开挖分部的施工间隔,使初期支护尽快闭合,以控制围岩变形。

3)增设锁脚锚管,对拱脚部位加强注浆,稳定地层,对基底进行注浆加固,防止基底变形。

4)加强量测监控,做好信息反馈,及时调整方法。

5.1.4 拆除临时支撑

中洞临时支撑采用分段拆除方式,每次拆除长度不超过10m。为进一步了解在初期临时支护拆除过程的应力变化形式及规律,分别在隧道底部、拱腰及拟拆除的钢拱架上安设应力钢筋计及沉降、收敛点,每天观测两次,并绘制变化曲线及时反馈,用以指导临时支护的拆除,防止临时支护拆除后沉降突变的发生。

5.1.5 中洞二次衬砌

中洞衬砌包括防水层施工、底板混凝土浇筑、中隔墙及拱顶混凝土浇筑工作。隧道为复合式衬砌,防水层设计为无纺布缓冲层+ECB防水板,防水板采用无钉孔铺设悬挂,自动爬焊机焊接。

1)基面处理防水板铺设前严格对初期支护混凝土表面进行处理,达到干燥无水状态,清除基面上的尖锐突出物,在割除部位用水泥砂浆抹成圆曲面,避免防水板扎破。隧道断面变化或转弯时的阴阳角应抹成R>50mm的圆弧。底板基面达到平整,无明显的凹凸起伏。

2)土工布悬挂在台架上用射钉加橡胶垫圈固定,梅花状布置,拱部间距0. 5~0. 8m,底板间距

0.8~1.2m。

3)防水层铺设防水板裁剪要考虑搭接宽度,由拱顶向两侧铺设,采用双焊缝热合机将相邻两幅卷材进行热熔焊接,卷材之间的搭接宽度为100mm,避免纵向焊缝与环向焊缝成十字相交,采用T形接缝法进行焊接,并对纵向焊缝外的多余搭接部分齐根削去,确保焊接质量和焊机通过顺利。纵向一次铺设长度可根据隧道断面大小、二次衬砌混凝土循环灌筑长度等因素确定。分段铺设的卷材的边缘部位预留至少500mm的搭接余量。为防止临时支撑拆除时损坏中洞防水层,中洞拱部防水层施作之前,在拱部防水层与中洞初期支护之间安设0.8mm厚钢板保护层。

4)钢筋连接及安装为保证钢筋连接接头的质量,加快施工进度,施工中根据钢筋的不同直径、不同部位而采用人工绑扎和直螺纹套筒相结合来施工。

5)模板架立及浇筑混凝土三联拱隧道中洞二衬分为仰拱、两个中隔墙、拱部3个步骤施工。仰拱不设模板,直接浇筑成型;中隔墙采用1 500mm×600mm×50mm、1 500mm×200mm×50mm、1

500mm×150mm×50mm组合钢模板立模浇筑;拱部采用1 500mm×1 200mm×80mm可调式钢模板+型钢拱架+碗扣式脚手架+500mm托盘支撑立模浇筑。

安装模板前先检查模板的表面平整、光滑程度,涂刷脱模剂,按测量定位立模,模板U形卡、L形插销、拉杆螺栓等必须安装牢固,防止变形。模板拆除时先支后拆,按先非承重部位后承重部位,先上后下的顺序拆模。

5.2 侧洞施工

5.2.1 侧洞开挖

拱顶小导管注浆与中洞拱顶注浆工艺相同,侧洞采用正台阶法施工,分两部开挖,上下部之间设临时仰拱。根据临时仰拱的位置上部一次性开挖留核心土,临时仰拱紧跟。下部开挖后及时封闭,初期支护采用钢格栅+连接筋+C25喷混凝土支护体系。

5.2.2 拆除临时支撑

侧洞临时支撑拆除同中洞施工方式,分段拆除,加强监测,避免在初期支护拆除过程中沉降突变现象,为防止割除中洞初期支护拱架时烧穿防水板,在割除格栅时采用石棉板进行遮挡。

5.2.3 侧洞二衬施工

侧洞二次衬砌分两次跳槽模筑,仰拱及部分边墙混凝土一次性浇筑,钢筋采用直螺纹机械连接,侧洞边墙及拱部采用可调式拉弧钢模板+型钢拱架+碗扣式脚手架+托盘支撑立模的综合式模板体系,采用泵送混凝土浇筑。基本和中洞二衬施工方法相同。

6 监控量测

为减少三联拱隧道暗挖施工时对现况路面的影响,在路面和洞内布置了沉降观测点,并在开工前测得了初始值,在施工过程中对路面沉降每天进行监测,监测数据显示,在中洞第1~5步骤开挖时由于断面较小,路面沉降值较小,在进行第6步骤(开挖中洞右侧下部)时,路面沉降明显加大,达到17. 1mm(出现在路中位置,两端相对要小),通过采取注浆加固和增加锁脚锚杆,之后的沉降变化曲线开始缓和,总沉降量得到控制。

通过对洞内格栅钢架轴力测点数据分析,钢筋内力在每一步开挖时其结构受力形式均要进行转换,在结构中洞左侧拱部位置,测得格栅钢架最大轴压力P=67.3kN,从监测数据可以看出,结构钢筋基本处于受压状态,但都能满足设计要求。

7 结语

1)三联拱结构中洞法施工在软岩类的地质条件较好且施工受地下水影响较少的工程项目中,能取得良好的社会和经济效益。

2)采用CRD分部开挖时,超前加固和及时支护非常关键。浅埋隧道由于受力复杂,分部开挖时地层扰动较大,各步序在施工时进行地层加固要超前并且满足需要,土体开挖后,及时立设格栅拱架,布设锁脚锚杆,进行回填注浆。

3)第四纪地层地铁区间隧道施工时,基底及时充填注浆非常必要。由于地层开挖施作结构后,初期支护基底可能出现不密实状态,基底承载力受到影响,对基底及时进行充填注浆,较好地保证了隧道上方建筑物的沉降变化值。

4)加强施工监测,进行信息反馈是施工的安全保证。城市地铁浅埋隧道施工时,地表建筑物及管线复杂,通过对地表沉降及洞内变形监测,能较好地控制围岩变形趋势,能够使变形、沉降处于可控状态,保证隧道施工周边结构物的安全。

参考文献:

[1]周爱国.隧道工程现场施工技术[M].北京:人民交通出版社,2004.

[2]孙更生,郑大同.软土地基及地下工程[M].北京:中国建筑工业出版社, 1984.

[3]王梦恕.地下工程浅埋暗挖技术通论[M].安徽:教育出版社,2004.

[4]崔玖江.隧道与地下工程修建技术[M].北京:科学出版社,2005.

[5]吴竞军,李清江.城市快速轨道交通工程施工工艺标准[M].北京:中国计划出版社, 2004.

地铁隧道矿山法施工事故风险分析与评价

地铁隧道矿山法施工事故风险分析与评价 发表时间:2018-11-15T09:38:32.460Z 来源:《基层建设》2018年第30期作者:韩燕[导读] 摘要:新时期地铁施工技术水平的提升,为现代城市发展注入了活力。 中国铁路设计集团有限公司天津 300142摘要:新时期地铁施工技术水平的提升,为现代城市发展注入了活力。城市地铁属于万众瞩目的工程,在网络日益普及的今天,一旦出现安全事故,极可能造成不可估量的社会影响和极大的舆论压力。因此,准确分析城市地铁施工期间风险事故原因,研究其结构的可靠度是一个非常重要的课题。 关键词:地铁隧道矿山法;施工事故风险;评价引言 随着城市地铁建设的大规模开展,城市地铁隧道施工风险管理日益受到各方面重视。隧道工程作为一项高风险建设工程,具有建设规模大、风险高、风险因素众多以及客观条件复杂等特点。 1安全事故统计自我国1965年第一条地铁一北京地铁1号线开工建设以来,截至2016年末,共有30个城市开通城市轨道交通运营,其中地铁里程3168.7km,获得批复的城市共有58个,规划线路总长为7345.3km,总投资超过37000亿元。相比于英国、法国、美国、日本等发达国家近百年的轨道交通发展历史,我国轨道交通建设经验还很不足,虽然我国60年代就开始了地铁建设,但是大规模建设也就是2000年以后至今十几年的时间。加之城市地铁建设多位于城区密集区,施工环境复杂,施工难度大,与之相应的施工及管理人员素质偏低,因此,在我国地铁高速发展的近一段时期内施工事故频频发生。 我国在煤矿事故、交通事故、危险化学品事故等统计方面的研究比较多,但是在隧道施工尤其是地铁施工事故方面统计较少,有关隧道事故统计大部分仅限于运营阶段和火灾事故等。针对地铁隧道施工事故的事故类型、风险源指向、发展趋势等数据分析不系统,事故发生的原因、类型、条件等对相似地质条件下的新建隧道施工有极大的参考意义,通过对历史事故资料的分析,可以揭示事故发生特征和规律,同时可以为避免事故和提高隧道与地下工程施工管理水平提供指导。 通过分析我国近10年来100起地铁隧道矿山法建设施工期所发生的安全事故样本发现,该样本包含坍塌事故55起,由各种机械伤害引起的事故11起,火灾与水灾诱发事故各7起,坠物击打引起事故6起,模板坍塌造成事故5起,爆炸引发事故4起,由其他方面原因导致事故5起,如图1所示。对于各类事故造成的人员伤亡方面,坍塌占总伤亡人数的55.9%,通过对上述各类事故数据统计分析可知,坍塌是地铁隧道工程建设期的多发多害事故,是重点防备的事故类型。 图1安全事故统计 2工程实例分析 2.1事故概况 2012?04?25凌晨突降大雨,某市地铁3号线某区间由于雨水渗入掌子面前方的土体,引起掌子面涌水、涌砂、突泥,进而发生隧道坍塌冒顶事故。此事故诱发地面坍塌范围约15m×15m,坍塌深度约为8m,并且造成4条高压电缆受损,部分砂土、各种杂物涌入隧道,造成大面积浸水。 由于工作人员发现较早,抢险及时,未引起人员伤亡情况,但坍塌段位于某市交通干道,人流量较大,引起较多市民围观,产生极坏的社会负面影响。 事故原因如下:坍塌区隧道围岩为富水砂层,在其开挖前已经布设降水井进行降水,并且降水后地下水位已降至隧道底部以下,确保隧道开挖在无水环境下进行,但由于突降大雨,排放雨水的暗渠无法大量排水,导致暗渠转折处(即塌方位置)产生破裂,暗渠中的大量雨水涌入隧道上方土层,在雨水浸泡下,原来无水的隧道周围砂层内黏聚力下降、内摩擦角变小,整体强度变弱,自稳能力下降,掌子面发生涌水、涌砂现象,并导致地面发生冒顶事故。 2.2坍塌事故可靠度分析 塌方处隧道埋深约8m,穿越地层岩性以砂土为主,采用上下台阶预留核心土方法开挖,数值计算模型分为回填土、砂土、上台阶、下台阶、核心土、上下台阶衬砌、强风化花岗岩、中风化花岗岩等9种模型单元,模型范围为52m(横向)×10m(纵向)×31m(竖向),对其四周进行水平约束,底面竖直方向约束,上边界为自由边界,模型采用Mohr-Coulomb弹塑性模型,即τ=c+σtanφ,f=tanφ,其模型如图2所示。

盾构隧道穿越既有建筑物施工应对技术

盾构隧道穿越既有建筑物施工应对技术 文章摘要: 盾构隧道穿越既有建筑物施工应对技术摘要:随着近几年地下工程建设的不断发展,盾构施工技术已越来越成熟,特别是在城市轨道交通建设中更显示出其优越性。但是,对于盾构施工过程中穿越障碍物或近距离通过既有建(构)筑物的施工还缺少相应的工程实例,经验相对也较少。近年来,我国城市轨道交通建设发展迅速,但是面临着越来越复杂的周边环境和施工条件,因此研究和制定相应的施工技术和应对措施十分必要。文章针对盾构施工穿越城市内河、下穿既有隧道以及湖底施工、下穿古城墙等工程实例进行分析研究,提出了针对类似情况的应对技术措施。 1 引言 随着国民经济的发展和城镇化建设的加速,国内城市轨道交通建设发展也越来越迅速。在轨道交通建设中,盾构工法由于其优越性在国内的应用越来越多。为了使轨道交通尽快形成网络达到预期的规模效应,轨道交通的建设也在加速。随着初期单条线的建成,后续线路建设的难度会越来越大。同时,伴随城市规划建设,特别是通常伴随地铁建设的沿线开发的增多,工程建设所面临的是越来越复杂的周边环境,穿越障碍物或近距离通过既有建(构)筑物的情况也越来越多。工程施工时既需要对既有建(构)筑物进行保护,又要确保工程本身的安全性和进展顺利,因此对不同的情况采用相应的应对技术十分必要。本文以南京地铁施工中已成功完成的盾构施工穿越障碍物的几个实例为基础,研究分析相应的应对技术。 2 下穿既有河流 2.1 工程实例 金川河宽10.4m,河堤深4m, 水深1.3m,为污水河。盾构隧道与 该河近正交下穿通过,盾构机与 河床底净间距6.2m。该段 地质情况自上而下分别是:② -1d3-4粉细砂(3.5m)、②-2c2-3 粉土(约6.0m)、②-2b4淤泥质粉 质粘土(约3m)、③-2-1b2粉质粘 土(4m)、③-3-1(a+b)1-2粉质粘 土(约 4.7m)。隧道主要在② -2c2-3粉土、②-2b4淤泥质粉质 粘土(上部)和③-2-1b2粉质粘土 (下部)地层中穿过(图1)。 该工程盾构机于2002年5月 9日~2002年5月10日和2002年 12月28日~2002年12月29日分 别在下行线和上行线顺利通过金 川河,沉降监测结果良好,没有采 用应急预案。但是在下行线掘进

城市地铁隧道常用施工方法概述

城市地铁隧道常用施工方法概述 目前国内外修建地铁车站的施工方法有明挖法、盖挖法、暗挖法、盾构法等。主要阐述了修建地铁车站施工方法的原理、施工流程、优缺点,为我国各大城市修建地铁车站时选择合理的施工方法提供有益的参考。 伴随着我国社会主义经济建设的迅猛发展与综合国力的增强,城市的规模也不断的增大,城市人口流量还在增加、再加上机动车辆呈现逐年上涨的趋势,交通状况不断恶化。为了改善交通环境,采取了各种措施,其中兴建地下铁道得到了普遍的认可,如最近几年在北京、广州、深圳等城市便兴建了大量的地下铁道。由于在城市中修建地下铁道,其施工方法受到地面建筑物、道路、城市交通、水文地质、环境保护、施工机具以及资金条件等因素的影响较大,因此各自所采用的施工方法也不尽相同。下面将就城市地下铁道施工方法分别加以介绍。施工方法的选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。 1明挖法 明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。 明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地

方通常采用明挖法施工。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。 明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土,如图1。 上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。该车站为地下2层岛式车站,长166.6m,标准段宽17.2m,南、北端头井宽21.4m。标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m。车站出人口、风井采用SMW桩作为基坑的维护结构。2盖挖法 盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工.主体结构可以顺作,也可以逆作。 在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。 2.1盖挖顺作法

地铁隧道盾构施工安全管理(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 地铁隧道盾构施工安全管理(标 准版) Safety management is an important part of production management. Safety and production are in the implementation process

地铁隧道盾构施工安全管理(标准版) 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO 后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大

城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一

地铁隧道施工方法全解

地铁隧道施工方法全解 明挖法 在地面条件允许的情况下,地铁区间隧道采用明挖法。明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状土的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,但其缺点也是明显的,如阻断交通时间较长、噪声等会对环境产生影响。 盖挖法 01 顺作法 盖挖顺作法是在地表作业完成挡土结构后,以纵、横梁和路面板置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高。依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路。最后拆除挡上结构外露部分并恢复道路。 02 逆作法 盖挖逆作法是先在地表面向下做基坑的维护结构和中间桩柱,和顺作法一样,基坑维护结构多采用地下连续墙或帷幕桩,中间支撑多用主体结构本身的中间立柱。随后开挖表层土体至主体结构顶板地面标高,利用未开挖的土体作为土模浇筑顶板。待回填土后将道路复原,恢复交通。之后的工作都是在顶板覆盖下进行,自上而下逐层开挖并建造主体结构直至底板。 盾构法 盾构法施工是以盾构施工机械在地面以下暗挖隧道的一种施工方法。盾构是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。钢筒的前端设置支撑和开挖土体的装置,中段安装顶进所需的千斤顶,尾部可以拼装预制或现浇隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装或现浇一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆。盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面。 盾构按断面形状不同可分为圆形、拱形、矩形、马蹄形4种。盾构法的主要优点是除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;土方量少;盾构推进、出土、拼装衬砌等主要工序循环进行,易于管理;施工不受风雨等气候条件的影响。 浅埋暗挖法 浅埋暗挖法即松散地层的新奥法施工,新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土作为主要支护手段,对围岩进行加固,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。浅埋暗挖法是针对埋置深度较浅、松散不稳定的上层和软弱破碎岩层施工而提出

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

城市地铁隧道常用施工方法【最新版】

城市地铁隧道常用施工方法 本文就城市地下铁道施工方法分别加以介绍。施工方法的选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。 1、明挖法 明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。 明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地方通常采用明挖法施工。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。 明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土。

上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。该车站为地下2层岛式车站,长166.6m,标准段宽17.2m,南、北端头井宽21.4m.标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m.车站出人口、风井采用SMW桩作为基坑的维护结构。 2、盖挖法 盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工。主体结构可以顺作,也可以逆作。 在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。 2.1盖挖顺作法 盖挖顺作法是在地表作业完成挡土结构后,以定型的预制标准覆萧结构(包括纵、横梁和路面板)置于挡土结构上维持交通,往下反复

深圳地铁矿山法隧道二衬施工方案

第1章编制依据及原则 1.1 编制依据 1 xx地铁2号线工程土建2202标段的施工及设计图纸。 2 xx地铁2号线工程土建2202标段工程岩土工程勘察报告。 3 相关行业的施工规范和标准、xx市相关规程规范及标准。 4 工程现场调查资料及周边建筑物基础资料。 5 现行有关法规、标准、技术规范、定额,以及环境保护、水土保持方面的政策和法规。 6 根据我局现有施工水平、技术、设备、施工经验、科技进步、施工能力和资源配置等施工要素。 1.2 编制原则 确保工期目标的原则 在施工方案的编制中充分考虑了实现关键工期及总工期目标所必须预留的“抢工”条件;从施工顺序安排上也充分考虑了各工期目标的需要。 技术进步原则 施工方案及各分部分项工程施工方法的选择体现了技术进步原则。 成本最优化原则 在保证工程安全、质量、工期的前提下通过科学管理、精细组织、技术创新使得成本最优。进而使得工程自始至终保持质量、成本、安全良性循环的有序状态。

第2章工程概况 2.1工程范围 xx隧道处于xx地铁2号线工程土建2202标段沙世区间,位于xx市南山区世界之窗景区下。 2.2设计概况 沙世区间xx隧道分左、右线,左线ZDK14+245.857~ZDK14+759.000,长513.143m,右线YDK14+252.15~YDK14+759.000,长506.850m,单线总长1019.993m。 全隧道按浅埋暗挖法及喷锚构筑法进行设计,采用复合式衬砌结构。隧道埋深13~28m左右,围岩为Ⅲ~Ⅵ级,Ⅲ级长70.7m,Ⅳ级长208.2m,Ⅴ级长397.8m、Ⅵ级长343.293m (处于砂质粘性土),暗挖隧道断面单线A、单线B、单线C、单线D型及小间距隧道5种。单线隧道直线及曲线段内净空均为5200mm。 2.3二衬施工主要工程数量表 ]

城市地铁隧道常用施工方法分析

城市地铁隧道常用施工方法分析 摘要:近年来,我国地铁隧道建设进入了快速发展阶段,地铁隧道建设开始全 面开工。与此同时,我国的隧道施工技术也在不断进步,隧道建设水平实现了跨 越式发展,很多隧道施工方法层出不穷。在城市建设的地铁轨道一般位于城市繁 华地区的地下位置,由于这些地区交通比较繁忙,建筑物也很多,因此在施工过 程中很容易发生底层移动和地面沉陷现象,这不仅会影响到城市交通,还会影响 到临近的建筑物、地下管线以及其它公共基础设施,隧道施工过程中如何不影响 交通和这些设施成为了隧道设计、施工以及建设人员需要关心的首要话题。 关键词:城市地铁;隧道;施工方法 1盾构法 盾构法作为暗挖法施工中一种全机械化的施工方法,其主要是使用盾构机械 在地里面推进,盾构的外壳与管片支承着四周的围岩,预防隧道内发生坍塌事故。与此同时,开挖的前方使用切削设施对土体进行开挖,挖出来的土使用机械运到 隧道洞的外面,依靠千斤顶加压顶进,并且拼装预制混凝土的管片,进而形成为 隧道结构的机械化的施工方法。在目前我国的地铁隧道施工中盾构法施工方法被 广泛的推广使用,这种方法有着很多优势:(1)在隧道施工中盾构掩护下的开 挖与衬砌作业,其安全性非常大。(2)这种施工方法不会对交通造成任何影响。(3)这种施工方法就算是恶劣的气候条件也不会耽误施工。(4)这种施工方法 噪音与振动较小。(5)这种施工方法不会对建筑物与地下管线产生大的影响。 我们在使用盾构法施工的时候,要先在隧道始端与终端进行开挖基坑与建造竖井,使用盾构设备来拼装井或者拆卸井,如果隧道很长的话,还需要在隧道的中间设 置检修用的工作井。拼装与拆卸用井的建筑尺寸一定要按照盾构装拆施工的要求 确定。井壁上面要设置盾构的出洞口,井内要设置盾构基座与盾构的后座。通常 井宽度要比盾构的直径大约两米左右,来满足施工操作要求。若使用的是整体吊 装小盾构的时候,那么井宽可以小一些。一般情况下井长度不仅仅可以满足在盾 构的里面进行设备安装之外,还需要考虑到盾构在推进出洞的时候,要拆除洞门 的封板,以及盾构的后面要设置后座,用来满足垂直运输所需要的空间。中小型 盾构拼装井的长度,也要考虑到设备的转换是否便捷。在拼装井里面盾构拼装就 绪后,经过调试就可以拆除出洞口的封板,盾构从工作井中推出之后,就马上开 始隧道的掘进施工。盾构的拆卸井设置有盾构的进口,井口的大小一定要方便盾 构起吊与拆卸。 2CRD工法 CRD工法通常称之为“交叉中隔壁工法”,这种方法的创新点在于在隧道断面 中部设置竖横中隔壁,将断面进行了分隔,使开挖跨度减小,开挖高度降低。C RD工法对地铁隧道断面进行分布开挖,将断面分隔形成环状,将大断面划分成 小断面,最后形成步步封闭,环环相扣形成全断面初期支护封闭结构的施工方法。CRD工法施工一般在软弱围岩层进行分布开挖,这一层面围岩自稳能力极差,很容易出现坍塌现象。CRD工法一般在上下结构分2或3层,左右两侧同时进行 施工,施工顺序是先开挖地铁隧道一侧的上、中层,并且对其进行支护,设置横 竖中隔壁,然后喷射混凝土,待混凝土的强度达到设计强度等级的70%后,再开 始另一侧的开挖,最后在开挖地铁隧道的左右侧底部,这是完成初期的支护和中 隔壁,最终形成的支护系统带有竖向中隔壁以及2层横向中隔壁。CRD工法以对底层加固作为前提条件,在进行了钢拱架、锚、网以及喷支护的基础上,借助于

地铁隧道矿山法施工的安全与质量控制原理及要点(正式)

编订:__________________ 单位:__________________ 时间:__________________ 地铁隧道矿山法施工的安全与质量控制原理及要点 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5314-99 地铁隧道矿山法施工的安全与质量控制原理及要点(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、地铁隧道矿山法施工的安全与质量控制原理 地铁隧道矿山法施工即新奥法施工。新奥法即新奥地利隧道施工方法的简称,原文是New Austrian Tunnelling Method,简称为NATM。新奥法概念是奥地利学者拉布西维兹教授于二十世纪50年代提出的。我国近40年来,铁路、交通、水利与市政等部门通过科研、设计、施工实践,在许多隧道修建中,根据自己的特点成功地应用了新奥法,取得了较多的经验,积累了大量的数据。新奥法在市政地铁建设中起步较晚,但是近年来在许多省市地铁建设的应用正日益广泛,目前新奥法几乎成为在软弱破碎围岩地段修建隧道的一种基本方法,其技术经济效益是明显的。下面结合新奥法施工的原理和要点,介绍地铁隧道矿山法

地铁隧道盾构施工安全管理措施 - 制度大全

地铁隧道盾构施工安全管理措施-制度大全 地铁隧道盾构施工安全管理措施之相关制度和职责,1引言安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业... 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一个重点,也是一个值得注意的危险源。 2. 2压气作业的相应措施 (1)尽量减少在不良地质条件下进人刀盘内,尽可能地在基本可以自稳的地层中进行开舱作业,这样可以不用压气作业。因此,要根据地质条件的变化,选择适当的时机,提前或推迟进人刀盘内,尤其是更换刀具时要有预见性。 (2)要挑选身体健康、强壮的工人作为进人刀盘内的操作人员,并经过职业病医院严格的身体检查,确保对恶劣环境的抵抗力。一般压气作业一天不宜超过4小时。 (3)如需压气作业时,一定要选用无油型空压机,确保空气质量,减小环境污染。 (4)准备好通迅工具,无间断地保持联络。 (5)做好应急准备,必要时要能在减压舱(刀盘与盾构前体间的密封过渡通道)内抢救伤员,并与有关医院签好急救协议。有条件的要配备专用的流动医疗舱,以便在送往医院的过程中,保持伤员所受体外压力差基本一致。 3盾构刀具更换 随着地质条件的变化,隧道掘进过程中需要对刀具进行更换,尤其是当岩石强度较高时,需要

地铁隧道中基坑明挖施工控制技术

地铁隧道中基坑明挖施工控制技术 发表时间:2018-03-14T14:09:44.707Z 来源:《防护工程》2017年第31期作者:王琳 [导读] 随着城市化进程的不断加快,我国城市轨道交通每年新增的运行线路长度飙升,各大城市地铁建设都争先恐后。 中铁隧道集团第五建筑有限公司天津 300300 摘要:随着城市化进程的不断加快,我国城市轨道交通每年新增的运行线路长度飙升,各大城市地铁建设都争先恐后,虽然起步较晚,但总里程已经达到世界第一,发展迅猛。然而目前城市轨道交通主要在北京、上海、深圳等一线城市建设运营得较好,二三线城市还有很大的发展空间。在二三线城市中地铁隧道施工比较常用的施工方法就是明挖法施工,明挖施工具备施工技术简单、快速、经济及主体结构受力条件较好等优势,也是是我国地铁隧道施工中最基本、最常用的施工方法。为确保明挖施工地铁的安全质量,我们必须对明挖法施工控制技术进行深入的研究,为提高我国地铁修建水平提供参考意见。 关键词:地铁隧道;明挖施工;控制技术 引言:近年来我国国民经济不断发展,各大城市对于公共交通的需求不断增多,大小城市地铁建设如雨后春笋般涌现。由于明挖法施工具有施工简单、快捷、经济、安全等优点,城市地下隧道式工程特别是地铁隧道都把它作为首选的施工技术。随着科学技术的不断更新以及施工技术水平的不断提高,明挖法施工在技术上已经有了很大的发展。但是它的缺点依然很明显,主要有会长时间的阻断交通,产生较大的噪音和震动,大气污染等。接下来就对地铁隧道中基坑明挖施工控制技术进行分析。 一、基坑明挖法概述 1、基坑明挖法概念 基坑明挖法主要是指先将隧道部位的岩土体全部挖掉,然后在露天的情况下修筑衬砌,然后再覆盖回填,最后完成地下工程施工的方法。明挖法是目前地铁隧道施工中最基本、最常用的施工方法(如图1)。 图1 明挖基坑土方开挖示意图 2、施工工序 明挖法的施工工序主要为以下几步:场地整平一围护桩施工一旋喷桩止水帷幕施工一冠梁及内支撑施工一基坑开挖一钢支撑设置一主体结构施工—回填一恢复地面。 3、明挖法的优缺点 现在地铁施工普遍采用明挖法,因为明挖法相比较其他的基坑施工方法来说具有较大的优势,首先明挖法的施工方法特别简单方便,并且速度方面较其他方法更加迅捷,能够更快的完成施工,其次明挖法的安全系数较其他的施工条件来说更加安全,对施工人员的生命财产安全具有更大的保障,能够体现以人为本,在经济方面,明挖法更加的经济,比其他的基坑挖掘方法更加的经济,生态环保。基于这些优点,目前地铁的基坑施工方法主要采用明挖法。但明挖法也存在着一些明显的缺点,最主要的就是在采用明挖法时对施工周边的事物影响较大,在施工的周围会设置防护措施,对道路的交通会造成影响,造成交通堵塞、不便等影响;周边道路交通压力增大,对路面的破坏增大;露天施工噪音污染和大气污染严重等! 4、明挖法分类 明挖法目前主要用于地铁轨道建设,但是由于地质条件的不同,周围环境存在差异性,所以使用明挖法时也必须根据具体实际情况具体分析。明挖法内部也有几种分类主要包括敞口明挖法、基坑设置支护结构的明挖法和盖挖法。第一,敞口明挖法。主要是应用在地面建筑物稀少、交通不繁忙、施工场地较大、结构物埋深较浅的地段及城市轨道交通出入地面的区段采用敞口明挖法;第二,基坑设置支护结构的明挖法。主要是在在施工场地较小、土质自立性差、地下水丰富、建筑物密集、埋深大时采用明挖法时基坑要加设支护结构;第三,盖挖法。主要应用于埋深较浅、场地狭窄及地面交通不允许长期占道施工情况下可采用盖挖法施工。即在短期封闭地面交通期间,进行连续墙和钻孔灌注桩作业,开挖和修筑结构顶板,随即回填,恢复地面交通,然后转入地下作业,开挖基坑,修筑楼板和底板,利用隧道两侧的出入口和通风道出土、进料。依据主体结构施工顺序分为盖挖顺作法、盖挖逆作法、盖挖半逆作法。该法是在既有道路上先完成周边围护挡土结构及设置在挡土结构上代替原地表路面的纵横梁和路面板,在此遮盖下由上而下分层开挖基坑至设计标高,再依序由下而上施工结构物,最后覆土恢复为盖挖顺作法;反之先行构筑顶板并恢复交通、再由上而下施工结构物为盖挖逆作法。 二、基坑明挖施工控制技术 1、控制隧道变形 基坑施工过程中,要同时交叉进行土方开挖以及支撑的安装,并且要坚持“先撑后挖”的原则,在确保安全的情况下要快挖、快撑,尽量缩短时间,要将开挖到位至支撑施加预应力的施工时间,缩短在4小时内。深基坑内进行土方开挖时,要考虑到土质的实际情况,一般开挖顺序为分层、分块、对称、平衡,对于一些地下水较丰富的地区,应该考虑到开挖的基坑不受水土流失的影响,要及时施加钢支撑预应力。若上午和下午监测的钢支撑轴力数据结果差值较大,原因应在于受早晚温差影响,钢支撑容易受到温度的影响。围凛与锚喷面之间的缝隙处,应该在钢围凛安装后充填水泥砂浆,在缝隙下方装膜拖底后在进行充填,从上方灌入水泥砂浆,灌注的同时要用钢筋反复插入,

地铁盾构区间隧道的矿山法施工

地铁盾构区间隧道的矿山法施工 【摘要】盾构法隧道施工经常会遇到上软下硬不均匀地层,此时倘若隧道下穿既有线或建筑物不具备开舱换刀条件,将会导致盾构机无法正常掘进。在深圳地铁5号线盾构区间上软下硬地层中,局部改用矿山法开挖、初期支护后由盾构机拼装管片通过的施工方法,其经验可供地铁隧道施工参考。 【关键词】矿山法;台阶法;盾构区间隧道;上软下硬地层;长管棚;超前小导管; 1、引言 矿山法是传统的地下巷道施工方法,其主要特点是以钻眼爆破方式开挖土石。20世纪50年代,奥地利学者拉布西维兹提出了岩体自身具有承载能力的理论,给传统矿山法赋予了新的理念,逐步形成了以保护和发挥围岩的自承能力为原则,以控制爆破或机械开挖为主要掘进手段,以锚喷支护为主要支护措施,通过监控量测手段实现信息化动态施工的一种现代隧道施工技术。现代矿山法[1],即新奥法具有施工技术简单、工程造价低等特点,被广泛应用于山岭隧道工程[2~4]。 21世纪以来,随着城市轨道交通的发展,我国进入了地下铁道建设的高峰期。地铁工程一般覆盖层较浅,大多处于淤泥质、粉质粘土地层或砂卵石地层中(尤其是在上海、广州、深圳等地),地下水位通常较高,地层自稳能力差,周边环境复杂。为了确保施工安全、减少地表沉降、加快施工速度,地铁工程大多采用盾构法施工。但在复杂的地层环境中,盾构施工经常会遇到上软下硬等不均匀地层,在这样的地层中掘进会引起刀具严重磨损不能正常使用,假如此时地铁下穿既有线或其他建筑物、不具备开舱换刀条件,将会导致盾构机无法正常掘进。如何解决盾构区间隧道上软下硬地层中下穿既有线或其他建筑物的掘进问题,深圳地铁5号线所采用的矿山法为工程界提供了一个先例。 2、工程概况 2.1工程概况 深圳地铁5号线民治—五和区间线路整体呈东西走向,区间起点位于民治大道东侧、平南铁路南侧的既有道路下方,出民治站后与平南铁路平行前进,经坂田火车站后向北偏转,四次下穿平南铁路后进入五和站,终点位于五和南路。左右两线总长4 061.59 m,线间距11.9~15.5 m。 隧道顶部覆土厚11.5~33.0 m。隧道主要穿越砾质粘土、砾砂、全风化花岗岩及少量强风化与中风化花岗岩。地下水主要为松散岩类孔隙水及基岩裂隙水。孔隙水主要赋存于冲洪积砂层、圆砾层、坡积层、残积层、全风化花岗岩中。基岩裂隙水主要赋存于花岗岩强—中风化层中,略具承压性。地下水埋深1.22~17.8 m。区间隧道采用土压平衡式盾构施工,盾构机外径6.28 m。隧道衬砌采用6块管片错缝拼装而成,管片环宽1.5 m,外径6.0 m,厚度0.3 m,隧道内径5.4 m。 2.2工程难点 线路条件复杂,隧道上覆地层薄,最小仅11.5 m,同时下穿运营铁路,地表沉降要求高,施工难度大。 隧道断面范围内地质复杂,存在上软下硬地层,尤其是在右线DK23+241.5~+292.4(50.9 m)段,有微风化岩层侵入隧道断面内2.8 m,岩石单轴饱和抗压强度达到160 MPa,盾构机难以掘进,故区间隧道施工的难点是盾构机如何穿越硬岩侵入段。 3、施工方案 在饱和软土地区开挖隧道,采用盾构法施工具有安全、快速、对环境影响小等优点[4]。但是,对于硬岩及软硬差异大的上软下硬地层,采用盾构法施工会造成刀具严重磨损、需要多次更换刀具的现象[6]。该段隧道硬岩侵入断面2.8 m,侵入长度达50余米,若采用盾构法掘进,需要多次更换刀具,但由于隧道下穿运营中的平南铁路,不具备开舱换刀条件,因此采用盾构法无法掘进。 现代矿山法是以保护和发挥围岩的自承能力为原则,以控制爆破或机械开挖为主要掘进手段,以锚喷支护为主要支护措施,通过监控量测手段实现信息化动态施工的一种现代隧道施工技术,该法与相应的地层预支护手段相结合可以灵活地应用于各种地层。综合考虑隧道穿越硬岩侵入段的环境条件、施工安全及技术经济因素,拟采用矿山法开挖,初期支护后盾构机拼装管片通过。

地铁盾构施工安全管理

地铁盾构施工安全管理 发表时间:2017-07-17T11:34:12.927Z 来源:《建筑知识》2017年14期作者:符昌钦 [导读] 在二十一世纪,城市化的进程得到加快,地铁建设是城市发展的必然选择之一。 (广东华隧建设股份有限公司广东广州 510520) 【摘要】在二十一世纪,城市化的进程得到加快,地铁建设是城市发展的必然选择之一。但是在地铁盾构施工中,存在的各类风险直接关系到社会的和谐稳定和人民的生命财产安全。因此,地铁盾构施工的安全尤为重要。本文对地铁盾构施工中的安全管理进行研究,为今后的地铁施工提供参考依据。 【关键词】地铁盾构;施工风险;安全管理 【中图分类号】U231 【文献标识码】A 【文章编号】1002-8544(2017)14-0105-02 1.引言 我国的交通流量每年都在快速增长,地面交通已无法满足交通需求,人们开始在地下兴建地铁,但是地铁盾构施工存在的风险不容忽视,需要对这些风险进行分析与管理,才能保证地铁盾构施工建设的安全。 2.地铁盾构施工存在的风险 近几年来,地铁给我们带来的便利可是家喻户晓,各大城市也在加快地铁的修建,其所带来的安全事故也层出不穷,给地铁的施工带来了困扰。盾构法相对于别的工法施工虽然具有较高的安全性,但是也避免不了起重伤害、机械伤害、坍塌、车辆伤害、高处坠落、触电、中毒等安全事故,给人民的生命与财产带来了巨大的损失。 2.1 起重伤害的风险 盾构施工过程中一般需要龙门吊或者起重设备进行垂直吊装作业,作为施工物资运送的必须设备,在日常机械设备管理上,如无法对设备机械及时进行维修和保养,缺少过程安全检查,设备带病作业,过程中未能严格执行起重作业安全操作规程,容易造成群死群伤事故。 2.2 坍塌的风险 盾构隧道设计规划一般会在道路下方穿行,甚至会不可避免的穿越建构筑物群,由于盾构施工过程对沉降的要求很严格,加上地质条件的复杂性,存在很多不可预见性,无法保证盾构施工过程中路面不发生塌方或沉降。在盾构施工中若发生坍塌事故,可能会造成路面塌陷,车辆人员掉入,影响路面交通,严重的造成建筑物倒塌,造成重大人员伤亡和经济损失,坍塌事故还可能使自来水管、煤气管等管线遭到破坏,造成更为严重的次生灾害。 2.3 车辆伤害的风险 盾构隧道的水平运输主要是靠电瓶车,由于隧道搭设的临时性轨道质量相对比较差,如果电瓶车刹车不灵敏或者司机不正当的操作都会使电瓶车发生意外,造成电瓶车溜车事故,轻者撞坏了设备,重者伤及人命。1998年3月19日晚,在上海地铁2号线陆家嘴-东昌路区间,电瓶车司机在清理轨道下的泥土时启动电瓶车但是没有打铃警示,车才开了几米远就撞到了民工方正飞。 2.4 盾构开仓换刀作业的风险 盾构施工中不可避免的会进行换刀作业,常规换刀作业分为常压开仓和气压开仓,由于地下环境的复杂性,掌子面的稳定性、舱内气体的质量、施工过程的动火作业等等,种种风险因素中如果过程管理不严,没有按照操作规程作业,会给仓内施工人员带来危险。 2.5 隧道堵漏作业的风险 隧道堵漏往往与盾构施工同时进行,不可避免的与电瓶车之间存在交叉作业,堵漏架子的不稳定性、过程中固定措施不足、高处作业不系安全带、堵漏材料侵入电瓶车轨行区、行车过程指令不明确、堵漏工人不避让等风险因素,都有可能造成人车伤亡事故。 2.6 交叉作业的风险 交叉作业是指两个以上的班组在同一区域内进行施工。盾构施工过程中,为了施工能够穿插进行,盾构施工中的电瓶车往往与联络通道开挖、隧道堵漏,与车站主体之间存在诸多交叉作业,如果各方职责不明确,过程中管理不严,极易在交叉作业过程中出大事故。 2.7 高处坠落风险 盾构法地铁施工过程中,施工人员在盾构机安装维护过程中如果高处作业没有系好安全带,或者施工作业平台防护不到位,稍在有不慎就会从高处摔下去,造成高处坠落事故。 2.8 触电风险 盾构机为大型的设备,施工过程中采用一万伏供电电压,除了生产用电外,需要用到其他的辅助设备,如水泵、电焊机、照明灯等等,如果电工过程中检查不严、无证上岗、线路乱拉乱接、安全警示不到位、漏电保护器失效等等,都有很容易在施工过程中发生漏电事故。 2.9 物体打击风险 在地铁施工过程中,如果安全帽佩戴不正确,头部就有可能受到打击,稍有不慎就会被没有放稳的器材砸到,比如在交叉作业中很容易被上方的施工人员掉落的工具造成伤害。 3.地铁盾构施工风险控制措施 3.1 起重伤害控制措施 为了更好的做好起重设备的安全管理。首先,临时起重设备必须严格执行进场审批制度,从源头上杜绝有问题的起重设备进入施工现场,杜绝设备带病作业;其次,加强对工人进场的教育关,特别是特殊工种,要求工人履行三级安全教育外,还必须对其进行手抄安全技术交底,通过深刻教育传输过程安全管理的强度和硬度,做到严把进场关。最后,过程中做好安全监督,加强检查,日常中加强对设备的维修保养。通过管控人的安全行为和物的安全状态,确保设备安全运行。 3.2 坍塌控制措施 盾构隧道在施工过程中(1)针对不利地层,可提前对隧道沿线进行加固处理,改良土体,特别是溶洞发育较多的地方,可以进行填

(整理)地铁车站和区间隧道的设计和选型

一、地铁车站的建筑设计 1地铁车站的分类 1.1 按照车站埋深分:浅埋车站、深埋车站 1.2 按照车站运营性质分:中间站、区域站、换乘站、枢纽站、联运站、终点站 1.3 按照车站结构断面形式分:矩形断面、拱形断面、圆形断面、其他 1.4 按车站站台形式分:岛式、侧式、岛侧混合式 2 地铁车站建筑及平面布局 2.1 地铁车站的组成 地铁车站由车站主体(站台、站厅、生产、生活用房)、出入口及通道、通风道及地面通风厅等三大部分组成。 车站建筑又可概括为以下部分组成:乘客使用空间、运营管理用房、技术设备用房、辅助用房。 2.2车站总体平面布置 按照以下流程确定:前期工作(设计资料的收集、现场调查、构思),确定车站中心位置及方向,选定车站类型,合理布置车站出入口、通道、通风道与地面通风厅。 3 车站建筑设计 3.1 车站设计 3.1.1 设计原则 (1)根据车站规模、类型及平面布置,合理组织人流路线,划分功能分区。 (2)车站一般宜设在直线上。 (3)车站公用区间划分为付费区和非付费区。 (4)隔、吸声措施。 (5)无障碍通行。 3.1.2 平剖面设计 (1)车站规模确定。确定车站外形尺寸大小、层数和站房面积,确定车站规模大小。 (2)车站功能分析。确定车站乘客流线、工作人员流线、设备工艺流线等,以便于合理进行车站平剖面布置。

(3)站厅设计。主要解决客流出入的通道口、售票、进出站检票、付费区与非付费区的分隔、站厅与站台的上下楼梯与自动楼梯的位置等。 (4)站台设计。确定站台形式、站台层的有效长度、宽度和站台高度,然后进行站台层公共区(上、下车与候车区及疏散通路)的设计。 (5)主要房间布置。包括变电所、环控用房、主副值班室、车站控制室、站长室等,一般设置在站厅和站台层的两端。 (6)车站主要设施布置。包括楼梯、自动扶梯、电梯、售检票设施等的布置和各部位通过能力的设计,按照有关规范执行。 3.1.3 消防、安全与疏散 主要考虑建筑防火与防水淹问题。 3.2 车站出入口及出入口通道 3.2.1 普通出入口的设计 (1)出入口数量的确定。一般情况,浅埋地下车站的出入口不少于4个,深埋车站不少于2个。 (2)主要尺寸的确定。出入口的宽度总和应大于该站远期预测超高峰小时客流量所需的总和,可按照公式计算。 3.2.2 出入口通道 包括出入口通道宽度的设计、埋深、楼梯踏步和自动扶梯的设置等,出入口通道地面坡度等。 3.3 车站通风道 3.3.1 车站通风道 确定地铁车站内的通风方式、环控设备的布置等来确定车站内通风道的布置。 3.3.2 地面通风亭 根据风量及风口数量确定通风亭的大小,根据实际环境和设备的条件确定通风亭的位置。 3.4 残废人设施 考虑残废人专用电梯和站内盲道的设置。

相关文档
相关文档 最新文档