文档库 最新最全的文档下载
当前位置:文档库 › 利用Multisim的同步十进制计数器的仿真实验

利用Multisim的同步十进制计数器的仿真实验

利用Multisim的同步十进制计数器的仿真实验
利用Multisim的同步十进制计数器的仿真实验

利用Multisim 的同步十进制计数器的仿真实验

1 8421BCD 码同步十进制加法计数器

图1为由4个JK 触发器组成的8421BCD 码同步十进制加法计数器电路,仿真开始,首先用清0开关将计数器设置为0000状态,然后在计数脉冲信号CP 的作用下,计数器的状态按8421BCD 码数的规律依次递增,当计数器的状态变为1001时,再输入一个计数脉冲,这时计数器返回到初始的0000状态,同时向高位输出一个高电平的进位信号。

2 集成同步十进制加法计数器74LS160和74LS162

1.74LS160的逻辑功能仿真

图2为74LS160的逻辑功能仿真电路,图中LOAD 为同步置数控制端,CLR 为异步置0控制端,ENT 和ENP 为计数控制端,D 、C 、B 、A 为并行数据输入端,D Q 、C Q 、B Q 、A Q 为输出端,RCO 为进位输出端。

1)异步置0功能:当CLR 端为低电平时,不论有无时钟脉冲CP 和其它信号输入,计数器置0,即0000 A B C D Q Q Q Q 。

图1 8421BCD 码同步十进制加法计数器

2)同步并行置数功能:当01==LOAD CLR ,时,在输入计数脉冲CP 的作用下,并行数据DCBA 被置入计数器,即DCBA Q Q Q Q A B C D =,本仿真电路中并行置数仅为0000和1111两种。

3)计数功能:当1====ENP ENT CLR LOAD ,

CLK 端输入计数脉冲CP 时,计数器按8421BCD 的规律进行十进制加法计数。

4)保持功能:当1==CLR LOAD ,且ENP ENT 和中有0时,则计数器保持原来的状态不变。

2.利用74LS160的“异步置0”获得N 进制计数器

由74LS160设有“异步置0”控制端CLR ,可以采用“反馈复位法”,使复位输入端CLR 为0,迫使正在计数的计数器跳过无效状态,实现所需要进制的计数器。

图3为用74LS160的“异步置0”功能获得的七进制计数器电路,设计数器从0000=A B C D Q Q Q Q 状态开始计数,“7”的二进制代码为0111,反馈归零函数A B C Q Q Q CLR =,根据该函数式用3输入与非门将它们连接起来。

图2 74LS160逻辑功能仿真电路

图3 74LS160利用“异步置0”构成七进制计数器

3.利用74LS160的“同步置数”功能获得七进制计数器

74LS160设置有“同步置数”控制端,利用它也可以实现七进制计数,设计数从0000=A B C D Q Q Q Q 状态开始,由于采用反馈置数法获得七进制计数器,因此应取同步输入端0000=DBCA ,“7”的二进制代码为0110617==-S S ,故反馈置数函数为B C Q Q LOAD =,用2输入与非门把LOAD 、Q Q B C 和端连接起来,构成七进制计数器,如图4所示。

3 集成同步十进制加、减法计数器74LS190的仿真

图5所示为集成同步十进制加、减法计数器74LS190的逻辑功能仿真电路。LOAD 为异步置数控制端,CTEN 为计数控制端,D 、C 、A 、B 为并行数据输入端,D Q 、C Q 、B Q 、A Q 为输出端,D U /为加减计数方式控制端。MIN MAX /为进步输出/借位输出端。

1.异步并行置 数功能

当0=LOAD 时,不论有无时钟脉冲和其它信号输入,并行输入的数据DCBA 被置入计数器相应的触发器中,即DCBA Q Q Q Q A B C D =,本仿真电路中,并行输入数据只有0000和1111两种。

图4 74LS160利用“同步置数”构成七进制计数器

2.计数功能

U,0

=

CTEN,在CP脉冲上升沿作用下,计数器按

D

/=

1

=

LOAD时,0

8421BCD码进行十进制加法计数,如这时将D

U/变为1,则变为十进制减法计数器。

3.保持功能

当1

LOAD,计数器保持原计数值不变。

=

=CTEN

图5 74LS190逻辑功能仿真电路

实验一-加法器的设计与实现讲解

实验项目二:简单计算器设计与实现基本要求: 1. 能够实现加减运算 2. 能够实现乘法运算 扩展要求: 1.能够实现除法运算 一、实验目的 利用原件例化语句完成一个8位加法器的设计。 二、实验环境 Quartus II 开发系统 三、实验内容 1、掌握层次化设计的方法; 2、掌握一位全加器工作原理; 3、掌握用VHDL文本输入法设计电子线路的详细流程; 4、掌握元件例化语句用法; 5、熟悉软硬件设计验证方法。 四、实验过程 设计思想: 8位二进制加法器可以由8个全加器通过级联的方式构成。根据全加器级联的原理,用VHDL设计一个8位二进制数的加法器,可以先设计一个一位全加器,然后利用一位全加器采用元件例化的方式实现加法器。 实验步骤: 1、设计一个全加器 新建工程,建立源文件,输入VHDL设计文件,如下图所示:

完成设计文件输入后,保存文件,对文件进行编译、仿真,以下是仿真结果,如图所示: 由图可知仿真结果正确。 2、元件例化 把VHDL设计文件转为原理图中使用的元件。在文件菜单File中选择Creat/Update选项,单击Create Symbol File for Current File 选项,系统自动生成相应的元件标号。 重复新建文件的操作,选择Block Diagram/Schmatic File 选项,新建一个原理图文件,在添加元件列表中可以看到自动生成的元件,选择full_adder这个元件添加到原理图中,如下图所示:

3、完成顶层图的设计 用生成的元件标号,完成顶层图的设计。这里有两种方法,一种是直接用原理图设计,根据原理图设计工具的使用方法,完成顶层文件的设计,这个方法比较复杂,所以这里选择另一种方法,通过VHDL设计文件。 继续建立源文件,输入VHDL设计文件,如下图所示: 依照上述步骤,保存文件,对文件进行编译、仿真,以下是仿真结果,如图所示:

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

全加器构成十进制加法器

上海 xxx 学院 《硬件系统设计》上机实验报告(五) 姓名:学号:班级:成绩: 实验名称:全加器及其应用实验地点: 实验设备:(计算机型号)(生产商)设备号: 使用软件: Multisim 10.0 实验时间:年月日星期,时分至时分 一、实验原理:(简述----用自己的理解) 两个一位十进制数相加,若考虑低位来的进位,其和应为0~19,8421BCD 码加法器 的输入、输出都采用8421BCD 码表示,其进位规律为逢十进一,而74HC283D 是按两个 四位二进制数进行运算的,其进位规律为逢十六进一,故二者的进位关系不同,当和数 大于9时,8421BCD 码应产生进位,而十六进制还不可能产生进位。为此应对结果进行 修正,当结果大于9 时,需要加6(0110B)修正。故修正电路应含一个判9 电路,当结果 大于9 时对结果加0110,小于等于9 时加0000。 大于9 的数是最小项的m10~m15,除了上述情况大于9 时外,如相加结果产生了进 位位,其结果必定大于9,因此大于9 的条件为 F = C + SUM4? SUM3+ SUM4? SUM2 = C ? SUM4? SUM3? SUM4? SUM2 全加器74HC283D 的A4A3A2A1、B4B3B2B1 为两个四位二进制数输入端,SUM1、SUM2、 SUM3、SUM4 为相加的和,C0 为低位来的进位,C4 为向高位产生的进位。

二、实验内容(步骤): 选择一个74HC283D_2v,二输入与非门7400N和三输入与非门7410N芯片,Word Genvertor(字信号发生器),构成8421BCD 码加法电路,电路图如下: 对Genvertor(字信号发生器)进行相关设置如下: 在Controls 中选择Cycle 按钮,选择循环输出方式。在Trigger 区,点击按钮Internal,选择内部触发方式。在Controls-Setting 按钮填出的选项卡中,Pre-set Patterns 中选择在Up Counter 选项,即按逐个加1 递增的方式进行编码。在Display Type 中选择Hex,在Buffer Size 中输入0009,在Initial Pattern 中选择00000000。

Multisim三相电路仿真实验

实验六 三相电路仿真实验 一、实验目的 1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真; 2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结; 3、 加深对三相四线制供电系统中性线作用的理解。 4、 掌握示波器的连接及仿真使用方法。 5、 进一步提高分析、判断和查找故障的能力。 二、实验仪器 1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求 1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。 3.仿真分析三相电路的相关内容。 4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明 1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。这种联接方式的 特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。 2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。 3、电流、电压的“线量”与“相量”关系 测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。画仿真图时要注意。 负载对称星形联接时,线量与相量的关系为: (1) P L U U 3= (2)P L I I = 负载对称三角形联接时,线量与相量的关系为: (1)P L U U = (2)P L I I 3= 4、星形联接时中性线的作用 三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。 五、实验内容及参考实验步骤 (一)、建立三相测试电路如下: 图1 三相负载星形联接实验电路图 1.接入示波器:测量ABC三相电压波形。并在下表中绘出图形。 Timebase:_________/DIV 三相电压相位差:φ=__________。 (二)、三相对称星形负载的电压、电流测量 (1)使用Multisim软件绘制电路图1,图中相电压有效值为220V。 (2)正确接入电压表和电流表,J1打开,J2 、J3闭合,测量对称星形负载在三相四线制(有中性线)时各线电压、相电压、相(线)电流和中性线电流、中性点位移电压。记入表1中。 (3)打开开关J2,测量对称星形负载在三相三线制(无中性线)时电压、相电压、相(线)电流、中性线电流和中性点位移电压,记入表1中。 表1 三相对称星形负载的电压、电流 (4)根据测量数据分析三相对称星形负载联接时电压、电流“线量”与“相量”的关系。 结论: (三)、三相不对称星形负载的电压、电流测量 (1)正确接入电压表和电流表,J1闭合,J2 、J3闭合,测量不对称星形负载在三相

Multisim仿真实训报告

EDA 工 具 训 练 实 训 报 告 学院:电气与控制工程学院 班级:自动化1201 姓名: 学号:

实验1:三相电路仿真 一.电路设计及功能介绍 三相电路是一种特殊的交流电路,由三相电源、三相负载和三相输电线路组成。世界上电力系统电能生产供电方式大都采用三相制。三相电路由三相交流电源供电,三相交流电源指能够提供3个频率相同而相位不同的电压或电流的电源,三相发电机的各相电压的相位互差120°。三相电路有电源和负载Y连接和△连接等连接方式,本次仿真采用Y--Y连接。 二.三相电路电路分析 1.三相对称负载Y--Y连接。图1-1为其电路仿真。 图1-1.三相电路对称负载仿真 线电流(相电流)/A 相电压/v 负载电压/v 中性线电流/uA 2.2 381.077 220.015 8.277 表1-1 三相电路对称负载仿真各项数据 2.去掉中性线后三相对称负载电路仿真,如图1-2.

图1-2去掉中性线后.三相电路对称负载仿真 线电流(相电流)/A 相电压/v 负载电压/v 2.2 381.077 220.015 表1-2去掉中性线后三相电路对称负载仿真各项数据 3.改变三相对称负载的大小,如图1-3. 图1-3改变三相对称负载后三相电路对称负载仿真各项数据 线电流(相电流)/A 相电压/v 线电压/v 4.4 381.077 220.015 表1-3 改变三相对称负载后三相电路对称负载仿真各项数据 4.三相负载三角形联结的电路仿真

图1-4.三相电路△负载仿真 线电压(相电压)/v 线电流/A相电流/A 381.069 6.6 3.811 表1-4.三相电路△负载仿真各项数据 本实验包括四个部分,一是三相对称负载Y--Y接法,二是去掉一中的中性线,通过一和二的对比可以得出三相电路中中性线的作用,三改变了对称负载的大小,可以得出负载大小对各项数值的影响,四十三相对称负载Y--△接法,通过四与一二三的对比,可以发现△负载与Y负载的不同。 通过对比以上各组实验及数据,可以得到: 1.在Y--Y三相对称负载电路中,中性线上电流几乎为零,中性线不起作用。 2.三相对称负载变化会引起线电流变化,其他不变。 3.负载Y接法中,线电流等于相电流,负载对称,线电压是相电压的1.73倍。 4.负载△接法中,线电压等于相电压,负载对称,线电流是相电流的1.73倍。 三.总结与展望 世界上电力系统电能生产供电方式大都采用三相制。说明三相电路在实际生产生活中具有重要意义。对于我们电类专业的学生,将来如果从事与专业相关的工作,供电是基础,所以我们要研究三相电路,研究它各方面特点,熟练掌握Y 接法和△接法。通过本次试仿真实验,加深了我们对三相电路的了解,为将来研究和运用三相电路打下了基础。 实验二:RLC串联谐振 一.电路设计及功能介绍: 电路原理:当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐

四位二进制加法器课程设计

课题名称与技术要求 课题名称: 四位二进制加法器设计 技术要求: 1)四位二进制加数与被加数输入 2)二位数码管显示 摘要 本设计通过八个开关将A3,A2,A1,A0和B3,B2,B1,B0信号作为加数和被加数输入四位串行进位加法器相加,将输出信号S3,S2,S1,S0和向高位的进位 C3通过译码器Ⅰ译码,再将输出的Y3,Y2,Y1,Y0和X3,X2,X1,X0各自分别通过一个74LS247译码器,最后分别通过数码管BS204实现二位显示。 本设计中译码器Ⅰ由两部分组成,包括五位二进制译码器和八位二进制输出器。信号S3,S2,S1,S0和向高位的进位C3输入五位二进制-脉冲产生器,将得到的n(五位二进制数码对应的十进制数)个脉冲信号输入八位二进制输出器,使电路的后续部分得以执行。 总体论证方案与选择 设计思路:两个四位二进制数的输入可用八个开关实现,这两个二进制数经全加器求和后最多可以是五位二进制数。本题又要求用两个数码管分别显示求和结果的十进制十位和各位,因此需要两个译码器Ⅱ分别译码十位和

个位。综上所述,需要设计一个译码器Ⅰ,能将求和得到的五位二进制数译成八位,其中四位表示这个五位二进制数对应十进制数的十位,另四位表示个位。而译码器Ⅱ有现成的芯片可选用,此处可选74LS247,故设计重点就在译码器Ⅰ。 加法器选择 全加器:能对两个1位二进制数进行相加并考虑低位来的进位,即相当于3个1位二进制数相加,求得和及进位的逻辑电路称为全加器。或:不仅考虑两个一位二进制数相加,而且还考虑来自低位进位数相加的运算电路,称为全加器。 1)串行进位加法器 构成:把n位全加器串联起来,低位全加器的进位输出连接到相邻的高位全加器的进位输入。 优点:电路比较简单。 最大缺点:进位信号是由低位向高位逐级传递的,运算速度慢。 2)超前进位加法器 为了提高运算速度,必须设法减小或消除由于进位信号逐级传递所消耗的时间,于是制成了超前进位加法器。 优点:与串行进位加法器相比,(特别是位数比较大的时候)超前进位加法器的延迟时间大大缩短了。 缺点:电路比较复杂。 综上所述,由于此处位数为4(比较小),出于简单起见,这里选择串行进位加法器。 译码器Ⅱ选择 译码是编码的逆过程,将输入的每个二进制代码赋予的含意“翻译”过来,给出相应的输出信号。译码器是使用比较广泛的器材之一,主要分为:变量译码器和码制译码器,其中二进制译码器、二-十进制译码器和显示译码器三种最典型,使用十分广泛。显示译码器又分为七段译码器和八段

十进制加法器

十进制加法器 十进制加法器可由BCD码(二-十进制码)来设计,它可以在二进制加法器的基础上加上适当的 “校正”逻辑来实现,该校正逻辑可将二进制的“和”改变成所要求的十进制格式。 n位BCD码行波式进位加法器的一般结构如图2.3(a)所示,它由n级组成,每一级将一对4位的 BCD数字相加,并通过一位进位线与其相邻级连接。而每一位十进制数字的BCD 加法器单元的逻辑 结构示于图2.3(b)。 图2.3 十进制加法器 在十进制运算时,当相加二数之和大于9时,便产生进位。可是用BCD码完成十进制数运算时,

当和数大于9时,必须对和数进行加6修正。这是因为,采用BCD码后,在二数相加的和数小于等于 9时,十进制运算的结果是正确的;而当相加的和数大于9时,结果不正确,必须加6修正后才能得 出正确的结果。因此,当第一次近似求值时,可将它看成每一级是一个4位二进制加法器来执行, 就好像x i 和y i 是普通4位二进制数一样。设S' i 代表这样得到的4位二进制数 和,C' i+1 为输出 进位,而S i 代表正确的BCD和,C i+1 代表正确的进位,那么当x i +y i +C i <10时, S i =S' i 当X i +Y i +C i ≥10时, S i =S' i +6 显然,当C' i+1=1或S' i ≥10时,输出进位C i+1=1。因此,可利用C i+1的状态来产 生所要求的 校正因子:C i+1=1时校正因子为6;C i+1 =0时校正因子为0。在图2.3(b)中,4位 行波式进位的二 进制加法器计算出和S' i ,然后S' i 经过第二级二进制加法器加上0或6,则产生最 终结果S i 。

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

Multisim仿真实验应用

Multisim仿真技术在“电工电子技术"教学中的应用 李小兰 (厦门兴才职业技术学院机电系) 摘要:本文主要分析了在“电工电子技术”教学中应用仿真实验优越性,以基于Multisim 仿真软件的负反馈对放大器性能的影响仿真实验的设计和实施为例子。将仿真技术与多媒体应用相结合,在理论教学中直接嵌入仿真实验,将传统教室变为虚拟实验室,实现理论与实践教学一体化。实践证明,这种教学模式大大调动了学生的学习积极性和主动性。仿真实验在电工电子教学模式的创新与实践中,对于帮助学生树立理论联系实际的工程观点,提高分析问题,动手能力和自主探究精神都起着非常重要的作用。 关键词:电工电子技术;高等职业教育;Multisim仿真实验;一体化教学 Abstract:This paper explores the application of siulation experiment in Electrical Circuit course teaching.It takes the design and analysis of a single tetrode amplifying circuit simulation experiment based on Multism simulation software as its example.By adopting simulation technology and multimedia, simulation experiment is embedded into theoretical course teaching,which combines theory with practice.Teaching practice reveals that this teaching approach greatly stimulates students’study motivation and interest.In the innovation of Electrical Circuit course teaching,simulation experiment helps students to develop the spirit of combining theory with practice,improve the ability of analyzing problems and form the habit of actual practice and self-exploration.

实验二 一位8421BCD码加法器的设计

实验二一位8421BCD码加法器的设计 一、实验目的 1.理解四位加法器7483和四位比较器7485的工作原理及使用 2.掌握一位8421BCD码加法器的工作过程 3.进一步熟悉Quartus软件的使用,了解设计的全过程, 二、实验内容 1.采用画原理图的方法设计一位8421BCD码加法器。要求使用四位 加法器7483和四位比较器7485及必要的逻辑门电路。 三、分析过程 7483是四位二进制加法器,其进位规则是逢16进1。而8421BCD 码表示的是十进制数,进位规则是逢10进1。用7483将两个1位BCD码相加时,当和小于等于9时,结果正确;当和大于9时,需加6进行修正。 实验中要求使用7483、7485及必要的逻辑门完成。由于7483通过输出引脚C4 S3 S2 S1 S0输出二进制的和,7485是四位比较器,关键在于如何通过7483及7485的输出判断何时应对结果修正以及如何修正。 由于两个1位十进制数相加时,和的取值范围是0—18,将该范围内各数值对应的二进制数和8421BCD码列表,以便寻找何时应对结果修正以及如何修正

从表中分析可得出如下结论: 当7483输出的二进制数的和为0---9时,即S3 S2 S1 S0≤9时结果正确,不需修正;当和为10-----15时S3 S2 S1 S0>9时,需加6修正,此种情况可将7483的输出S3 S2 S1 S0送入7485的输入引脚A3 A2 A1 A0,将1001(即9)送入7485另一组输入引脚B3 B2 B1 B0,若7485的输出A>B=1,则说明需加6修正;当和为16、17、18时,结果需加6修正。此种情况7483的输出S3 S2 S1 S0<9,但C4=1。 综合以上分析,当7483输出的二进制数的和S3 S2 S1 S0>9或C4=1时结果需修正。此修正的条件可通过7485的输出A>B和7483输出的C4通过逻辑或门(OR1)获得。当OR1输出为1时需修正,当OR1输出为0时不需修正。(分析出何时应对结果修正)

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

vhdl通用十进制加法器

湖南人文科技学院 课程设计报告 课程名称:VHDL语言与EDA课程设计 设计题目:通用十进制加法器 系别:通信与控制工程系 专业:电子信息工程 班级: 学生姓名: 学号: 起止日期: 指导教师: 教研室主任:

指导教师评语: 指导教师签名:年月日 成绩评定 项目权重 成绩 1、设计过程中出勤、学习态度等方面0.2 2、课程设计质量与答辩0.5 3、设计报告书写及图纸规范程度0.3 总成绩 教研室审核意见: 教研室主任签字:年月日教学系审核意见: 主任签字:年月日

摘要 随着科技的发展,通用十进制加法器的应用已广泛融入到现实生活中。EDA 技术的应用引起电子产品及系统开发的革命性变革。本文采用EDA技术设计,并以VHDL语言为基础制作的通用十进制加法器。该系统借助于强大的EDA工具和硬件描述语言可实现两个一位以上的十进制数的加法,在输入两个十进制数之后,给出两个数的相加结果。本设计充分利用VHDL“自顶向下”的设计优点以及层次化的设计概念,提高了设计的效率。设计主要步骤:首先利用QUARTUS‖来编辑、编译、仿真各个模块;然后以原理图为顶层文件建立工程,再进行引脚锁定、编译、下载,最后采用杭州康芯电子有限公司生产的GW48系列/SOPC/EDA实验开发系统,进行硬件测试。 关键词:通用十进制加法器;EDA技术;VHDL语言; QUARTUS‖

目录 设计要求 (1) 1、方案论证与对比 (1) 1.1方案一 (1) 1.2方案二 (1) 1.3 方案的对比与选择 (2) 2、设计原理 (2) 3、通用十进制加法器的主要硬件模块 (3) 3.1 4位BCD码全加器模块 (3) 3.2八加法器的实现框图 (3) 4、调试与操作 (4) 4.1通用十进制加法器的功能仿真 (4) 4.2模式选择与引脚锁定 (4) 4.2.1模式选择 (4) 4.2.2引脚锁定 (5) 4.3设备与器件明细表 (6) 4.4调试 (6) 4.4.1软件调试 (6) 4.4.2硬件调试 (6) 5、总结与致谢 (7) 5.1总结与思考 (7) 5.2致谢 (7) 附录 (8) 附录一 (8) 附录二 (9) 参考文献 (11)

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

EDA课程设计 十进制加法器

燕山大学 课程设计说明书题目:十进制加法计数器 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:电子实验中心 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

目录 第1章摘要 (4) 第2章十进制加法器设计说明 (5) 2.1 设计思路 (5) 2.2 流程图 (5) 2.3 模块介绍 (6) 2.4 真值表 (6) 第3章原理图分析 (11) 3.1 整体原理图 (11) 3.2 输入转换部分设计 (12) 3.3 蜂鸣器部分 (12) 3.4 加法器部分 (13) 3.5 B-BCD(二进制转换为BCD码) (13) 3.6 动态数码管部分 (14) 第4章波形仿真图及结果分析 (16) 第5章管脚锁定及硬件连线 (21) 第6章总结 (22) 参考文献 (23) 燕山大学评审意见表 (24)

摘要 十进制加法器可由BCD码(二-十进制码)来设计,它可以在二进制加法器的基础上加上适当的“校正”逻辑来实现,该校正逻辑可将二进制的“和”改变成所要求的十进制格式。n位BCD码行波式进位加法器由n级组成,每一级将一对4位的BCD数字相加,并通过一位进位线与其相邻级连接。在十进制运算时,当相加二数之和大于9时,便产生进位。用BCD码完成十进制数运算时,当和数大于9时,必须对和数进行加6修正,由加法器和比较器完成功能的实现。加法器的加数和被加数若大9则蜂鸣器警报5秒,数码管显示为0,由比较器和计数器控制。动态数码管由计数器、数据选择器、译码器完成显示功能。 关键词:十进制加法器、动态数码管显示、蜂鸣器警报

Multisim实验报告

实验一 单级放大电路 一、实验目得 1、 熟悉mul tisim 软件得使用方法 2、 掌握放大器静态工作点得仿真方法及其对放大器性能得影响 3、 学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻得仿真方法,了解共射极电 路得特性 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表 三、实验步骤 4、 静态数据仿真 电路图如下: 当滑动变阻器阻值为最大值得10%时,万用表示数为2。204V。 R151kΩ R25.1kΩR320kΩ R41.8kΩ R5 100kΩ Key=A 10 % R61.5kΩ V110mVrms 1000 Hz 0° C110μF C210μF C347μF 2Q1 2N2222A 3 R7 100Ω8 1 5 64XMM1 7

仿真得到三处节点电压如下 : 仿真数据(对地数据)单位:V 计算数据 单位:V 基极V(3) 集电极V(6) 发射级V(7) V be Vc e Rp 2。83387 6、12673 2.20436 0。6295 1 3、92237 10K Ω 5、 动态仿真一 (1)单击仪器表工具栏中得第四个(即示波器Oscillos cope),放置如图所示,并且连接电路、 (注意:示波器分为两个通道,每个通道有+与—,连接时只需要连接+即可,示波器默认得地已经接好、观察波形图时会出现不知道哪个波形就是哪个通道得,解决方法就是更改连接得导线颜色,即:右键单击导线,弹出,单击wir e colo r,可以更改颜色,同时示波器中波形颜色也随之改变) R151kΩ R25.1kΩR3 20kΩ R41.8kΩ R5 100kΩ Key=A 10 % V110mVrms 1000 Hz 0° V212 V C110μF C210μF C347μF 2Q1 2N2222A 3 R7100Ω8 1 XSC1 A B Ext Trig + + _ _ + _ 746R61.5kΩ 5

一位十进制加法器设计报告

一位十进制加法器设计报告成员:

一位十进制加法器 一、实验目的: 1、进一步学习组合逻辑电路的设计方法; 2、学习相关芯片的使用; 3、学一位十进制加法器的原理,并设计一个一位十进制加法电路。 二、设计原理: 利用74HC283芯片,可以实现4为二进制数的相加运算,因此,对两个一位十进制数进行加运算时,应先把十进制数转化成二进制数,即进行编码,然后进行加运算,编码采用了两个8线-3线编码器串联组成的16线-4线编码器。对求和结果进行输出时,当结果是一位十进制数时,可以直接输出,而求和结果为二位十进制数时,需要将结果分成十位数字和个位数字,分别显示在两个七段数码显示器上,这就需要对输出结果进行处理,设计时用对要输出结果加六,并取后四位作为个位输出,十位输出为1。 下面分介绍电路各个部分的设计方法与功能。 1、译码部分: 电路设计如图一,CD4532为8线-3线译码器,输入和输出端均为高电平有效,即可以把0~7的十进制数转化为相应的二进制数输出。设计时用两片CD4532组成16线-4线译码器,当要是入一个十进制数时,在相应的输入端加高电平即可。 图一 2、求和部分: 求和部分电路设计如图二,74HC283为四位二进制加法器,输入和输出端均为高电平有效,可以对输入的两个十进制数转化为的二进制数进行求和,其中,C4为进位输出端,当输出结果超过15时,输出高电平。

图二 3、结果处理输出部分: 结果处理输出部分电路设计如图三,CD4585为四位二进制比较电路,输入和输出端均为高电平有效,用两片CD4585组成8位二进制比较电路,将求和结果与9比较。当结果小于9时,输出端输出为低电平,即输出为零,利用74HC283,将结果直接输出;当大于9时输出为1,对输出结果加6,并取后四位作为个位输出。当输出结果为10~15时,用作加六运算的74HC283的C4端输出为1;当结果为16~18时,用作求和的电路C4端输出为1;当结果为0~9时,二者输出均为0;以此可以控制十位输出1还是0。 图三 4、显示部分:

根据Multisim的通信电路仿真实验

基于Multisim 的通信电路仿真实验通信电路课程仿真实验指导书 班级:通信一班、通信二班、通信三班、通信四班 目录 实验一高频小信号放大器......................................................... 4. . 1.1实验目的 4... 1.2实验内容 4... 1.2.1单调谐高频小信号放大器仿真 ............... 4. 1.2.2双调谐高频小信号放大器................... 5. 1.3 实验要求 6...

实验二高频功率放大器......................................................... 7. .. 2.1实验目的 7... 2.2实验内容 7... 2.3实验要求 9... 实验三正反馈LC 振荡器......................................................... 1. .0 3.1实验目的 1..0. 3.2实验内容 1..0. 3.2.1电感三端式振荡器 1..0 3.2.2电容三端式振荡器 1..1 3.2.3克拉泼振荡器 1..1 3.3实验要求 1.. 2. 实验四晶体振荡器 1..3. 4.1实验目的 1..3. 4.2实验内容 1..3. 4.3实验要求 1..4. 实验五低电平调制

1..5. 5.1实验目的 1..5. 5.2实验内容 1..5. 5.2.1二极管平衡电路调制 1..5 5.2.2模拟乘法器调制电路 1..6 5.3实验要求 1..6. 实验六高电平调制 1..7. 6.1实验目的...................................... 1.. 7. 6.2实验内容...................................... 1.. 7. 6.2.1集电极调幅电路 ........................... 1..7 6.2.2基极调幅电路............................. 1..8 6.3实验要求...................................... 1..8. 实验七包络检波 1..9. 7.1实验目的...................................... 1..9. 7.2实验内容...................................... 1..9. 7.3实验要求...................................... 1..9. 实验八同步检波 2..0. 8.1实验目的...................................... 2..0. 8.2实验内容...................................... 2..0. 8.2.1二极管平衡电路解调DSB ................... 2. 0 8.2.2模拟乘法器同步检波 ....................... 2..1 8.3实验要求...................................... 2..1.

设计示例432位先行进位加法器的设计

设计示例4:32位先行进位加法器的设计 1、功能概述: 先行进位加法器是对普通的全加器进行改良而设计成的并行加法器,主要是针对普通全加器串联时互相进位产生的延迟进行了改良。超前进位加法器是通过增加了一个不是十分复杂的逻辑电路来做到这点的。 设二进制加法器第i位为A i,B i,输出为S i,进位输入为C i,进位输出为C i+1,则有:S i=A i⊕B i⊕C i (1-1) C i+1 =A i * B i+ A i *C i+ B i*C i =A i * B i+(A i+B i)* C i(1-2) 令G i = A i * B i , P i = A i+B i,则C i+1= G i+ P i *C i 当A i和B i都为1时,G i = 1,产生进位C i+1 = 1 当A i和B i有一个为1时,P i = 1,传递进位C i+1= C i 因此G i定义为进位产生信号,P i定义为进位传递信号。G i的优先级比P i高,也就是说:当G i = 1时(当然此时也有P i = 1),无条件产生进位,而不管C i是多少;当G i=0而P i=1时,进位输出为C i,跟C i之前的逻辑有关。 下面推导4位超前进位加法器。设4位加数和被加数为A和B,进位输入为C in,进位输出为C out,对于第i位的进位产生G i = A i·B i ,进位传递P i=A i+B i , i=0,1,2,3。于是这各级进位输出,递归的展开Ci,有: C0 = C in C1=G0 + P0·C0 C2=G1 + P1·C1 = G1 + P1·G0 + P1·P0?C0 C3=G2 + P2·C2 = G2 + P2·G1 + P2·P1·G0 + P2·P1·P0·C0 C4=G3 + P3·C3 = G3 + P3·G2 + P3·P2·G1 + P3·P2·P1·G0 + P3·P2·P1·P0·C0 (1-3) C out=C4 由此可以看出,各级的进位彼此独立产生,只与输入数据Ai、Bi和Cin有关,将各级间的进位级联传播给去掉了,因此减小了进位产生的延迟。每个等式与只有三级延迟的电路对应,第一级延迟对应进位产生信号和进位传递信号,后两级延迟对应上面的积之和。实现上述逻辑表达式(1-3)的电路称为超前进位部件(Carry Lookahead Unit),也称为CLA 部件。通过这种进位方式实现的加法器称为超前进位加法器。因为各个进位是并行产生的,所以是一种并行进位加法器。 从公式(1-3)可知,更多位数的CLA部件只会增加逻辑门的输入端个数,而不会增加门的级数,因此,如果采用超前进位方式实现更多位的加法器,从理论上讲,门延迟不变。但是由于CLA部件中连线数量和输入端个数的增多,使得电路中需要具有大驱动信号和大扇入门,这会大大增加门的延迟,起不到提高电路性能的作用。因此更多位数的加

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

相关文档