文档库 最新最全的文档下载
当前位置:文档库 › C3.2 函数的解析式 学生版

C3.2 函数的解析式 学生版

C3.2 函数的解析式 学生版
C3.2 函数的解析式 学生版

C3.2函数的解析式

知识点梳理:函数的解析式

解析式的表达形式有一般式、分段式、复合式等。

1、一般式是大部分函数的表达形式,例

一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y =

)0(≠k 正比例函数:kx y = )0(≠k 2、分段式

若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。(注意分段函数的定义域和值域)

3、复合式

若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。

4、解析式的求法

根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。

函数的解析式是表示对应关系的式子,是函数三种表示法中最重要的一种,对某些函数问题,能否顺利解答,往往取决于是不是能够求出函数的解析式.本文就常见的函数解析式的求法归类例析如下:

典型例题:

一、定义法

【例1】例1:设23)1(2+-=+x x x f ,求)(x f .

当堂练习:设2

1)]([++=

x x x f f ,求)(x f .

二、待定系数法

【例2】已知1392)2(2+-=-x x x f ,求)(x f .

三、换元(或代换)法:

【例3】已知,11)1(22x x

x x x f ++=+求)(x f .

当堂训练:若x x

x f x f +=-+1)1(

)(,求)(x f

四、反函数法: 【例4】已知2)(21+=-x a f x ,求)(x f .

五、特殊值法:

【例5】设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均有xy y x f y f x f -+=+)()()(,求)(x f .

六、累差法:

【例6】若a

f 1l

g )1(=,且当12,(1)()lg ,(0,)x x f x f x a a x N -≥-=->∈*时满足,求)(x f .

七、归纳法:

【例7】已知a f N x x f x f =*∈+

=+)1()(),(2

12)1(且,求)(x f .

课后练习

1.下列各组中的两个函数是同一函数的为________(填序号).

①y 1= x +3 x -5 x +3

,y 2=x -5; ②y 1=x +1x -1,y 2= x +1 x -1 ;

③f (x )=x ,g (x )=x 2;

④f (x )=3x 4-x 3,F (x )=x 3x -1;

⑤f 1(x )=(2x -5)2,f 2(x )=2x -5.

2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有________(填序号).

3.下列函数中,与函数y =x 相同的函数是________(填序号).

①y =x 2

x ;②y =(x )2;③y =lg 10x ;④y =2log 2x .

4.(1)已知f (2x

+1)=lg x ,求f (x ); (2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );

(3)已知f (x )满足2f (x )+f (1x

)=3x ,求f (x ).

5.给出下列两个条件:(1)f (x +1)=x +2x ;

(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.

6.(12分) (1)若f (x +1)=2x 2+1,求f (x )的表达式;

(2)若2f (x )-f (-x )=x +1,求f (x )的表达式;

(3)若函数f (x )=x ax +b

,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.

7:设33221)1(,1)1(x x x x g x x x x f +=++=+

,求)]([x g f .

8:设)(sin ,17cos )(cos x f x x f 求=.

9:设x x f 2cos )1(cos =-,求)(x f .

10:设)0,,()1()()(b a ,c b a cx

x bf x af x f ±≠=+且均不为其中满足,求)(x f 。

11:设2)1(,

cos )(sin 22=='f x x f ,求)(x f .

12.(14分)某商场促销饮料,规定一次购买一箱在原价48元的基础上打9折,一次购买两箱可打8.5折,一次购买三箱可打8折,一次购买三箱以上均可享受7.5折的优惠.若此饮料只整箱销售且每人每次限购10箱,试用解析法写出顾客购买的箱数x 与每箱所支付的费用y 之间的函数关系,并画出其图象.

2021新高考一轮复习专题2.1 函数概念及三要素(解析版)

第一讲 函数的概念及三要素 1.函数与映射 函数 映射 两个集合A ,B 设A ,B 是两个非空数集 设A ,B 是两个非空集合 对应法则f :A →B 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素 y 与之对应 名称 称y =f (x ),x ∈A 为从集合A 到集合B 的一个函数 称f :A →B 为从集合A 到集合B 的一个映射 记法 函数y =f (x ),x ∈A 映射:f :A →B 2.函数的有关概念 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,所有的输入值x 组成的集合A 叫做函数y =f (x )的定义域;对于 A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域. (2)函数的三要素:定义域、对应法则和值域. (3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 考向一 函数、映射的判断 【例1】(1)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 【修炼套路】---为君聊赋《今日诗》,努力请从今日始 【套路秘籍】---千里之行始于足下

无锡新领航教育咨询有限公司高三数学函数解析式求法教师版

考点一课前巩固提高 1函数223 ()tan x x f x x -++=的定义域为 。 答案:[) 1,0(0,)(,3]22 ππ - 解析:由题意得,函数的定义域为2230100322tan 0 x x x x x x ππ ?-++≥?-≤<<<<≤? ≠?或或。 2已知数列{}n a 满足2 2 1221,2,(1cos )sin 22 n n n n a a a a ππ +===+?+,则该数列的前10项的和为 ▲ .77 设两个等差数列数列{},{}n n a b 的前n 项和分别为,n n S T ,如果 5 ()24 n n S n N T n *=∈+, 则 23a b =______ ______.514 3已知数列{}n a 是各项均不为0的等差数列,公差为d ,n S 为其前 n 项和,且满足 221n n a S -=,n *N ∈.数列{}n b 满足1 1 n n n b a a += ?,n T 为数列{}n b 的前n项和. (1)求数列{}n a 的通项公式n a 和数列{}n b 的前n 项和n T ; (2)若对任意的n *N ∈,不等式8(1)n n T n λ<+?-恒成立,求实数λ的取值范围; (3)是否存在正整数,m n (1)m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有 ,m n 的值;若不存在,请说明理由. 解:(1)(法一)在2 21n n a S -=中,令1=n ,2=n , 得?????==, ,32 2121S a S a 即?????+=+=,33)(,12112 1d a d a a a ………………………2分 解得11=a ,2=d ,21n a n ∴=- 又21n a n =-时,2n S n =满足2 21n n a S -=,21n a n ∴=- ………………3分 111111()(21)(21)22121n n n b a a n n n n +===--+-+, 111111(1)2335212121 n n T n n n ∴=-+-++-= -++. ………………5分

函数学生版

函数 1、回顾初中有关函数的概念:在一个变化过程中,有两个变量x 和y ,如果给定了一个x 值,相应地就确定唯一的一个y 值,那么我们称y 是x 的 函数. (1)变量:因变量,自变量 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b =+(b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。②当b =0时,称y 是x 的正比例函数。 (3)一次函数的图象及性质 ①把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数y =k x 的图象是经过原点的一条直线。 ③在一次函数中,当k <0, b 0时,则经1、2、4象限;当k >0, b <0时,则经1、3、4象限;当k >0, b >0时,则经1、2、3象限。 ④当k >0时,y 的值随x 值的增大而增大,当k <0时,y 的值随x 值的增大而减少。 (4)二次函数: ①一般式:22 24()24b ac b y ax bx c a x a a -=++=++(0a ≠),对称轴是,2b x a =- 顶点是 2 4,)24b ac b a a -(-; ②顶点式:2 ()y a x m k =++(0a ≠),对称轴是,x m =-顶点是(),m k -; ③交点式:12()()y a x x x x =--(0a ≠),其中(1,0x ),(2,0x )是抛物线与x 轴的交点

运用平移、对称、旋转求二次函数解析式-教师版

运用平移、对称、旋转求二次函数解析式 一、运用平移求解析式 1.将二次函数223y x x =-++的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式. 【答案】因为()2 22314y x x x =-++=--+,所以平移后的解析式为22y x =-+ 2.将抛物线2y x bx c =++先向左平移2个单位,再向上平移3个单位,得到抛物线221y x x =-+,求b 、c 的值. 【答案】因为()22211y x x x =-+=-,所以平移前的解析式为:()2 33y x =-- 所以可得6b =-,6c = 3.已知抛物线2y ax bx c =++与x 轴交于点()10A ,,()30B ,,且过点()03C -,,请你写出一种平移的方法,使平移后抛物线的顶点落在直线y x =-上,并写出平移后抛物线的解析式. 【答案】可得()()13y a x x =--,代入()03C -, ,可得1a =-, 所以()()()2 2134321y x x x x x =---=-+-=--+,所以顶点为()21,, 向左平移3个单位得到()211y x =-++ 二、运用对称求解析式 4.将抛物线()214y x =--沿直线32 x = 翻折,得到一个新抛物线,求新抛物线的解析式. 【答案】可得顶点()14-,,顶点翻折后得到()24-,,所以新抛物线解析式为()224y x =-- 5.如图,已知抛物线1C :2216833 y x x = ++与抛物线2C 关于y 轴对称,求抛物线2C 的解析式.

【答案】因为()2221628843333y x x x =++=+-,顶点为843??-- ?? ?,,关于y 轴对称后顶点为 843??- ?? ?,,所以对称后的解析式为:()2228216483333y x x x =--=-+ 三、运用旋转求解析式 6.将抛物线221y x x =-+的图象绕它的顶点A 旋转180°,求旋转后的抛物线的解析式. 【答案】因为()2 2211y x x x =-+=-,顶点()10A ,,旋转180°即为沿x 轴翻折后对称 所以()21y x =--

2函数三要素-讲义版

函数的三要素 【知识点】 一、函数的定义域 (1)研究一个函数一定在其定义域内研究,所以求定义域是研究任何函数的前提,要树立定义域优先的原则. (2)函数的定义域常由其实际背景决定,若只给解析式时,定义域就是使此式子有意义的实数x 的集合(区间表示). 常见定义域的求法: 常见定义域求法:对于()x f y =而言: ①整式:实数集R ; ②分式:使分母不等于0的实数的集合; [1 (0)x x ≠] ③0指数幂:底数不等于零; [0 (0)x x ≠] ④偶次根式:使根号内的式子大于或等于0的实数的集合; [2(0)n x x ≥] ⑤对数:真数大于零; [log (0)a x x >] ⑥由几个部分的式子构成:使各部分式子都有意义的实数的集合(即各集合的交集); 实际问题:使实际问题有意义的实数的集合. 二、函数的值域 对于)(x f y =,x A ∈,与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数)(x f y =的值域. 三、解析式 (1)当已知函数的类型时,可用待定系数法求解; (2)当已知表达式为()[]x g f 时,可考虑配凑法或换元法.若易将含x 的式子配成()x g ,用配凑法;若易换元后求出x ,用换元法; (3)若求抽象函数的解析式,通常采用方程组法; (4)求分段函数的解析式时,要注意符合变量的要求. 课程类型: 1对1课程 ? Mini 课程 ? MVP 课程

【课堂演练】 题型一 函数定义域 例1 求下列函数的定义域: (1)1()2 f x x =- (2)0()32(2)f x x x = +- (3)1 ()1 2f x x x =+- 练1 求下列函数的定义域: (1)83y x x =+- (2)22 111 x x y x --= - (3)()3||f x x =- 练2 函数0()(12)13 g x x x x = --的定义域为 . 例2 函数3()1log (63)f x x x = +-的定义域为( ) A .(,2)-∞ B .(2,)+∞ C .[1,2)- D .[1,2]- 练3 函数()3lg(1)f x x x =-+的定义域为( ) A .[1,3)- B .(1,3)- C .(1,3]- D .[1,3] - 练4 函数1 ()ln(31) = +f x x 的定义域是( ) A .1 (,)3- +∞ B .1 (,0)(0,)3- +∞U C .1 [,)3- +∞ D .[0,) +∞ 题型二 函数值域 ? 一次分式值域 例3 求432+-=x y 在?? ? ???-∈1,32x 上的值域.

人教版必修1 求函数解析式方法 分段函数 例题 练习试题 及其答案

函数概念及其表示练习(4) 一、求函数解析式 (1)代入法求函数解析式 例1.已知f (x )=2x x +2 ,则f (x -1)= 例2.已知f (x )=2x x +2 ,g (x )=12 +x ,则()[]x g f = 练习.已知f (x ),g (x )对应值如表. 则f (g (1))的值为( ) A .-1 B .0 C .1 D .不存在 (2)换元法求函数解析式 例1.已知函数f (x +1)=3x +2,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4 例2.设函数 ,则 的表达式为( ) A. B. C. D. 例3.已知( ) x x x f 21+=+,求f (x )解析式. 例4.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (2 1 )等于 例5.若函数[]12)(36)(+=+=x x g x x g f 且,则)(x f 等于( ) A .3 B .3x C .6x+3 D .6x+1 练习1.已知2 2 11()11x x f x x --=++,则()f x 的解析式为( ) A . 21x x + B .212x x +- C .212x x + D .2 1x x +- 练习2.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x + 练习3.已知x x x f 2)12(2-=+,则)3(f =

练习4. 已知函数=-=)3(,1)(2f x x f 则( ) A. 8 B. 6560 C. 80 D. 2 (3)待定系数法求函数解析式 例1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元. 例2. 为了提倡节约用水,自来水公司决定采取分段计费,月用水量x (立方米)与相应水费y (元)之间函数关系式如图所示 . (1)月用水量为6方,应交水费 元; (2)写出y 与x 之间的函数关系式; (3)若某月水费是78元,用水量是多少? 例3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9, 则这个二次函数的表达式是 练习1.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150) 5.20(,60t t t t D .x =? ????≤<--≤<≤≤) 5.65.3(),5.3(50150) 5.35.2(,150) 5.20(,60t t t t t 练习2.若 是一次函数, ,则 =

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

14秋季班09-二次函数的解析式教师版

初中数学备课组 教师 班级初三 学生 日期月 日 上课时间 教学内容:二次函数的解析式 二次函数内涵丰富,变化多端,它有三种形式的解析式:一般式,配方式和分解式?本节要讨论的是:怎样根据 不同 的已知条件解析式的选取 ;在不同的几何背景下怎样寻找确定解析式的条件 ;怎样根据二次函数的图像 特征确定解析式的系数特征 二次函数解析式的三种形式 1. 一般式: 2 y -ax 2 bx ? c(a = 0),图像顶点坐标为(一卫,里兰 —),对称轴是直线x — 2a 4a 2a 2.配方式: 2 y 二a(x - m) - k(a = 0),图像顶点坐标为(-m, k),对称轴是直线x 二-m 3.分解式: y =a(x-X i )(x-X 2),图像与x 轴的交点坐标是 A(X i ,0), B(X 2,0),对称轴是直线x= ? 例1如图3-2-1,已知二次函数的图像与工轴两交点之间的距海是4个单位,且顶点 sy q,求此二欢函数的解析式. M 方迭T 一般式):V ?二次函数的图像顶点M 为〔一1, 4)t A 对称釉是貢线工=一}? 设宜线x —— 1与工轴交点为N *则N<—0). 又设二次函数图像与皇轴交点的塑拯是4(^, 0)、Eg 0)’由丨 A& | ~ 4? *'? A/V = NE = 2山1 h —1 — 2 —— 3*Xj = -1+2 = h 点仏H 的坐标分别是A(-a. 0). B<1, 0). 设二次歯数的解析式为y =尬十+屁+“将久 & M 的坐 扳优 人,得 I 所我解析式为y = — — 2疋+ & ffi J - i -1 0,

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

待定系数法求一次函数解析式专题 导学案(教师版)

第2题图第3题图 3.“五一节”期间,一个家庭自驾游去了离家120km 的某地旅游,他们离家的距离y(单位:km)与汽车行驶时间x(单位:h)之间的关系如图所示,则

变式练习 1. 一次函数的图象经过点A 和点B ,已知点A (1,0),点B 在y 轴负半轴上,且直线与两坐标轴所围成的三角形面积为1,求该一次函数的解析式. 2. 当弹簧原长度b (未挂重物时的长度)一定时,弹簧挂重物后的长度y (单位:cm )是重物重量x (单位:kg )的一次函数,即 y=kx+b (k 为任意正数). 现已测得不挂重物时,弹簧长度是5cm ,挂2kg 质量的重物时,弹簧的长度是6cm. (1 )求这个一次函数的解析式; (2)当弹簧悬挂4kg 的重物时,求弹簧的长度. 拓展提升 如图,过点A 的一次函数的图象与函数y=-x+4的图象相交于点B ,求这个一次函数的解析式. 当堂检测 (以下题目通过“神算子”进行检测) 1. 直线y=kx-2与x 轴的交点是(1,0),则k 的值是( ) A. 3 B. 2 C. -2 D. -3 2. 已知一次函数y=kx+1的图象过点(1,3),则k 的值为( ) A. 1 B. 2 C. -1 D. 3 2 3. 直线y=kx+b 经过A (0,2)和B (3,0)两点,那么这个一次函数关系式为( ) A.32+=x y B.23 2 +-=x y C.23+=x y D.1+=x y 4. 已知一次函数y=kx+b 的图象经过点A (-1,3)和点B (2,-3). (1)求这个一次函数的表达式; (2)求直线AB 与坐标轴围成的三角形的面积.

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

人教版高中数学必修一函数解析式的求法大盘点

函数解析式的求法大盘点 函数解析式的求解方法较多,在此,我归纳了几类供大家学习,希望对大家有所帮助。 一. 方程组法 型型和此法主要适用(x) )()()()()(c tx bf x af x c x t bf x af =+=+。 。即函数的解析式为得:替换为解析:把。 联立方程组,即可解出替换为分析:把的解析式。 ,求满足函数例3)(3)(-)(2)-()(2)(,)(,)()(2)()(.1x x f x x f x x f x f x x f x f x x x f x x x f x x f x f x f ==????=-=----=-- 。即函数的解析式为得:替换为解析:把。联立方程组,即可解出替换为分析:把的解析式。,求满足函数例)2(31)()2(31)(1 )(2)1()1(2)(,1)(,1)()1(2)()(.2x x x f x x x f x x f x f x x f x f x x x f x x x f x x f x f x f +--=+--=???? ????-=--=----=-- 点评:方程组法求函数解析式关键是根据所给表达式列出方程组。 )()()()()()()()()()(x f x t c x bf x t af x c x t bf x af x t x x c x t bf x af 即可解出,即替换为型需把???????=+=+=+, ).()()()()()()((x) )()(x f tx c x bf tx af x c tx bf x af tx x c tx bf x af 即可解出,即替换为型需把???=+=+=+

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式教学案(教师版).doc

2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式 教学案(教师版) 一、课前检测 1.若函数()f x 满足2(1)2f x x x +=-,则f = . 答案:6- 2.已知()()()23,2f x x g x f x =++=,则()g x = . 答案:21x - 3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 答案:()123f x x =- 或()21f x x =-+ 二、知识梳理 求函数解析式的题型有: 1.已知函数类型,求函数的解析式:待定系数法; 解读: 2.已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; 解读: 3.已知函数图像,求函数解析式; 解读: 4.()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; 解读: 5.应用题求函数解析式常用方法有待定系数法等. 解读: 三、典型例题分析 例1 设2211(),f x x x x +=+ ,求()f x 的解析式. 答案:()22f x x =- 变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式. 答案:()2sin 1f x x =-

变式训练2:设33221)1(,1)1(x x x x g x x x x f +=++=+, 求)]([x g f . 答案:()22f x x =-,()33g x x x =-,642[()]692f g x x x x =-+- 小结与拓展:配凑法 例2 设23)1(2+-=+x x x f ,求)(x f 的解析式. 答案:2()56f x x x =-+ 变式训练1:已知21lg f x x ??+= ???,求)(x f 的解析式. 答案:2()lg 1f x x =- 变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式. 答案:2()21f x x x =++ 小结与拓展:换元法 例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+, 求()f x 的解析式; 答案:()27f x x =+ 变式训练1:已知12()3f x f x x ??+= ??? ,求)(x f 的解析式. 答案:1()2f x x x =-

函数概念及其三要素

函数概念及其相关概念(2课时) 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2 y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①2 2 x y +=2 ②111x y -+ -= ③y=21x x -+- A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) A. y=x B. 2 y x = C. () 2 y x = D.y=t 变式1.下列函数中哪个与函数3 2y x =-相同( ) A. 2y x x =- B. 2y x x =-- C. 3 2y x x =-- D. 2 2y x x -= 变式2. 下列各组函数表示相等函数的是( ) O O O O X X X X y y y y

人教版初中求函数解析式的基本方法

中考中求函数解析式的基本方法 求函数解析式是中学数学的重要内容,是高考的重要考点之一。本文给出求函数解析式的基本方法,供广大师生参考。 一、定义法 根据函数的定义求其解析式的方法。 例1. 已知,求。 解:因为 二、换元法 已知看成一个整体t,进行换元,从而求出的方法。 例2. 同例1。 解:令, 所以, 所以。 评注:利用换元法求函数解析式必须考虑“元”的取值范围,即的定义域。 三、方程组法 根据题意,通过建立方程组求函数解析式的方法。 例3. 已知定义在R上的函数满足,求的解析式。

解:,① ② 得, 所以。 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程。 四、特殊化法 通过对某变量取特殊值求函数解析式的方法。 例4. 已知函数的定义域为R,并对一切实数x,y都有 ,求的解析式。 解:令, 令, 所以, 所以 五、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例5. 已知二次函数的二次项系数为a,且不等式的解集为(1,3),方程有两个相等的实根,求的解析式。

解:因为解集为(1,3), 设, 所以 ① 由方程 得② 因为方程②有两个相等的实根, 所以, 即 解得 又, 将①得 。 六、函数性质法 利用函数的性质如奇偶性、单调性、周期性等求函数解析式的方法。

例6. 已知函数是R上的奇函数,当的解析式。解析:因为是R上的奇函数, 所以, 当, 所以 七、反函数法 利用反函数的定义求反函数的解析式的方法。 例7. 已知函数,求它的反函数。 解:因为, 反函数为 八、“即时定义”法 给出一个“即时定义”函数,根据这个定义求函数解析式的方法。 例8. 对定义域分别是的函数,规定:函数

函数的定义及三要素

函数的定义及三要素 考点一、函数概念的理解 [例1] 下列对应是否为A 到B 的函数: (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ; (4)A =[-1,1],B ={0},f :x →y =0. [例2】下列各图中,可表示函数)(x f y 的图象的只可能是( ) 变式1:在下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是( ①A ={x |x ∈Z },B ={y |y ∈Z },对应法则f :x →y =x 3; ②A ={x |x >0,x ∈R },B ={y |y ∈R },对应法则f :x →y 2=3x ; ③A ={x |x ∈R },B ={y |y ∈R },对应法则f :x →y :x 2+y 2=25; ④A =R ,B =R ,对应法则f :x →y =x 2; ⑤A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应法则f :(x ,y )→S =x +y ; ⑥A ={x |-1≤x ≤1,x ∈R },B ={0},对应法则f :x →y =0. A .①⑤⑥ B .②④⑤⑥ C .②③④ D .①②③⑤ 变式2、如图中,哪些是以x 为自变量的函数的图象,为什么?

考点二、相等函数的判断 [例2] 下列各对函数中,是相等函数的序号是________. ①f(x)=x+1与g(x)=x+x0 ②f(x)=x+2与g(x)=|2x+1| ③f(n)=2n+1(n∈Z)与g(n)=2n-1(n∈Z) ④f(x)=3x+2与g(t)=3t +2 变式:下列各组式子是否表示相等函数?为什么? (1)f(x)=|x|,φ(t)=t2; (2)y=x2,y=(x)2; (3)y=x+1·x-1,y=x2-1; (4)y=1+x·1-x,y=1-x2. 考点三、求函数的定义域 [例3] 求下列函数的定义域: (1)y=2x+3; (2)f(x)= 1 x+1; (3) y=x-1+1-x; (4)y= x+1 x2-1.

求一次函数解析式教案

马溪中学钟传德 教学目标: 1.了解待定系数法的思维方式与特点.明确两个条件确定一个一次函数、一个条件确定一个正比例函数的基本事实. 2.会根据所给信息用待定系数法求一次函数解析式,发展解决问题的能力. 3.进一步体验并初步形成“数形结合”的思想方法. 教学重点:根据所给信息确定一次函数的表达式. 教学难点:培养数形结合解决问题的能力. 教学过程: 一、复习引入(知识链接) 1.复习:你能画出函数y=2x与y=-x+3的图象吗? 2.反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗? 3.引入:在上节课中我们学习了在给定一次函数表达式的前提下,我们可以说出它的图象特征及有关性质;反之,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.(板书:求一次函数的解析式) 二、探究新知(知识接力) 1.求下图中直线的函数表达式: 图1 图2 (1)分析与思考: 从图象知,图1中直线的函数是正比例函数,故其解析式必为y=kx形式,关键是如何求出k的值;同样由图可知图象经过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值. 图2中直线的函数是一次函数,故其解析式为y=kx+b形式,同样代入直线上两点(2,0)与(0,3)即可求出k、b,确定解析式为 . (2)小结:确定正比例函数的解析式需1个条件, 确定一次函数的解析式需要2个条件. 2.P117例4:已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式. (1)教师板演示范. (2)回顾小结: ①像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. ②你能归纳出待定系数法求函数解析式的基本步骤吗?(结合例题) 设列解写

函数的三要素

第一章函数 第一讲函数的概念 【知识归纳】 (1) 映射 映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中 的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B 中的元素b叫做a的象,a叫做b的原象. 一对一,多对一是映射但一对多显然不是映射 辨析: ①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等; ②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射; ③存在性:映射中集合A的每一个元素在集合B中都有它的象; ④唯一性:映射中集合A的任一元素在集合B中的象是唯一的; ⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都 有原象,即A中元素的象集是B的子集. 映射三要素:集合A、B以及对应法则f,缺一不可; (2) 映射观点下的函数概念 如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x). (3)函数概念: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集. (4)函数的表示方法 1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系. 3.图象法:用图象表示两个变量之间的对应关系.

北京第十八中学高三数学第一轮复习 14 函数的表示法求解析式教学案(教师版)

北京第十八中学高三数学第一轮复习 14 函数的表示法求解 析式教学案(教师版) 一、课前检测 1.若函数()f x 满足2(1)2f x x x +=-,则f = . 答案:6- 2.已知()()()23,2f x x g x f x =++=,则()g x = . 答案:21x - 3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 答案:()123f x x =- 或()21f x x =-+ 二、知识梳理 求函数解析式的题型有: 1.已知函数类型,求函数的解析式:待定系数法; 解读: 2.已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; 解读: 3.已知函数图像,求函数解析式; 解读: 4.()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; 解读: 5.应用题求函数解析式常用方法有待定系数法等. 解读: 三、典型例题分析 例1 设2211(),f x x x x +=+ ,求()f x 的解析式. 答案:()22f x x =- 变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式. 答案:()2sin 1f x x =-

变式训练2:设33221)1(,1)1(x x x x g x x x x f +=++=+, 求)]([x g f . 答案:()22f x x =-,()33g x x x =-,642[()]692f g x x x x =-+- 小结与拓展:配凑法 例2 设23)1(2+-=+x x x f ,求)(x f 的解析式. 答案:2()56f x x x =-+ 变式训练1:已知21lg f x x ??+= ???,求)(x f 的解析式. 答案:2 ()lg 1f x x =- 变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式. 答案:2()21f x x x =++ 小结与拓展:换元法 例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+, 求()f x 的解析式; 答案:()27f x x =+ 变式训练1:已知12()3f x f x x ?? += ???,求)(x f 的解析式. 答案:1 ()2f x x x =-

相关文档
相关文档 最新文档