文档库 最新最全的文档下载
当前位置:文档库 › 11131033 张阳 各向异性磁阻传感器(AMR)与地磁场测量

11131033 张阳 各向异性磁阻传感器(AMR)与地磁场测量

11131033  张阳  各向异性磁阻传感器(AMR)与地磁场测量
11131033  张阳  各向异性磁阻传感器(AMR)与地磁场测量

研究性实验报告——各向异性磁阻传感器与磁场测量

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 基础物理学 研究性实验报告 题目:各向异性磁阻传感器(AMR)与地磁场测量第一作者: 第二作者: 学院:航空科学与工程学院 专业:飞行器设计与工程 班级:110519 2013年5月14日 1

目录 摘要 ............................................................................................... 错误!未定义书签。关键词 ........................................................................................... 错误!未定义书签。 一、实验要求 ............................................................................... 错误!未定义书签。 二、实验原理 ............................................................................... 错误!未定义书签。 三、实验仪器介绍 ....................................................................... 错误!未定义书签。 四、实验内容 ............................................................................... 错误!未定义书签。 1、测量前的准备工作 ......................................................... 错误!未定义书签。 2、磁阻传感器特性测量...................................................... 错误!未定义书签。 3、测量磁阻传感器的各向异性特性.................................. 错误!未定义书签。 4、赫姆霍兹线圈的磁场分布测量...................................... 错误!未定义书签。 5、地磁场测量 ..................................................................... 错误!未定义书签。 五、思考题 ................................................................................... 错误!未定义书签。 六、误差分析 ............................................................................... 错误!未定义书签。 七、AMR传感器的应用举例 ...................................................... 错误!未定义书签。 八、实验感想 ............................................................................... 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。附录——原始实验数据(影印版).................................................. 错误!未定义书签。 各向异性磁阻传感器与磁场测量 摘要:物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,广泛用于各类需要自动检测与控制的领域。磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。 关键词:AMR,磁阻效应,电磁转换,磁场测量

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

用磁阻传感器测量地磁场解读

实验三十七 用磁阻传感器测量地磁场 地磁场的数值比较小,约T 5 10-量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。 【实验目的】 1. 掌握磁阻传感器的特性和定标方法。 2. 掌握地磁场的测量方法。 【实验原理】 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。因而输出电压out U 可以用下式

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量 一. 实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当

外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感向不相同,当存在外界磁场时,引起电阻值变化有增有减。因而输出电压out U 可以用下式表示为b out V R R U ??? ? ???= 磁阻传感器的构造示意图 磁阻传感器内的惠斯通电桥 对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压 out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0 上式中,K 为传感器的灵敏度,B 为待测磁感应强度。0U 为外加磁场为零时传感器的输出量。 由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。亥姆霍兹线圈公共

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

磁阻效应及磁阻传感器实验

一、实验题目:磁阻效应及磁阻传感器的特性研究 二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法; 2、测量锑化铟传感器的电阻与磁感应强度的关系; 3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线 和直线拟合; 4、学习用磁阻传感器测量磁场的方法。 三、实验原理: 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。 一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。如果将图1中U H短路,磁阻效应更明显。因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。 当磁感应强度平行于电流时,是纵向情况。若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。 通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/ R(0)正比于Δρ/ρ(0),这里ΔR=R (B)-R(0)。因此也可以用磁阻传感器电阻的相对改变量ΔR/ R(0)来表示磁阻效应的大小。 测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/ R(0)与外磁场的关系都是相似的。实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。一般情况下外加磁场较弱时,电阻相对变化率ΔR/ R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/ R (0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/ R(0)与磁感应强

实验报告磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量 一.实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2而输出电压out U 可以用下式表示为b out V R R U ??? ? ???= 磁阻传感器的构造示意图 磁阻传感器内的惠斯通电桥 对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0 上式中,K 为传感器的灵敏度,B 为待测磁感应强度。0U 为外加磁场为零时传感器的输出量。 由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。亥姆霍兹线圈公共轴线中心点位置的磁感应强度为:I R NI B 42 /301096.445 8 -?== μ 上式中N 为线圈匝数(500匝);亥姆霍兹线圈的平均半径cm R 10=;真空磁导率270/104A N -?=πμ。

大学物理实验讲义实验12 用霍尔效应法测量磁场

实验16 用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场 的范围可从~1015-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效 应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产

[实验报告]磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量 一.实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+= ∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。因而输出电压out U 可以用下式表示为b out V R U ??? ??=

磁阻传感器与地磁场试验仪

磁阻传感器与地磁场实验仪 一、实验装置组成 测量地磁场装置主要包括底座、转轴,带有角度刻度的转盘、磁阻传感器及引线、亥姆霍兹线圈、地磁场测定仪的控制主机(包括数字式电压表、5V 直流电源等)。 实验转盘经过精心设计,可自由转动,方便地调节水平和铅直,内转盘具有一对游标刻度,便于消除偏心差,读数准确,测量误差小。 二、仪器主要用途 1. 给磁阻传器定标,测量磁阻传感器的灵敏度K ; 2.测量地磁场的水平分量B ∥; 3.测量地磁场的磁感应强度B 总;地磁场的垂直分量B ⊥及磁倾角β; 4.用磁阻传感器测量通电单线圈产生磁场分布,并与理论值进行比较。 三、仪器技术要求 1.磁阻传感器. (1)磁阻传感器的工作电压 5V 或6V ,灵敏度约50V/T 。 (2)分辨率可达8 710~10--T ,稳定性好。 2.亥姆霍兹线圈:单只线圈匝数N=500匝,半径10.0cm ;亥姆霍兹线圈轴线上中心位置的磁感应强度为(二个线圈串联): I I r NI B 42372301096.445100.0850010458 --?=?????=?=πμ 式中B 为磁感应强度,单位T(特斯拉);I 为通过线圈的电流,单位A(安培) 3.直流恒流源:输出电流 0—500mA 连续可调 4.三位半直流电压表:量程200mV

5.仪器的工作电压:AC 220±10V 四.实验注意事项 1.测量地磁场水平分量,须将转盘调节至水平;测量地磁场B总和磁倾角β时,须将转盘面处于地磁子午面方向。 2.实验仪器周围一定范围内不应存在铁磁金属物体,以保证测量结果的准确性。 3.磁阻传感器遇强磁场时,会产生磁畴饱和现象使灵敏度降低。这时可按“复位”按钮使恢复到原灵敏度。 4.带有磁阻传感器的转盘平面的水平和铅直调整要仔细到位,否则会影响测量结果。

用霍尔效应测量螺线管磁场实验报告(空)解读

华 南 师 范 大 学 学院 普通物理 实验报告 年级 专业 实验日期 2011 年 月 姓名 教师评定 实验题目 用霍尔效应测量螺线管磁场 用霍尔传感器测量通电螺线管内励磁电流与输出霍尔电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法。 一、实验目的 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、实验原理 图1所示的是长直螺线管的磁力线分布,有图可知,其内腔中部磁力线是平行于轴线的直线系,渐近两端口时,这些直线变为从两端口离散的曲线,说明其内部的磁场在很大一个范围内是近似均匀的,仅在靠近两端口处磁感应强度才显著下降,呈现明显的不均匀性。根据电磁学毕奥-萨伐尔)Savat Biot (-定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁感应强度的1/2: 22M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7(T·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 附加电势差的消除 应该说明,在产生霍尔效应的同时,因伴随着多种副效应(见附录),以致实验测得的电压并不等于真实的V H 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是Is 和B (即l M )的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和B 组合的A 、A′两点之间的电压V 1、 V 2、

磁阻效应法测量磁场

实验64 磁阻效应及磁阻效应法测量磁场 磁阻器件由于其灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等探测器。磁阻器件品种较多,可分为正常磁电阻,各向异性磁电阻,特大磁电阻,巨磁电阻和隧道磁电阻等。其中正常磁电阻的应用十分普遍。锑化铟(InSb)传感器是一种价格低廉、灵敏度高的正常磁电阻,有着十分重要的应用价值。它可用于制造在磁场微小变化时测量多种物理量的传感器。本实验使用两种材料的传感器:砷化镓(GaAs)测量磁感应强度和研究锑化铟(InSb)在磁感应强度变化时的电阻,融合霍尔效应和磁阻效应两种物理现象。 【实验目的】 1.了解磁阻现象与霍尔效应的关系与区别; 2.测量锑化铟传感器的电阻与磁感应强度的关系; 3.作出锑化铟传感器的电阻变化与磁感应强度的关系曲线; 【实验仪器】 磁阻效应实验仪 【实验原理】 在一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。 如图1所示,当材料处于磁场中时,导体或半导体内的载流子将受洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍尔电场。如霍尔电场作 用和某一速度的载流子的洛仑兹力作用刚好抵消, 那么小于或大于该速度的载流子将发生偏转, 因而沿外加电场方向运动的载流子数目将减少, 电阻增大,表现出横向磁阻效应。如果将图1 中 a、b端短接,霍尔电场将不存在,所有电子将向 a端偏转,磁阻效应更明显。 通常以电阻率的相对改变量来表示磁阻的大 小,即用△ρ/ρ(0)表示,其中ρ(0)为零磁场时的电 阻率,设磁电阻阻值在磁感应强度为B的磁场中 电阻率为ρ(B),则△ρ=ρ(B)-ρ(0), 由于磁阻传感器电阻的相对变化率△R/R(0)正比于△ρ/ρ(0), 这里△R =R(B) -R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。 实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性函数关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R (0)正比于B2,那么磁阻传感器的电阻R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中磁阻传感器具有交流电倍频性能。 图1 磁阻效应

实验报告磁阻传感器和地磁场的测量

实验报告磁阻传感器和 地磁场的测量 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

磁阻传感器和地磁场的测量 一. 实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率 )(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电 阻值变化有增有减。因而输出电压out U 可以用下式表示为b out V R R U ??? ? ???=

各向异性磁阻传感器与磁场测量

图5-10-1磁阻电桥 实验5-10 各向异性磁阻传感器与磁场测量 物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。 磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。磁阻传感器也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。 磁阻元件的发展经历了半导体磁阻(MR ),各向异性磁阻(AMR ),巨磁阻(GMR ),庞磁阻(CMR )等阶段。本实验研究AMR 的特性并利用它对磁场进行测量。 【实验目的】 1. 了解AMR 的原理并对其特性进行实验研究。 2. 测量赫姆霍兹线圈的磁场分布。 3. 测量地磁场。 【实验原理】 各向异性磁阻传感器AMR (Anisotropic Magneto-Resistive sensors )由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。沉积时外加磁场,形成易磁化轴方向。易磁化轴是指各向异性的磁体能获得最佳磁性能的方向,也就是无外界磁干扰时磁畴整齐排列方向。 铁磁材料的电阻与电流和磁化方向的夹角有关,电流与磁化方向平行时电阻R max 最大,电流与磁化方向垂直时电阻R min 最小,电流与磁化方向成θ角时,电阻可表示为: R = R min +(R max -R min )cos2θ (5-10-1) 在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图5-10-1所示。图5-10-1中,易磁化轴方向与 电 流方向的夹角为45度。理论分析与实践表明,采用45度偏置磁场,当沿与易磁化轴垂直的 方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。 无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。当在磁敏感方向施加如图29-1所示方向的磁场时,合成磁化方向将在易磁化方向的基础上逆时针旋转。结果使左上和右下桥臂电流与磁化方向的夹角增大,电阻减小ΔR ;右上与左下桥臂电流与磁化方向的夹角减小,电阻增大ΔR 。通过对电桥的分析可知,此时输出电压可表示为:

磁阻传感器以及磁场测量

北航基础物理实验研究性报告各向异性磁阻传感器(AMR)与地磁场测量 第一作者: 13271138 卢杨 第二作者: 13271127 刘士杰 所在院系:化学与环境学院 2014年5月27日星期三

摘要 物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。 磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。 磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。 关键词:磁阻传感器;磁电转换;赫姆霍兹线圈;车辆检测;罗盘

目录 一、实验目的 (4) 二、实验原理 (4) 三、实验仪器介绍 (5) 四、实验内容 (8) 1.测量前的准备工作 (8) 2.磁阻传感器特性测量 (8) a.测量磁阻传感器的磁电转换特性 (8) b.测量磁阻传感器的各向异性特性 (9) 3.赫姆霍兹线圈的磁场分布测量 (9) a. 赫姆霍兹线圈轴线上的磁场分布测量 (9) b.赫姆霍兹线圈空间磁场分布测量 (11) 4.地磁场测量 (12) 五、实验数据及数据处理 (13) 1.磁阻传感器特性测量 (13) a.测量磁阻传感器的磁电转换特性 (13) b.测量磁阻传感器的各向异性特性 (14) 2.赫姆霍兹线圈的磁场分布测量 (15) a.赫姆霍兹线圈轴线上的磁场分布测量 (15) b.赫姆霍兹线圈空间磁场分布测量 (16) 3.地磁场测量 (17) 六、误差分析与思考题 (17) 1、误差分析 (17) 2、思考题 (18) 七、实验中注意事项及改进方法 (19) 1、注意事项 (19) 2、实验改进 (19) 八、总结与收获 (20) 九、原始数据照片 (20)

霍尔效应实验和霍尔法测量磁场

DH-MF-SJ组合式磁场综合实验仪 使用说明书 一、概述 DH-MF-SJ组合式磁场综合实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场,可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。 二、主要技术性能 1、环境适应性:工作温度 10~35℃; 相对湿度 25~75%。 2、通用磁学测试仪 可调电压源:0~、10mA; 可调恒流源:0~和0~可变量程,为霍尔器件提供工作电流,对于此实验系统默认为恒流源功能; 电压源和电流源通过电子开关选择设置,实现单独的电压源和电流源功能; 电流电压调节均采用数字编码开关; 数字电压表:200mV、2V和20V三档,4位半数显,自动量程转换。 3、通用直流电源 直流电源,电压0~可调;电流0~可调; 电流电压准确度:%±2个字; 电压粗调和细调,电流粗调和细调均采用数字编码开关。 4、测试架 底板尺寸:780*160mm; 载物台尺寸:320*150mm,用于放置螺线管和双线圈测试样品; 螺线管:线圈匝数1800匝左右,有效长度181mm,等效半径21mm; 双线圈:线圈匝数1400匝(单个),有效直径72mm,二线圈中心间距 52mm; 移动导轨机构:水平方向0~60cm可调;垂直方向0~36cm可调,最小分辨率1mm; 5、供电电源:AC 220V±10%,总功耗:60VA。 三、仪器构成及使用说明

DH-MF-SJ组合式磁场综合实验仪由实验测试台、双线圈、螺线管、通用磁学测试仪、通用直流电源以及测试线等组成。 1、测试架 1.双线圈; 2.载物台(上面绘制坐标轴线); 3,4 双线圈励磁电源输入接口; 5.霍尔元件; 6.立杆; 7.刻度尺; 8.传感器杆(后端引出2组线,一 组为传感器工作电流Is,输出端号码管标识为Input;一组为霍尔电势V H输出,输出端号码管标识为Output); 9.滑座; 10.导轨; 11. 螺线管励磁电源输入接口; 12.螺线管; 13.霍尔工作电流I S输入,号码管标有Input(红正,黑负); 14.霍尔电势V H输出,号码管标有Output(红正,黑负); 15.底座 图1-1组合式磁场综合实验仪(测试架图) 2、通用磁学测试仪(DH0802) 1.电压或电流显示窗口(霍尔元件工作电流或电压指示); 2.恒流源指示灯; 3.恒压源指示灯; 4.调节旋钮(左右旋转用于减小或增加输出;按下弹起按钮

相关文档
相关文档 最新文档