文档库 最新最全的文档下载
当前位置:文档库 › (完整版)细胞生物学翟中和第四版教案

(完整版)细胞生物学翟中和第四版教案

(完整版)细胞生物学翟中和第四版教案
(完整版)细胞生物学翟中和第四版教案

第一章绪论一.细胞生物学研究的内容和现状

1.细胞生物学是现代生命科学的重要基础学科

细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。

核心问题是将遗传与发育在细胞水平上结合起来。细胞生物学的主要研究内容

一般可分为细胞结构功能与细胞重要生命活动两大基本部分:大致归纳为下面几个领域:1)细胞核、染色体以及基因表达的研究2)生物膜与细胞器的研究3)细胞骨架体系的研究4)细胞增殖及其调控5)细胞分化及其调控6)细胞的衰老与凋亡7)细胞的起源与进化8)细胞工程当前细胞生物学研究的总趋势与重点领域

1)细胞生物学与分子生物学(包括分子遗传学与生物化学)相互渗透与交融是总的发展趋势2)当前研究的重点领域:

I:染色体DNA与蛋白质相互作用关系——主要是非组蛋白对基因组的作用

II:细胞增殖、分化、凋亡的相互关系及其调控

III:细胞信号转导的研究

IV:细胞结构体系的组装二.细胞学与细胞生物学发展简史

1.细胞的发现

2.细胞学说的建立其意义

1838~1839年,德国植物学家施莱登和动物学家施旺提出了“细胞学说”。

3.细胞学的经典时期

4.实验细胞学时期

5.细胞生物学学科的形成与发展

第二章细胞基本知识概要细胞的基本概念

1.细胞是生命活动的基本单位。1)一切有机体都由细胞构成,细胞是构成有机体的基本单位

2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位

3)细胞是有机体生长与发育的基础

4)细胞是遗传的基本单位,细胞具有遗传的全能性5)没有细胞就没有完整的生命

2.细胞概念的一些新思考细胞是多层次非线性的复杂结构体系:细胞具有高度复杂性和组织性

2)细胞是物质(结构)、能量与信息过程精巧结合的综合体细胞是高度有序的,具有自组装能力与自组织体系。3.细胞的基本共性1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。

2)所有的细胞都含有两种核酸:即DNA与RNA作为遗传信息复制与转录的载体。

3)作为蛋白质合成的机器——核糖体,毫无例外地存在于一切细胞内。

4)所有细胞的增殖都以一分为二的方式进行分裂。

二.非细胞形态的生命体——病毒及其与细胞的关系1.病毒的基本知识1)病毒(virus)——核酸分子(DNA或RNA)与蛋白质构成的核酸-蛋白质复合体;

(1)根据病毒的核酸类型可以将其分为两大类:

DNA病毒与RNA病毒(2)根据病毒的宿主范围,可以分为:动物病毒、植物病毒与细菌病毒(噬菌体)等;2)类病毒(viroid)——仅由感染性的RNA构成;

3)朊病毒(prion)——仅由感染性的蛋白质亚基构成;2.病毒在细胞内增殖(复制)病毒的增殖(复制)必须在细胞内进行。

病毒侵入细胞,病毒核酸的侵染

病毒核酸的复制、转录与蛋白质的合成

病毒的装配、成熟与释放

3.病毒与细胞在起源与进化中的关系病毒是非细胞形态的生命体,它的主要生命活动必须要在细胞内实现。病毒与细胞在起源上的关系,目前存在3种主要观点:

1.生物大分子→病毒→细胞

病毒

2.生物大分子

细胞

3.生物大分子→细胞→病毒

第三种观点主要依据

(1)病毒的彻底寄生性

(2)有些病毒(如腺病毒)的核酸与哺乳动物细胞DNA某些片段的碱基序列十分相似(3)病毒可以看做DNA与蛋白质或RNA与蛋白质的复合大分子,与细胞内核蛋白分子有相似之处

第三种观点主要论点l由此推论:病毒可能是细胞在特定条件下“扔出”的一个基因组,或者是具有复制与转录能力的mRNA。这些游离的基因组,只有回到它们原来的细胞内环境中才能进行复制与转录。

三.原核细胞与真核细胞原核细胞(Prokaryotic cell)

1)基本特点:

遗传的信息量小,遗传信息载体仅由一个环状DNA构成;细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜。

2)主要代表:

支原体(mycoplast)——目前发现的最小最简单的细胞;

细菌蓝藻又称蓝细菌(Cyanobacteria)最小最简单的细胞—支原体(mycoplast,近年又译为霉形体)是目前发现的最小最简单的细胞

2.真核细胞(Eukaryotic cell)

1)真核细胞的基本结构体系

I:以脂质及蛋白质成分为基础的生物膜结构系统;

II:以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达系统由特异蛋白分子装配构成的细胞骨架系统。

2)细胞的大小及其分析3)原核细胞与真核细胞的比较(1)原核细胞与真核细胞基本特征的比较(2)原核细胞与真核细胞的遗传结构装置和基因表达的比较(3)植物细胞与动物细胞的比较细胞壁、液泡、叶绿体3.古细菌(Archaebacteria)

古细菌(archaebacteria)与真核细胞曾在进化上有过共同历程

1)主要证据(1)细胞壁的成分与真核细胞一样,而非由含壁酸的肽聚糖构成,因此抑制壁酸合成的链霉素,抑制肽聚糖前体合成的环丝氨酸,抑制肽聚糖合成的青霉素与万古霉素等对真细菌类有强的抑制生长作用,而对古细菌与真核细胞却无作用。

(2)DNA与基因结构:古细菌DNA中有重复序列的存在。此外,多数古核细胞的基因组中存在内含子。

(3)有类核小体结构:古细菌具有组蛋白,而且能与DNA构建成类似核小体结构。

(4)有类似真核细胞的核糖体:多数古细菌类的核糖体较真细菌有增大趋势,含有60种以上蛋白,介于真核细胞(70~84)与真细菌(55)之间。抗生素同样不能抑制古核细胞类的核糖体的蛋白质合成。

(5)5S rRNA:根据对5S rRNA的分子进化分析,认为古细菌与真核生物同属一类,而真细

菌却与之差距甚远。5S rRNA二级结构的研究也说明很多古细菌与真核生物相似。

除上述各点外,根据DNA聚合酶分析,氨基酰tRNA合成酶的作用,起始氨基酰tRNA 与肽链延长因子等分析,也提供了以上类似依据,说明古细菌与真核生物在进化上的关系较真细菌类更为密切。因此近年来,真核细胞起源于古细菌的观点得到了加强。

第三章(略)

第四章细胞膜与细胞表面

第一节细胞膜与细胞表面特化结构

细胞膜(cell membrane)又称质膜(plasma membrane),是指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。

细胞膜:在内环境稳定;物质、能量交换;信息传递中起着很重要的作用。

(—)细胞膜结构模型的认识过程

晶格镶嵌模型

脂质双分子层—→ 三明治模型—→单位膜模型—→流动镶嵌模型—→板块镶嵌模型

脂筏模型

(二)生物膜的特点

1.有磷脂双分子层。磷脂双分子层是生物膜的基本构型。

2.不对称性,膜蛋白不对称性的镶嵌或结合于表面。

3.流动性,膜蛋白和膜脂都具有一定的流动性

4.是不断更新代谢的动态活性结构。

二.膜脂

膜脂主要包括磷脂、糖脂和胆固醇3种类型。

(一)成分

1.磷脂

磷脂占整个膜脂的50%以上。又分为:甘油磷脂和鞘磷脂。

分子特征:磷脂分子有一个极性的头部(胆碱、磷脂、甘油)和两个非极性的尾部(脂肪酸链)。脂肪酸链的弯曲与不饱和脂肪酸有关,因为不饱和脂肪酸的双键在烃链中容易产生弯曲。

2.糖脂

由寡糖链和脂质分子组成。

3.胆固醇

存在于真核细胞膜上,含量不超过膜脂的1/3。胆固醇在调节膜的流动性、增加膜的稳定性、降低水溶性物质的通透性等起着重要的作用。细菌质膜和植物的质膜不含胆固醇。

(二)膜脂的运动方式

沿膜平面的侧向运动、脂分子围绕轴心的自旋运动、脂分子尾部的摆动、双层脂分子之间的翻转运动。

(三)脂质体

脂质体(Liposome)是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势制备的人工膜。脂质体中裹入不同的药物或酶等具有特殊功能的大分子,可治疗多种疾病。

三.膜蛋白

1.类型

根据膜蛋白与脂分子的结合方式,可将膜蛋白分为:

膜周边蛋白(peripheral proteins)或称外在膜蛋白(extrinsic proteins)

膜内在蛋白(integral proteins)或称整合膜蛋白。

2.膜内在蛋白与膜脂结合的方式:

(1)α螺旋

(2)β折叠:形成跨膜通道,与跨膜运输有关。

(3)跨膜结构域两端携带带正电荷的氨基酸残基,Arg+等与磷脂分子带负电的极性头形成离子键,Cys+共价结合脂质分子。

3.去垢剂

去垢剂是分离与研究膜蛋白的常用试剂。可分为离子去垢剂(SDS)和非离子去垢剂(Triton X-100)。

离子型: SDS

非离子型:Triton X-100分子

四.膜的流动性

膜脂的流动性取决于脂分子本身的性质。脂肪酸链越短(尾部越短),不饱和程度越高,膜脂的流动性越大。流动越快,对细胞的生理功能调节有关。细胞生理功能有利。

胆固醇对膜的流动性也起着重要的调节作用。

膜蛋白流动性的证明实验:

1.荧光抗体免疫标记法

用仙台病毒(Sendai virus)可诱导两种细胞融合成异核细胞。证明了膜具有流动性。用结合有绿色荧光染料的专一抗体标记在小鼠培养细胞的表面上,用结合有红色荧光染料的专一抗体标记在培养的人体细胞表面上,然后将两种细胞经灭活的仙台病毒诱导融合。最初一半显红色,另一半显绿色。在37o C下培养,10分钟后,荧光在融合表面开始扩散,40分钟后,则两种染色标记物完全混匀。

2.光脱色恢复技术

用荧光素标记膜蛋白或膜脂,然后用激光束照射细胞表面某一区域,使被照射区的荧光猝灭变暗。由于膜的流动性,猝灭区域的亮度逐渐增强,最后恢复到与周围的荧光猝灭强度相等。根据荧光恢复的速度可推算膜蛋白或膜脂的扩散速率。

五.膜的不对称性

生物膜经冷冻蚀刻显示的4个面。

ES:与细胞外环境接触的膜面

PS:与细胞质基质接触的膜面

EF:冷冻蚀刻技术处理后的细胞外小页断裂面

PF:冷冻蚀刻技术处理后的原生质小页断裂面

寡糖一定是朝向细胞膜外。

膜脂的不对称性:指同一种膜脂分子在膜的脂双层中不均匀分布,糖侧链都在质膜的ES面上。磷脂分子的不对称分布可能与膜蛋白的不对称分布有关。

膜蛋白的不对称性:不论膜周边蛋白还是膜内在蛋白在质膜上都呈不对称分布,具有一定的方向性。如:细胞表面的受体、膜上载体蛋白、质膜上的糖蛋白。按一定的方向传递信号和转运物质。

六.细胞膜的功能:

1.稳定内涵

2.物质选择运输

3.能量传递

4.信号传导

5.细胞连接及特化

七.骨架与细胞表面的特化结构

(一)红细胞质膜蛋白及膜骨架

红细胞膜蛋白主要包括:血影蛋白(Spectrin)、锚蛋白、带4.1蛋白、肌动蛋白、带3蛋

白和血型糖蛋白。前4种蛋白为骨架成分,后两种是膜整合蛋白,在维持膜的形状及固定其他膜蛋白的位置方面起重要作用。带3蛋白是红细胞膜上的载体蛋白。

膜骨架网络与细胞膜之间的连接主要通过锚蛋白。

(二)细胞表面特化结构:

鞭毛、纤毛、微绒毛、变形足、膜骨架等,是质膜与细胞骨架纤维构成的复合结构,对维持细胞形态、运动及与外界物质交换功能有关。

第二节细胞连接

按功能分:封闭连接、锚定连接、通讯连接

一.封闭连接

指相邻细胞的质膜紧密的连在一起,阻止溶液中的分子沿细胞间隙渗入体内。

其典型形式是上皮细胞之间的紧密连接。无间隙并有嵴线衔接为网络,阻止水分子和其它可溶性物质渗透。

二.锚定连接

通过锚定连接将相邻细胞的骨架系统或将细胞与基质相连形成一个细胞群体。

1.与中间纤维相连的锚定连接:桥粒和半桥粒

2.与肌动纤维相连的锚定连接:粘着带、粘着斑

1.桥粒:两个细胞之间形成钮扣式的结构,即细胞间钮扣式的连接。中间纤维象订钮扣的线。

2.半桥粒:另一边不是固定在细胞上,而是固定在基底膜上。即通过细胞膜上的膜蛋白——整联蛋白将上皮细胞固着在基底膜上。

3.粘着带:相邻上皮细胞间的钙粘素粘着形成的带状结构,与其胞内相连的是肌动蛋白纤维。在相连细胞之间形成连续底带状结构。

粘着带处的相邻细胞膜的相互作用依赖域Ca2+,因此粘着带中的跨膜连接糖蛋白被认为是钙粘素家族。

小肠上皮细胞微绒毛中的肌动蛋白纤维束就结合在与钙粘着带相连的纤维网络上。

4.粘着斑:与胞外基质之间形成的斑点状连接结构(肌动蛋白纤维——整联蛋白——纤连蛋白)。是细胞与基底膜的连接,是肌动蛋白纤维与细胞外基质之间的连接方式。

三.通讯连接

间隙连接

神经细胞间的化学突触

植物细胞间的胞间连丝

(一)间隙连接

广泛分布在动物各组织细胞之间,相邻细胞膜上两个连接子对接,隧道相通,离子键中小分子物质可通过,因此可在细胞间物质运输和直接通讯,对调控细胞生长、发育、分化起重大作用。

1.结构成分

间隙连接处相邻的细胞膜间间隙为2~3nm,构成间隙连接的基本单位称为连接子(connexon)。每个连接子由6个相同或相似的跨膜蛋白亚单位connexin环绕,中心形成一个直径约1.5nm的孔道。相邻细胞膜上的俩个连接子对接形成一个间隙连接单位。

2.功能及其调节机制

间隙连接间隙连接中断

例子1:早期胚胎发育———→传递分化信号—————→分化细胞“位置信息”

间隙连接

例2:分泌细胞之间———→交流cAMP、Ca2+等信号分子———→代谢偶联

例(1):促胰腺素—→胰腺腺泡细胞—→胰蛋白酶

(2):胰高血糖素—→肝细胞—→分解糖原

例3:突触:

胚胎细胞间隙连接——→电突触——→信号传导

心肌细胞———→K+传递电兴奋信号——→电耦联——→严格网格同步化反应(如心脏的正常跳动)

例:肿瘤细胞之间间隙连接明显减少或消失,有人认为间隙连接起类似“肿瘤抑制因子”的作用。

间隙连接中断

癌细胞————→细胞通讯障碍—→恶性肿瘤

(二)胞间连丝

相邻植物细胞之间由胞间连丝穿越细胞壁相通,形成管状孔道,直径为20~40nm。管状,完成细胞间的通讯联络。

有内质网分支连通,在细胞分裂时形成细胞壁上密度可达15个/μm2,可传递电刺激,分泌调控因子(生长素、激动素)化学信号等、代谢产物、营养物质的重要渠道。

很多植物病毒编码一种特殊的运动蛋白(movement proteins),可以使胞间连丝的通透性增

大而使病毒蛋白和核酸通过胞间连丝感染相邻的细胞。因而带病毒植株的顶端分生组织细胞通常无病毒。由此可实现马铃薯的无毒培育——脱毒。

(三)化学突触

化学突触是存在于可兴奋细胞之间的细胞连接方式,它通过释放神经递质(乙酰胆碱、琥珀酸胆碱)来传导神经冲动。在信息传递中,有一个将电信号转化为化学信号,再将化学信号转化为电信号的过程。

四.细胞表面的粘着因子

1.钙粘素(cadherins)

是一种细胞粘连糖蛋白,对胚胎发育中的细胞识别、迁移和组织分化以及成体组织器官构成具有主要作用。

2.选择素(selectin)

主要参与白细胞对脉管内皮细胞的识别和粘着。

3.免疫球蛋白超家族的CAM(Ig-superfamily)

它在神经组织细胞间的粘着中起主要作用。

4.整联蛋白(整合素)

可与不同的配体结合,从而介导细胞与基质、细胞与细胞之间的粘着。整联蛋白识别的主要部位是配体上的RGD三肽结构。此外,整联蛋白在细胞内外信号转导中起着十分重要的作用。

第三节细胞外被与细胞外基质

细胞外被(cell coat),又称糖萼,是由质膜外糖蛋白和糖脂构成起保护作用和识别作用的覆盖层。

细胞外基质(extracellular matrix),是指分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。

一.胶原

胶原是细胞外基质中最主要的水不溶性纤维蛋白。胶原分布较广,主要分布于基膜及间隙组织中,构成胞外基质中具刚性和抗张力的主要骨架结构。

二.糖胺聚糖和蛋白聚糖

是粘多糖和糖蛋白组成的水合胶体,是在结缔组织及胞外基质中的主要粘性物质,具抗压和润滑作用,使细胞易于运动迁移和增殖。

三.层粘连蛋白和纤连蛋白

层粘连蛋白和纤连蛋白都是高分子蛋白,前者分子呈不对称十字形,后者呈V形。层粘连蛋白是各种动物胚胎及成体组织的基膜的主要结构组分之一,能将细胞固定在基膜上,它在早期胚胎发育及组织分化中具有重要作用,也与肿瘤细胞的转移有关。

纤连蛋白是高分子量糖蛋白,介导细胞间粘连及细胞与基质粘连的胞外基质,其上的RGD三肽序列是与跨膜蛋白——整联蛋白结合部位,起介导细胞粘连及细胞信号转导途径作用。对早期胚胎中的细胞迁移和分化是必需的。

纯化的纤连蛋白可增强细胞间粘连及细胞与基质的粘连。通过粘连,纤连蛋白可以通过细胞信号转导途径调节细胞的形状和细胞骨架的组织,促进细胞铺展。纤连蛋白对于许多类型细胞的迁移和分化是必需的。

四.弹性蛋白

弹性蛋白(elastin)是弹性纤维的主要成分。弹性蛋白是高度疏水的非糖基化蛋白。主要存在于脉管壁及肺,弹性蛋白是构成脉管壁及肺泡的弹性纤维。弹性纤维与胶原纤维共同维持组织的弹性及抗张性。

五.植物细胞壁

植物细胞壁由纤维素、半纤维素、果胶质、木质素和伸展蛋白构成的植物细胞的外框架结构,维持其抗张压和支持保护的作用。初生细胞壁上允许水和分子物质自由扩散。

第五章物质的跨膜运输与信号传递

第一节物质的跨膜运输

细胞膜是选择性透性膜,能调节物质进出的精密装置。物质通过细胞膜的转运主要有三种途径:被动运输、主动运输和胞吞与胞吐作用。

一.被动运输

被动运输(passive transport)是指通过简单扩散或协助扩散实现物质由高难度向低浓度方向的跨膜转运。不消耗细胞能量,运输方向是顺浓度梯度或顺电化学梯度。

(一)简单扩散

也叫自由扩散,不需要膜蛋白协助。疏水的小分子或小的不带电荷的极性分子以简单扩散的方式跨膜转运,如:O2、N2、水分子和尿素等。带电荷的离子不能简单扩散。细胞膜的通透性主要取决于分子大小和分子的极性。小分子比大分子容易穿膜,非极性分子比极性分子容易穿膜,而带电荷的离子跨膜运动则需更高的自有能。

(二)协助扩散

协助扩散(facilitated diffusion)是各种极性分子和无机离子,如:糖、氨基酸、核苷

酸以及细胞代谢物等顺其浓度梯度或电化学梯度减少方向的跨膜转运,该过程不需要细胞提供能量,这与简单扩散相同,因此两者都称为被动运输。

膜转运蛋白可分为两类:一类称载体蛋白(carrier proteins),它既可介导被动运输,又可介导逆浓度梯度或电化学梯度的主动运输,如:氨基酸、核糖等通过载体蛋白选择结合跨膜转运;另一类称为通道蛋白(channel proteins),只能介导顺浓度梯度或电化学梯度的被动运输。

1.载体蛋白

每种载体蛋白只能与特定的溶质分子结合。

2.通道蛋白

选择性开启离子通道。通过蛋白所介导的被动运输不需要与溶质分子结合,横跨形成亲水通道,允许适宜大小的分子和带电荷的离子通过。

离子通道的两个特征:1)离子选择性

2)离子通道是门控的

三种类型的门控离子通道示意图:

电压门控形、配体门控形(胞外配体、胞内配体)、压力激活性

二.主动运输

主动运输是逆浓度梯度或逆电化学梯度运输。是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低一侧向高难度的一侧进行跨膜转运的方式。消耗细胞能量。

1.离子泵、质子泵、直接消耗ATP运输

2.协同运输

根据主动运输过程所需能量来源的不同可归纳为:

1)由ATP直接提供能量的主动运输——钠钾泵

2)由ATP直接提供能量的主动运输——钙泵和质子泵

3)协同运输(间接消耗细胞内ATP)

1)钠钾泵:(Na+—K+泵)

在细胞内侧a亚基与Na结合促进ATP水解, a亚基上的一个天门冬氨基酸残基磷酸化引起a亚基构象发生变化,将Na泵出细胞;

同时细胞外的K与a亚基的另一个位点结合,使其去磷酸化,a亚基构象再度发生变化将K泵进细胞,完成整个循环。

每消耗一个ATP分子,泵出3个Na和泵进1个K

2)钙泵、质子泵:

钙泵,又称Ca2+-ATP酶,每一泵单位中约10个跨膜α螺旋。细胞内钙调蛋白与之结合以调节Ca2+泵的活性。Ca2+泵工作与ATP的水解相偶联,每消耗一个ATP分子转运出两个Ca2+。钙泵主要存在于细胞膜和内质网膜上,它将Ca2+输出细胞或泵入内质网腔中储存起来,以维持细胞内低浓度的游离Ca2+。钙泵在肌质网内储存Ca2+,对调节肌细胞的收缩与舒张是至关重要的。

3)质子泵:

H+泵:H+-ATP酶,植物细胞、真菌、细菌的质膜皆无钠钾泵,而以H+泵输出H+,建立跨膜的H+电化学梯度。

可分为三种:

(1)P型质子泵:在转运过程中涉及磷酸化和去磷酸化。存在于真核细胞的细胞膜上。(2)V型质子泵:在转运H+过程中不形成磷酸化的中间体,存在于动物细胞溶酶体膜和植物细胞液泡膜上。从细胞基质中泵出H进入细胞器,有助于保持细胞质中性pH和细胞器内的酸性pH。(3)第三种存在于线粒体内膜、植物内囊体膜和多数细菌质膜上。顺H+浓度梯度,与ATP偶联,如氧化磷酸化和光合磷酸化。

4)协同运输:待运物质在载体蛋白上与某种离子相伴跨膜转运,是由Na-K+泵(或H+泵)所维持的离子浓度梯度驱动,间接消耗细胞内的ATP。

动物细胞的协同运输是利用膜两侧的Na+电化学梯度来驱动的,而植物细胞和细菌常利用H +电化学梯度来驱动。

共运输:物质运输方向与离子转移方向相同。

对向运输:物质跨膜转运的方向与离子转移的方向相反。

(四)膜电位

质膜上对带电荷物质的跨膜运输引起膜内外的电位差,称为膜电位。当细胞处于静息状态时,膜电位是外正内负,这是静息电位,被称为“极化”现象。动物细胞的静息电位是在-20mV~-200 mV之间。

静息电位的产生:质膜上Na+-K+泵工作造成K+浓度内高外低,Na+浓度外高内低,胞内高浓度K+是与胞内有机分子所带负电荷保持平衡的主要成分,然而质膜上还有K+通道和Na+通道,静息时K+通道处于开启状态,而Na+通道多数关闭,于是有一些K+顺浓度梯度由内流向胞外,所以随着正电荷转移到胞外而留下胞内非平衡负电荷。结果是膜外正离子过量和膜内负离子过量,从而产生膜内外的电位差(静息电位),当电位差达到一定值时,便阻碍K+进一步向外扩散。当质膜受到电刺激或化学刺激时,膜上通道蛋白的构象会出现瞬间变化,

引起大量Na+流入胞内,(致使静息电位减小乃至消失),造成去极化,进而出现内正外负的膜电位,此时变为动作电位(即反极化),这个由去极化到反极化阿过程非常短暂,有的仅1毫秒。随后蛋白的构象迅速还原,膜电位又变成静息电位(即复极化)。

四.胞吞作用和胞吐作用

1.穿胞吞排的跨细胞运输

出现在某些组织、器官分界面的细胞中。其细胞的分布呈极性,在一极的质膜内形成微胞饮小泡,小泡穿越细胞质区域,在另一极的质膜上又将吞饮物质释放交给另一种细胞。转运的主要是蛋白质。在转运的过程中,不与溶酶体发生联系。

2.受体介导的胞吞作用

微胞饮小泡:1)衣被小泡

2)无被小泡

前者以网格蛋白作为胞外衣被(以受体介导对特定大分子的选择性摄取浓缩)。后者是非特异性的胞饮形式。

衣被小泡的形成过程:特定大分子物质在质膜外表被受体结合,然后该处质膜部位在网格蛋白参与下凹陷形成衣被小窝,随后进一步内陷脱离质膜,形成衣被小泡进入细胞质。其衣被的结构单位是网格蛋白三聚体,有三条重链和三条轻链组成的三叉网车型结构,若干个网格蛋白结合在一起形成六边形的网格特征。衣被内由接合素蛋白分别衔接网格蛋白和受体,在内陷的衣被小窝的颈部还有一种GTP结合蛋白呈环状,其水解GTP引起颈部缢缩。

衣被的主要作用:1)在衣被小窝形成阶段,使膜上受体集中,有利于选择富集内吞特定大分子。2)为衣被小泡的形成提供泡外结构骨架。所以,一旦衣被进入细胞后,衣被作用即已完成,就自行解聚成网格蛋白脱离小泡返回质膜,重新参与其它衣被小泡的形成。

Eg:低密脂蛋白(LDL)的选择性胞吞就是典型例子。

三.胞吐作用:

是将细胞内的分泌泡或其它膜泡中的物质运出质膜外的途径。

1.组成型的胞吐途径:

2.调节型的胞吐途径:(特化的分泌细胞)……胞外信号刺激

1.组成型的胞吐途径

主要是由高尔基体成熟面的网状区(TGN)分泌的囊泡移动到质膜与之融合,以囊泡形式外排。为质膜更新提供新合成的膜蛋白和膜脂;并分泌外排新合成的可溶性蛋白,在胞外形成质膜外周蛋白、胞内基质、胞外营养成分和信息分子。

2.调节型的胞吐途径

存在于某些特化的分泌细胞,这些分泌细胞产生的分泌物(eg激素、粘液或消化酶)储存在分泌泡内,当细胞受到胞外信号分子(激素、神经递质)刺激后,分泌泡与质膜融合并将内含物释放出去。

第二节细胞通讯与信号传递

一.细胞通讯与细胞识别

(一)细胞通讯

间隙连接

不接触内分泌

分泌化学信号旁分泌

接触:接触抑制自分泌

化学突触传递信号

1.细胞识别

细胞识别(cell recognition):细胞通过其表面的受体接受胞外信号分子(配体),通过信号通路,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞应答反应,这称为细胞识别。

2.信号分子与受体

亲脂性的信号分子、亲水性的信号分子、气体性信号分子

受体与信号(配体)的关系具多样性。

3.第二信使与分子开关

第二信使学说(1991年诺贝尔奖):第一信使(胞外化合物)—→细胞表面受体—→第二信使(胞内信号分子)—→细胞应答生理反应

第二信使:cAMP、cGMP、三磷酸肌醇(IP3)、二酰基甘油(DG)

第三信使:Ca2+

分子开关(molecular switches)

)由蛋白激酶使其磷酸化而开启,由蛋白磷酸脂酶使其去磷酸化而关闭。

2)GTP结合蛋白,结合GTP时活化开启,而结合GDP则失活而关闭。

二.通过细胞内受体介导的信号传递

胞内受体是一类超家族,本质是能被亲脂性激素激活的基因调控蛋白。这类受体一般有三个结构域:位于C端的激素结合位点;位于中部富含Cys、具锌指结构的DNA或Hsp90结合位点;以及位于N端的转录激活结构域。

当抑制性蛋白(例如:Asp90)与受体结合后,使其处于非活化状态,而当配体(Eg甾体、激素)与受体结合时,导致抑制性蛋白脱离,暴露出受体上DNA结合位点而被激活。受体结合的DNA序列是转录增强子,可增加某些相邻基因的转录水平。

甾类激素诱导的基因活化分两个阶段:

1)初级反应阶段:直接活化少数特殊基因,发生迅速

2)延迟的次级反应:由初级反应的基因产物,再活化其他基因,对初级反应起放大作用。NO是自由基性质的气体,具脂溶性,可快速扩散透过细胞膜,对邻近靶细胞起作用。血管内皮细胞和神经细胞中有一氧化氮合酶(NOS),能催化合成NO,当血管神经末释放乙酰胆碱作用于血管内皮,使其合成释放NO,所以才快速缓解心绞痛。

三.通过细胞表面受体介导的信号跨膜传递

细胞表面受体分为三类:

1)离子通道偶联的受体:主要存在于神经、肌肉等可兴奋细胞间的突触信号传递。

2)G蛋白偶联的受体存在于几乎所有类型的细胞。

3)酶偶联的受体

(一)离子通道偶联的受体

本身具信号结合点,又是离子通道,其跨膜信号转导无需中间步骤。神经递质(胞外化学信号)与受体结合而引起通道蛋白变构,导致离子通道开启,使突触后细胞膜出现过膜离子流(如Na+和Ca2+),从而将胞外化学信号转换成胞内电信号,导致突触出后细胞的兴奋。当胆碱脂酶将神经递质水解后,离子通道关闭,信号传递中断。

(二)G蛋白偶联受体

1.是指胞外信号跨膜传递过程:配体—→受体—→G蛋白(分子开关)—→第二信使—→靶蛋白(酶或离子通道)—→细胞应答

G蛋白由α、β、γ三亚基组成,β、γ二聚体锚定于质膜内侧,稳定α亚基,α亚基具GTP

酶活性。当它与GDP结合时,处于失活状态,而当它与GTP结合后,处于开启态,从而传递信号。

2.其信号通路有两类:

1)cAMP信号通路

2)磷脂酰肌醇信号通路

1)cAMP信号通路

是真核细胞应答激素反应的主要机制之一,其信号通路的效应酶是腺苷酸环化酶,起调节细胞内第二信使cAMP水平。cAMP信号通路上包括激活和抑制腺苷酸环化酶两种方式,前者有激活型激素受体(Rs)和激活型G蛋白复合物(Gs),后者有抑制型激素受体(Ri)和抑制型G蛋白复合物(Gi)。所以激活型的激素(eg肾上腺素β型)和抑制型的激素(eg肾上腺素α型)可同时协调作用于腺苷酸环化酶,来调节cAMP水平。

此信号通路有三个特点:

①Gs蛋白结合GTP后,由其α亚基结合腺苷酸环化酶,产生cAMP,但其活化的β、

γ亚基也能开启质膜上K+通道的信号传递作用。

②Gi可由活化的Giα亚基直接结合来抑制腺苷酸环化酶,也可由活化的Giβγ与Gs

α结合,阻断其激活效应。

③CAMP在细胞内的浓度迅速调节决定了细胞快速应答胞外信号,即信号放大和信号终

止快速转变,终止是由环腺苷酸磷酸二脂酶来降解cAMP。

cAMP信号通路的主要效应是通过蛋白激酶A(PKA)来激活下游靶酶和开启基因表达。前者是快速反应(几秒至几分钟),后者是慢速反应(几分钟到几小时)。前者是活化的PKA导致下游靶酶蛋白磷酸化,从而快速影响细胞代谢和细胞行为(如:由肾上腺素刺激,骨骼肌细胞导致糖原分解,脂肪细胞导致甘油三脂分解)。而后者是:激素-→G蛋白偶联受体-→G 蛋白-→腺苷酸环化酶-→cAMP-→cAMP依赖的蛋白激酶A(PKA)-→基因调控蛋白-→基因转录。

2)磷脂酰肌醇信号通路

胞外信号-→G蛋白偶联受体

-→G蛋白-→磷脂酶C(PLC)

-→磷脂酰肌醇(PIP2)→三磷酸肌醇-→开启Ca2+通道-→钙调蛋白结合-→细胞反应(两种第二信使)→二酰基甘油-→蛋白激酶C(PKC)-→系列磷酸化级联反应

↓↓激活

使得抑制蛋白的磷酸化调节基因转录

↓脱离

基因调控蛋白

↓活化

基因转录

PIP2普遍存在于真核细胞的质膜中,由此产生IP3-Ca2+和DG—PKC双信使。IP3作为胞内配体打开内质网膜的Ca2+通道,使细胞质中游离Ca2+升高,引起PKC转位到质膜内表面,被DG活化,进而使各种底物蛋白的丝氨酸和苏氨酸基磷酸化,从而导致了细胞分泌、收缩等短期生理效应,也导致了细胞增殖、分化等长期生理效应。IP3和DG的信号终止是分别由去磷酸化和磷酸化(或水解)进入PIP2循环。Ca2+的信号终止是由质膜Ca2+泵(或Na+-Ca2+交换器)及内质网膜Ca2+泵来降低细胞质中Ca2+浓度,以免细胞中毒。

(三)酶联受体

1.酪氨酸激酶受体RIK及RTK-Ras信号通路

是细胞表面一大类重要受体,是一次跨膜蛋白,其胞外配体是胰岛素和多种生长因子,配体结合导致受体的二聚化构象变化和自磷酸化,而磷酸化的酪氨酸残基可被含SH2结构域的胞内信号蛋白所识别结合,由此启动胞内信号转导。

配体-→RTK-→adaptor←-GRF-→Ras-→Raf(MAPKKK)-→MAPKK-→MAPK-→进入细胞核内-→磷酸化基因调控蛋白-→细胞效应

RTK介导的信号通路是具有调节细胞增殖分化、存活、凋亡等多向性效应,不需G蛋白参与,而由Ras蛋白起分子开关作用,RTK-Ras信号通路向下游传导是扳动丝氨酸/苏氨酸蛋白激酶的磷酸化级联反应,起增强、放大和延长效应。Ras结合GTP时为活化态,结合GDP时为失活态。

2.其它酶联受体

1)丝氨酸/苏氨酸激酶受体:其配体是转化生长因子βs,是调节细胞增殖等功能。

2)酪氨酸磷酸脂酶受体:作用与RTK相反。

3)鸟苷酸环化酶受体:以cGMP作为第二信使的通路,能使血管平滑肌松弛,血压下降。4)酪氨酸蛋白激酶关联受体:通过非受体性的酪氨酸激酶来传递信号的。致癌基因Src家族和Janus家族表达产物都是此类。

四.由细胞表面整联蛋白介导的信号传递

质膜上的整联蛋白外联纤连蛋白等胞外配体,内联肌动蛋白纤维,介导了两条信号通路:一是到细胞核的信号通路,即通过酪氨酸激酶Src和粘着斑激酶FAK的活化,以Ras蛋白为分子开关,沿MAPK级联反应途径传递生长促进信号进入细胞核,激活有关生长增殖的基因转录;二是到核糖体的信号通路,导致翻译特定mRNA,指导合成细胞周期所需特定蛋白质。五.细胞信号传递的基本特征:

1.多途径、多层次

2.信号收敛、发散和交谈

3.专一性、相似性

4.信号放大与信号终止并存

5.对细胞刺激的适应

6.蛋白激酶的网络整合信息

第六章细胞质基质与细胞内膜系统

第一节细胞质基质和内膜系统

一.细胞质基质的涵义

经典细胞学:光镜下,除去可见的细胞器及内含颗粒的透明质部分,称为细胞液。

细胞生物学:电镜下,除去可见的细胞器及亚微结构以外的细胞质部分,称为细胞质基质。分级离心后,除去所有细胞和颗粒剩下的清液部分,称为胞质溶胶。

二.细胞质基质的化学组分

成分复杂,不易分析。所以反映了大部分细胞的生化成分,即是许多细胞器生化反应的底物和产物的运输通道,本身又涉及了几种细胞代谢途径。

离心分离中,易发生混杂与丢失。破碎细胞器及液泡内含物可能混入可溶相,在另一些本属基质的物质,如可溶性酶又可能附在细胞器上被分离。

三.细胞质基质的功能

1.是进行某些生化活动的场所。

2.为维持细胞器稳定,提供适宜的离子环境

3.供应细胞器内发生反应的底物

4.对蛋白质的修饰、蛋白质选择性的降解和构象修正

1)磷酸化与去磷酸化、糖基化、甲基化、酰基化

2)依赖泛素标记到蛋白质酶体中的蛋白质降解途径

3)热休克蛋白Hsp帮助变性或畸形蛋白质重新折叠

5.物质贮存和运输。

五.内膜和内膜系统

1.内膜:电镜下可见的在细胞质内的膜相结构。

内膜系统:由内膜围成泡状、扁囊状的亚微结构和细胞器,构成复杂且精密的胞内系统。主要包括内质网、高尔基体、溶酶体、胞内体、过氧化物酶体以及衍生的小泡和液泡。

2.内膜的共同特征:

1)都是单位膜结构

2)仅存在于真核细胞中

3)处于动态平衡中,膜之间有转化现象

3.内膜与质膜的结构差别

1)单位膜的层次结构差别不如质膜明显

2)内膜厚度稍薄,6-7nm

3)膜上的抗原不同

第二节内质网(ER)

一.内质网的结构和分布

由单层内膜围成的管状、扁囊状结构,连通成网,周边区域常见由其出芽分离形成的小泡,按形态差别可分为两类:膜外表附有核糖体的称粗面内质网(rough ER),而膜表面无核糖体的称为光面内质网(smooth ER)。rER一般呈平行囊状分布,多数是围绕在细胞核附近,其腔体与双层核膜之间的腔(核周池)相通。而sER呈分枝的管状网络,往往分布在rER 的外侧,这两种ER是连通的,还可与质膜相连。在不同类型细胞中,其数量和类型有不同。二.ER的化学组成

依据对微粒体(microsome)组分分析,微粒体是经分级离心得到的内质网碎片形成的泡状人工产物,以蔗糖密度剃度离心,可将rER和sER分离开,再以脱氧胆脂酸盐处理,可将核糖体分离出来。

三.内质网的功能

1)蛋白质的合成

附在rER膜外表的核糖体合成多肽链;从“易位子”孔道进入ER腔内。RER合成的蛋白包

括:分泌蛋白(外分泌的酶、抗体、多肽类激素、胞外基质等)、膜蛋白(将转运到质膜和其它内膜)和细胞器中可溶性驻留蛋白(转运到高尔基体、溶酶体、胞内体和植物液泡等细胞器)。

2)蛋白质折叠装配和修饰加工

新合成的多肽由结合蛋白Bip和蛋白二硫键异构酶帮助折叠、装配。前者起识别作用,后者起切断和重结二硫键作用。凡错误折叠装配的肽链皆由易位子返回细胞质基质,由依赖于泛素的蛋白酶体降解。

内质网中合成蛋白质的糖基化是最常见的修饰加工,分为N-连接糖基化和O-连接糖基化两种方式。前者是在膜上的糖基转移酶作用下,将膜内侧的磷酸多萜醇上的寡糖链转移到多肽键的天冬酰胺残基上;而后者则是转移到丝氨酸、苏氨酸、羟赖氨酸或羟脯氨酸上。

3)脂质的合成

磷脂胆固醇和甾类激素都在内质网中合成。合成磷脂所需的三种酶(酰基转移酶、磷脂酶、胆碱磷酸转移酶)都位于膜上,其活性部位朝向膜外。合成磷脂的底物来自细胞质基质,合成后在磷脂转位因子帮助下翻转(转位),迅速进入ER腔内。其合成的脂类除部分用于自身的膜装配,其余转运到别的细胞器。

转运方式:类似于膜蛋白的膜流动和膜泡出芽转移,还可以磷脂转换蛋白PEP载体运送到线粒体或过氧化物酶体等缺磷脂的细胞膜上。

4)内膜的生成与分化

rER膜可不断自身装配生成,再通过一系列化学结构上的膜改造(eg:核糖体脱落、添加或减少膜上的酶、脂类及糖基化),实现各类型内膜的转化。转运方式:连通的膜由膜流动性转运;不连通的则由小泡输送。

5)解毒作用

sER中有些酶(eg:细胞色素P450酶系)能催化脂溶性药物(如苯巴比妥)氧化失效。

6)糖原分解

动物的糖原颗粒(肝糖原、肌糖原)贮存在细胞质基质中,当生理活动需要消耗能量时,在激素控制下由cAMP介导,糖原被α-葡聚糖磷酸化酶降解成葡萄糖-6-磷酸,再由sER 膜上的磷酸脂酶催化去掉磷酸根,葡萄糖穿过膜进入sER腔,运出细胞进入血液供生理需要。7)Ca2+的贮存

内质网膜上的Ca2+泵将细胞基质中的Ca2+大量泵入腔中贮存,一旦受胞外信号刺激时,内质网膜的Ca2+通道打开,Ca2+迅速涌出作为胞内信号传递。肌质网是肌细胞中特化的sER,

最新细胞生物学翟中和第四版课后习题答案

第四章:细胞膜与细胞表面 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 以极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,蛋白分子以不同的方式镶嵌在脂双分子层中或结合在其表而。生物膜具有两个显著的特征,即膜的不对称性和膜的流动性:D、生物膜结构的不对称性保证了膜功能的方向性,使膜两侧具有不同的功能,有的功能只发生在膜外侧,有的则在膜内侧,这是生物膜发生作用所必不可少的。如调节.细胞内外Na+、K+的Na+-K+ATP酶,其运转时所需的ATP是细胞内产生的,该酶的ATP结合点正是处于膜的内侧面:许多激素受体等接受细胞外信号的则处于细胞外侧。2)、膜的流动性与物质运输、能量转换、细胞识别、药物对细胞的作用密切相关。可以说,一切膜的基本活动均在生物膜的流动状态下进行。 2、何为内在膜蛋白?它以什么方式与膜脂相结合? 内在膜蛋白又称整合膜蛋白,这类蛋白部分或全部插入脂双层中,多数为横跨整个膜的跨膜蛋白。它与膜结合的主要方式有:1)、膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。2)、跨膜结构域两端携带正电荷的纨基酸残基,如精敏酸、赖缎酸等与磷脂分子带负电的极性头形成离子键,或带负电的氨基酸残基通过Ca+、Mg+等阳离子与带负电的磷脂极性头相互作用。3)、某些膜蛋白通过自身在细胞质基质一侧的半胱织酸残基上共价结合的脂肪酸分子,插到膜双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。 3、从生物膜结构模型的演化,谈谈人们对生物膜的认识过程。 生物膜结构模型的演化是人类认识细胞膜的一个循序渐进的过程,是随着实验技术和方法的改进而不断完善的:D、1925年:质膜是由双层脂分子构成的;2)、1935年:提出“蛋白质一脂质一蛋白质”的三明治式的质膜结构模型,这一模型影响达20年之久:3)、1959 年提出单位膜模型,并大胆推测所有的生物膜都是由“蛋白质一脂质一蛋白质”的单位膜构成:4)、1972年桑格和尼克森提出了生物膜的流动镶嵌模型,强调:①膜的流动性,膜蛋白和膜脂均可侧向运动:②膜蛋白分布的不对称性,有的镶嵌在膜表面,有的嵌入或横跨脂双层分子。5)、“液态晶模型”和“板块镶嵌模型”等的提出,可看作是对流动镶嵌模型的补充。6)、1988年“脂筏模型”。从生物膜结构模型的演化过程可知,人们对事物的认识是在实践中不断深入、逐渐完善的过程。 4、红细胞膜骨架的基本结构与功能是什么? 膜骨架是细胞质膜与膜内的细胞卅架纤维形成的复合结构。红细胞膜骨架蛋白主要包括:血影蛋白或称红膜肽,锚蛋白,带4、1蛋白和肌动蛋白。血影蛋白和肌动蛋白在维持膜的形状和固定其它膜蛋白的位置方而起重要作用。功能:参与维持细胞的形态,并协助细胞质膜完成多种的生理功能。 第五章、物质的跨膜运输 1、比较载体蛋白与通道蛋白的特点。 1)、膜转运蛋白可以分为两类:载体蛋白和通道蛋白(又称离子通道)。它们以不同的方式辨别溶质。2)、载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜的蛋白质分子。每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运。具有高度选择性:具有类似于酶与底物作用的饱和动力学特征:对PH有依赖性。3)、离子通道有3个显著特征:①极高的转运速率②没有饱和值③非连续性开放而是门控的。离子通道无需与溶质分子结合。它的开或关两种构象的调方,应答于适当的信号。根据应答信号的不同,离子通道又分为电压门通道、配体门通道、压力激活通道。 2、比较主动运输与被动运输的特点及其生物学意义。 主动运输和被动运输的特点:(1)浓度梯度:主动运输是物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧跨膜转运的方式;而被动运输是物质顺浓度梯度或电化学梯度由高浓度向低浓度方向的跨膜转运。(2)是否需能主动播需要代谢能(由ATP水解直接提供能量)或与释放能量的过程相偶联(协同运输):而被动运输不需

细胞生物学翟中和第三版课后练习题及答案

第一章:绪论 1.细胞生物学的任务是什么?它的范围都包括哪些? 1) 任务: 细胞生物学的任务是以细胞为着眼点,与其他学科的重要概念兼容并蓄,来阐明生物各级结构层次生命现象的本质。 2) 范围: (1) 细胞的细微结构; (2) 细胞分子水平上的结构; (3) 大分子结构变化与细胞生理活动的关系及分子解剖。 2. 细胞生物学在生命科学中所处的地位,以及它与其他学科的关系 1)地位:以细胞作为生命活动的基本单位,探索生命活动规律,核心问题是将遗传与发育在细胞水平上的结合。 2)关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生命现象及其规律。 3. “一切生物学问题的答案最终要到细胞中去寻找”。 1) 细胞是一切生物体的最基本的结构和功能单位。 2) 所谓生命实质上即是细胞属性的体现。生物体的一切生命现象,如生长、发育、繁殖、遗传、分化、代谢和激应等都是细胞这个基本单位的活动体现。 3) 生物科学,如生理学、解剖学、遗传学、免疫学、胚胎学、组织学、发育生物学、分子生物学等,其研究的最终目的都是要从细胞水平上来阐明各自研究领域中生命现象的机理。 4) 现代生物学各个分支学科的交叉汇合是21世纪生命科学的发展趋势,也要求各个学科都要到细胞中去探索生命现象的奥秘。 5) 鉴于细胞在生命界中所具有的独特属性,生物科学各分支学科若要研究各种生命现象的机理,都必须以细胞这个生物体的基本结构和功能单位为研究目标,从细胞中研究各自研究领域中生命现象的机理。 4. 细胞生物学主要研究内容是什么? 1)细胞核、染色体以及基因表达 2)生物膜与细胞器 3)细胞骨架体系 4)细胞增殖及其调控 5)细胞分化及其调控 6)细胞的衰老与凋亡 7)细胞起源与进化 8)细胞工程 5. 当前细胞生物学研究中的基本问题以及细胞基本生命活动研究的重大课题是什么? 研究的三个根本性问题: 1)细胞内的基因是如何在时间与空间上有序表达的问题 2)基因表达的产物――结构蛋白与核酸、脂质、多糖及其复合物,如何逐级装配行使生命活动的基本结构体系及各种细胞器的问题 3)基因表达的产物――大量活性因子与信号分子,如何调节细胞最重要的生命活动的问题 生命活动研究的重大课题: 1)染色体DNA与蛋白质相互作用关系――非组蛋白对基因组的作用 2)细胞增殖、分化、凋亡(程序性死亡)的相互关系及其调控 3)细胞信号转导――细胞间信号传递;受体与信号跨膜转导;细胞内信号传递 4)细胞结构体系的装配 6.你认为是谁首先发现了细胞? 1) 荷兰学者A.van Leeuwenhoek,而不是R.Hooke。

细胞生物学翟中和重点名词解释

细胞生物学复习提纲 名词解释 1.微管:在真核细胞质中,由微管蛋白构成的,可形成纺锤体、中心体及细胞特化结构鞭毛和纤毛的结构。 2.微丝:在真核细胞的细胞质中,由肌动蛋白和肌球蛋白构成的,可在细胞形态的支持及细胞肌性收缩啡肌性运动等方面起重要作用的结构。 3.光合磷酸化:由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程。 4.氧化磷酸化:电子从NADH或FADH2经呼吸链传递给氧形成水时,同时伴有ADP磷酸化形成ATP,这一过程称为氧化磷酸化。 5.ATP合成酶: ATP 合成酶广泛存在于线粒体、叶绿体、异养菌和光合细菌中,是生物体能量转换的核心酶。该酶分别位于线粒体内膜、类囊体膜或质膜上,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下催化合成ATP。 6.载体蛋白:是一类膜内在蛋白,几乎所有类型的生物膜上存在的多次跨膜的蛋白质分子。通过与特定溶质分子的结合,引起一系列构想改变以介导溶质分子的跨膜转运。 7.通道蛋白:由几个蛋白亚基在膜上形成的孔道,能使适宜大小的分子及带电荷的溶质通过简单的自由扩散运动从膜的一侧到另一侧。 8.被动运输:指溶质顺着电化学梯度或浓度梯度,在膜转运蛋白协助下的跨膜转运方式,又叫协助扩散。 9.主动运输:物质逆浓度梯度或电化学梯度,由低浓度向高浓度-侧进行跨膜转运的方式,需要细胞提供能量,需要载体蛋白的参与。 10.胞吞作用:细胞通过质膜内陷形成囊泡,将胞外的生物大分子、颗粒性物质或液体等摄取到细胞内,以维持细胞正常的代谢活动。 11.胞吐作用:细胞内合成的生物分子和代谢物以分泌泡的形式与质膜融合而将内含物分泌到细胞表面或细胞外的过程。 12.P-型离子泵:运输时需要磷酸化,具有两个独立的α催化亚基,.具有ATP结合位点,绝大多数还有β调节亚基 13.V-型离子泵:位于小泡的膜上,运输时需ATP供能,但不需要磷酸化,利用ATP水解供能, 14.COPII包被膜泡:介导细胞内顺向运输,负责从内质网到高尔基体的物质运输 15.COPI包被膜泡:介导细胞内膜泡逆向运输,负责从顺面高尔基体网状区到内质网膜泡转运。 16.脂锚定膜蛋白:位于脂双层表面,通过与之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上。与脂肪酸锚定的膜蛋白多分布在质膜内侧,与糖脂结合的多分布在质膜外侧 17.初级溶酶体:游离在细胞中的尚未执行其消化功能的溶酶体,仅含有水解酶类,但无作用底物,外面只有一层单位酶,其中的酶处于非活性状态 18.次级溶酶体:初级溶酶体与细胞内自噬体或异噬体融合形成的进行消化作用的膜包被复合物 19.中间丝:存在于真核细胞质中的,由蛋白质构成的,其直径介于微管和微丝之间,在支持细胞形态、参与物质运输等方面起重要作用的纤维状结构。

细胞生物学翟中和复习资料全

细胞生物学复习资料 第一章绪论 一、细胞生物学定义及其主要研究内容(名词解释) 细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微 / 超微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。核心问题是将遗传与发育在细胞水平上结合起来。 二、细胞生物学的发展史(代表人物及其发现) 1、细胞的发现。胡克利用自制显微镜发现了细胞。 2、细胞学说的建立及其意义。施莱登和施旺共同提出细胞学说 3、细胞学的经典时期 4、实验细胞学时期。摩尔根建立基因学说。 5、细胞生物学学科的形成与发展 第二章 一、细胞是生命活动的基本单位 (一)一切有机体都由细胞构成(除病毒是非细胞形态生命体外),细胞是构成有机体的基本单位(二)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位。细胞生命活动以物质代谢为基础;以能量代谢(ATP)为动力;以信息调控为机制。 (三)细胞是有机体生长与发育的基础 (四)细胞是遗传的基本单位,细胞具有遗传的全能性 (五)没有细胞就没有完整的生命(病毒也适合)。结构破坏的细胞不能生存;单独的细胞器不能长期培养。 二、细胞的基本共性 1、所有的细胞都有相似的化学组成 2)所有细胞表面均有细胞膜(磷脂双分子层 + 镶嵌蛋白质) 3)均含有 DNA 与 RNA 作为遗传信息复制与转录的载体 4)均含有核糖体(合成蛋白质) 5)所有细胞的增殖都以一分为二的方式进行分裂 三、原核细胞的基本特征 1、遗传的信息量小,一个环状 DNA 构成; 2、细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜。 原核生物的代表: 支原体、衣原体、立克次氏体、细菌、放线菌、蓝藻等

(完整版)细胞生物学翟中和第四版教案

第一章绪论一.细胞生物学研究的内容和现状 1.细胞生物学是现代生命科学的重要基础学科 细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。 核心问题是将遗传与发育在细胞水平上结合起来。细胞生物学的主要研究内容 一般可分为细胞结构功能与细胞重要生命活动两大基本部分:大致归纳为下面几个领域:1)细胞核、染色体以及基因表达的研究2)生物膜与细胞器的研究3)细胞骨架体系的研究4)细胞增殖及其调控5)细胞分化及其调控6)细胞的衰老与凋亡7)细胞的起源与进化8)细胞工程当前细胞生物学研究的总趋势与重点领域 1)细胞生物学与分子生物学(包括分子遗传学与生物化学)相互渗透与交融是总的发展趋势2)当前研究的重点领域: I:染色体DNA与蛋白质相互作用关系——主要是非组蛋白对基因组的作用 II:细胞增殖、分化、凋亡的相互关系及其调控 III:细胞信号转导的研究 IV:细胞结构体系的组装二.细胞学与细胞生物学发展简史 1.细胞的发现 2.细胞学说的建立其意义 1838~1839年,德国植物学家施莱登和动物学家施旺提出了“细胞学说”。 3.细胞学的经典时期 4.实验细胞学时期 5.细胞生物学学科的形成与发展 第二章细胞基本知识概要细胞的基本概念 1.细胞是生命活动的基本单位。1)一切有机体都由细胞构成,细胞是构成有机体的基本单位 2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位 3)细胞是有机体生长与发育的基础 4)细胞是遗传的基本单位,细胞具有遗传的全能性5)没有细胞就没有完整的生命 2.细胞概念的一些新思考细胞是多层次非线性的复杂结构体系:细胞具有高度复杂性和组织性

《细胞生物学》第四版(翟中和、王喜忠、丁明孝)名词解释

中文英文解释 癌基因 oncogene 通常表示原癌基因(proto oncogene)的突变体,这些基因编码的蛋白使细胞的生长失去控制,并转变成癌细胞,故称癌基因。 氨酰-tRNA合成酶 aminoacyl tRNA synthetase 将氨基酸和对应的tRNA的3′端进行共价连接形成氨酰-tRNA的酶。不同的氨基酸被不同的氨酰-tRNA合成酶所识别。 暗反应 light independent reaction 光合作用中的另外一种反应,又称碳同化反应(carbon assimilation reaction)。该反应利用光反应生成的ATP和NADPH中的能量,固定CO2生成糖类。 白介素-1β转换酶 interleukin-1β converting enzyme, ICE Caspase-1,Caspase家族成员之一,线虫Ced3在哺乳动物细胞中的 同源蛋白,催化白介素-1β前体的剪切成熟过程。 半桥粒 hemidesmosome位于上皮细胞基底面的一种特化的黏着结构,将细胞黏附到基膜上。胞间连丝 plasmodesma相邻植物细胞之间的联系通道,直接穿过两相邻细胞的细胞壁。 胞内体 endosome 动物细胞内由膜包围的细胞器,其作用是转运由胞吞作用新摄取的物质到溶酶体被降解。胞内体被认为是胞吞物质的主要分选站。 胞吐作用 exocytosis携带有内容物的膜泡与质膜融合,将内容物释放到胞外的过程。 胞吞作用 endocytosis 通过质膜内陷形成膜泡,将细胞外或细胞质膜表面的物质包裹到膜泡内并转运到细胞内(胞饮和吞噬作用)。 胞外基质 extracellular matrix 分布于细胞外空间、由细胞分泌的蛋白质和多糖所构成的网络结构,如胶原和蛋白聚糖等,在决定细胞形状和活性的过程中起着一种整合作用。 胞质动力蛋白 cytoplasmic dynein 由多条肽链组成的巨型马达蛋白,利用ATP水解释放的能量将膜泡或膜性细胞器等沿微管朝负极转运。 胞质分裂 cytokinesis细胞周期的一部分,在此期间一个细胞分裂为两个子细胞。表观遗传 epigenetics与核苷酸序列无关的调节基因表达的可遗传控制机制。 病毒粒子 virion 单个病毒颗粒,通常由蛋白外壳和包裹在其内的遗传物质共同组成,仅能在宿主细胞内增殖,广泛用于细胞生物学研究。 捕光复合体Ⅱlight harvesting complex Ⅱ,LHCⅡ位于光系统Ⅰ之外的色素蛋白复合物,含有大量天线色素为光系统Ⅱ(PSⅡ)收集光子。 糙面内质网 rough endoplasmic reticulum,RER 附着有核糖体的内质网。糙面内质网由许多扁平膜囊组成,主要功能包括合成分泌性蛋白、溶酶体蛋白、膜整合蛋白以及膜脂分子。 常染色质 euchromatin间期核中处于分散状态、压缩程度相对较低、着色较浅的染色质。 成膜体 phragmoplast 在植物细胞中期赤道板相应位置上致密排列的物质。由成簇交错的微管(与即将形成的细胞板垂直)和一些与其相连的电子致密物组成。 程序性细胞死亡 programmed cell death,PCD 是受到严格的基因调控、程序性的细胞死亡形式。对生物体的正常发育、自稳态平衡及多种病理过程具有重要的意义。 初生壁 primary wall生长中的植物细胞壁,具有可伸展性。 中文英文解释 次生壁 secondary wall在大多数成熟植物细胞中发现的较厚的细胞壁。 粗肌丝 thick filament组成肌节的两种特征性纤维之一,主要由肌球蛋白构成。在横切面上

细胞生物学(翟中和完美版)笔记

细胞生物学教案 . 第一章绪论 教学目的 1 掌握本学科的研究对象及内容; 2 了解本学科的来龙去脉(发展史及发展前景); 3 掌握与本学科有关的重大事件和名词。 教学重点本学科的研究对象及内容 第一节细胞生物学研究内容与现状 一、细胞生物学是现代生命科学的重要基础学科 1.细胞学(Cytology):是研究细胞的结构、功能和生活史的科学 2.细胞生物学(Cell Biology):运用近代物理学和化学的技术成就以及分子生物学的概念与方法,从显微水平、亚显微水平和分子水平三个层次上,研究细胞的结构、功能及各种生命活动规律。 二、细胞生物学的主要研究内容 1. 细胞核、染色体及基因表达基因表达与调控是目前细胞生物学、遗传学和发育生物学在细胞和分子水平相结合的最活跃领域。 2.生物膜与细胞器的研究膜及细胞器的结构与功能问题(“膜学”)。 3. 细胞骨架体系的研究胞质骨架、核骨架的装配调节问题和对细胞行使多种功能的重要.性。 4. 细胞增殖及调控控制生物生长和发育的机理是研究癌变发生和逆转的重要途径(“再教育细胞”)。 5. 细胞分化及调控一个受精卵如何发育为完整个体的问题。(细胞全能性) 6 .细胞衰老、凋亡及寿命问题。 7. 细胞的起源与进化。 8. 细胞工程改造利用细胞的技术。生物技术是信息社会的四大技术之一,而细胞工程又是生物技术的一大领域。目前已利用该技术取得了重大成就(培育新品种,单克隆抗体等),所谓21世纪是生物学时代,将主要体现在细胞工程方面。 三、当前细胞生物学研究的总趋势与重点领域 1. 染色体DNA与蛋白质相互作用关系; 2. 细胞增殖、分化、凋亡的相互关系及其调控; 3 .细胞信号转导的研究; 4 .细胞结构体系的装配。 第二节细胞生物学发展简史 一细胞生物学研究简史1.细胞学创立时期 19世纪以及更前的时期(1665—1875),是以形态描述为主的生物科学时期; 2. 细胞学经典时期20世纪前半世纪(1875—1900),主要是实验细胞学时期; 3. 实验细胞学时期(1900—1953); 4. 分子细胞学时期(1953至今)。

翟中和第四版细胞生物学1~9章习题及答案复习过程

翟中和第四版细胞生物学1~9章习题及答 案

翟中和第四版《细胞生物学》习题集及答案 第一章绪论 一、名词解释 细胞生物学:是研究和揭示细胞基本生命活动规律的科学,它从显微、亚显微与分子水平上研究细胞结构与功能、细胞增殖、分化、代谢、运动、衰老、死亡,以及细胞信号传导,细胞基因表达与调控,细胞起源与进化等重大生命过程。 二、填空题 1、细胞分裂有直接分裂、减数分裂和有丝分裂三种类型。 2、细胞学说、能量转化与守恒和达尔文进化论并列为19世纪自然科学的“三大发现”。 3、细胞学说、进化论和遗传学为现代生物学的三大基石。 4、细胞生物学是从细胞的显微、亚显微和分子三个水平,对细胞的各种生 命活动展开研究的科学。 5、第一次观察到活细胞有机体的人是荷兰学者列文虎克。 三、问答题: 1、当前细胞生物学研究中的3大基本问题是什么? 答:①基因组是如何在时间与空间上有序表达的?

②基因表达产物是如何逐级组装成能行使生命活动的基本结构体系及各种细胞器的?这种自组装过程的调控程序与调控机制是什么? ③基因及其表达的产物,特别是各种信号分子与活性因子是如何调节诸如细胞的增殖、分化、衰老与凋亡等细胞最重要的生命活动过程? 2、细胞生物学的主要研究内容有哪些? 答:①生物膜与细胞器②细胞信号转导③细胞骨架体系④细胞核、染色体及基因表达⑤细胞增殖及其调控⑥细胞分化及干细胞生物学⑦细胞死亡⑧细胞衰老 ⑨细胞工程⑩细胞的起源与进化 3、细胞学说的基本内容是什么? 答:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。 ②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。 ③新的细胞可以通过已存在的细胞繁殖产生。 第二章细胞的统一性与多样性 一、名词解释 1、细胞:生命活动的基本单位。 2、病毒(virus):非细胞形态生命体,最小、最简单的有机体,必须在活细胞体内复制繁殖,彻底寄生性。 3、原核细胞:没有核膜包裹的和结构的细胞,细菌是原核细胞的代表。 4、质粒:细菌的核外DNA。裸露环状DNA分子,可整合到核DNA中,常做基因工程载体。

细胞生物学(翟中和)重点

; 第八章蛋白质分选与膜泡运输 一、分泌蛋白合成的模型---信号假说 信号假说 信号肽 与共转移 导肽 与后转移 信号假说 信号假说内容 指导因子:蛋白质N-端的信号肽 信号识别颗粒) 信号识别颗粒的受体(又称停泊蛋白)等 在非细胞系统中蛋白质的翻译过程与SRP、DP和微粒体的关系 信号肽与共转移 信号肽与信号斑 起始转移序列和终止转移序列 起始转移序列和终止转移序列的数目决定多肽跨膜次数 跨膜蛋白的取向 导肽与后转移 基本的特征: 蛋白质在细胞质基质中合成以后再转移到这些细胞器中,称后转移 蛋白质跨膜转移过程需要ATP使多肽去折叠,还需要一些蛋白质的帮助(如热休克蛋白Hsp70)使其能 够正确地折叠成有功能的蛋白。 二、蛋白质分选与分选信号 分选途径 门控运输 跨膜运输 膜泡运输 拓扑学等价性的维持 三.膜泡运输 膜泡运输是蛋白运输的一种特有的方式,普遍存在于真核细胞中。在转运过程中不仅涉及蛋白本 身的修饰、加工和组装,还涉及到多种不同膜泡定 向运输及其复杂的调控过程。 三种不同类型的包被小泡具有不同的物质运输作用。 膜泡运输是特异性过程,涉及多种蛋白识别、组装、去组装的复杂调控三种不同类型的包被小泡具有不同的物质运输作用 网格蛋白包被小泡 COPII包被小泡 COPI包被小泡 网格蛋白包被小泡 ?负责蛋白质从高尔基体TGN 质膜、胞 内体或溶酶体和植物液泡运输 ?在受体介导的细胞内吞途径也负责将物 质从质膜 内吞泡(细胞质) 胞内体 溶酶体运输 ?高尔基体TGN是网格蛋白包被小泡形成的发源地 COPII包被小泡 ?负责从内质网 高尔基体的物质运输; ? COPII包被蛋白由5种蛋白亚基组成;包被蛋白的装配是 受控的; ? COPII包被小泡具有对转运物质的选择性并使之浓缩。 COPI包被小泡 COPI包被含有8种蛋白亚基,包被蛋白复合物的装配 与去装配依赖于ARF; 负责回收、转运内质网逃逸蛋白? ER。 细胞器中保留及回收蛋白质的两种机制: ?转运泡将应被保留的驻留蛋白排斥在外,防止出芽转运; ?通过识别驻留蛋白C-端的回收信号(lys-asp-glu-leu,KDEL) 的特异性受体,以COPI-包被小泡的形式捕获逃逸蛋白。 COPI-包被小泡在非选择性的批量运输( bulk flow)中行使功能, 负责rER? Golgi ? SV ? PM。 COPI-包被小泡除行使Golgi→ER逆行转运外,也可行使顺行转运功能, 从ER→ER-Golgi IC→Golgi。 第九章细胞信号转导 一、(细胞通讯) :指一个信号产生细胞发出的信息通过介质(配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过细胞信号转导产生靶细胞内一系列生理生化变化,最终表现为靶细胞整体的生物学效应的过程。 1、可分为3种方式:①细胞通过化学信号进行细胞间通讯,是多细胞生物普遍采用的通讯方式;②细胞间接触依赖性通讯,细胞间直接接触,通过信号细胞跨膜信号分子与相邻靶细胞表面受体相互作用;③动物相邻细胞间形成间隙连接、植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子实现代谢偶联或电偶联,从而实现功能调控。 2、细胞分泌化学信号的作用方式:①内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞②旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻居靶细胞③通过化学突触传递神经信号④自分泌细胞对自身分泌的信号分子产生反应。 3、通过胞外信号所介导的细胞通讯如下步骤:①信号细胞合成并释放信号分子②转运信号分子至靶细胞③信号分子与靶细胞表面受体特异性结合并导致受体激活④活化受体启动靶细胞内一种或多种信号转导途径⑤引发细胞代谢、功能或基因表达的改变⑥信号的解除并导致细胞反应终止。 、第二信使学说:胞外化学信号(第一信使)不能进入细胞,它作用于细胞表面受体,导致产生胞内信号(第二信使),从而引发靶细胞内一系列生化反应,最后产生一定的生理效应,第二信使的降解使其信号作用终止。 第二信使至少有两个基本特性: ①是第一信使同其膜受体结合后最早在细胞膜内侧或胞浆中出现、仅在细胞内部起作用的信号分子;②能启动或调节细胞内稍晚出现的反应信号应答。 第二信使都是小的分子或离子。细胞内有五种最重要的第二信使:cAMP、cGMP、1,2-二酰甘油、1,4,5-三磷酸肌醇(IP3)、Ca2+ 等。 第十章细胞骨架 细胞骨架包括微,微管,中间丝 细胞骨架特点:弥散性,整体性,变动性 一、微丝 又称肌动蛋白纤维,是指真核细胞中由肌动蛋白组成、直径为7nm的

完整word版翟中和细胞生物学各章习题及答案

第八章细胞核与染色体 二、填空题 1、细胞核外核膜表面常附有颗粒,且常常与相连 通。 2、核孔复合物是特殊的跨膜运输蛋白复合体,在经过核孔复合体的主动运输中,核孔复合体具有严格的选择性。 3、是蛋白质本身具有的、将自身蛋白质定位到细胞核中去的特异氨 基酸序列。 4、核孔复合体主要由蛋白质构成,迄今已鉴定的脊椎动物的核孔复合物蛋白成分已达到十多种,其中与是最具代表性的两个成分,它 们分别代表着核孔复合体蛋白质的两种类型。 5、细胞核中的区域含有编码rRNA的DNA序列拷贝。 6、染色体DNA的三种功能元件是、、。 7、染色质DNA按序列重复性可分为、、等 三类序列。 8、染色质从功能状态的不同上可以分为和。 9、按照中期染色体着丝粒的位置,染色体的形态可分 为、、、四种类型。 10、着丝粒-动粒复合体可分为、、三 个结构域。 12、核仁超微结构可分为、、三部 分。 13、广义的核骨架包括、、。 14、核孔复合体括的结构组分 为、、、。 15、间期染色质按其形态特征和染色性能区分为两种类型:和, 异染色质又可分为和。 16、DNA的二级结构构型分为三种,即、、。 17、常见的巨大染色体有、。 18、染色质包装的多级螺旋结构模型中,一、二、三、四级结构所对应的染色体结构分别 为、、、。

19、核孔复合物是的双向性亲水通道,通过核孔复合物的被动扩散 方式有、两种形式;组蛋白等亲核蛋 白、RNA分子、RNP颗粒等则通过核孔复合体的 进入核内。 三、选择题 2、真核细胞间期核中最显著的结构是()。A、染色体 B、染色质 C、核仁 D、 核纤层 6、从氨基酸序列的同源比较上看,核纤层蛋白属于()。 A、微管 B、微丝 C、中间纤维 D、核蛋白骨架 8、下面有关核仁的描述错误的是()。 A、核仁的主要功能之一是参与核糖体的生物合成 B、rDNA定位于核仁区 内. C、细胞在M期末和S期重新组织核仁 D、细胞在G期,核仁消 2失 10、构成染色体的基本单位是()。A、DNA B、核小体 C、螺线管 D、 超螺线管 11、染色体骨架的主要成分是()。A、组蛋白 B、非组蛋白 C、DNA D、RNA 12、异染色质是()。 A、高度凝集和转录活跃的 B、高度凝集和转录不活跃的 C、松散和转录活跃的 D、松散和转录不活跃的 一、名词解释: 7、核仁组织区:位于染色体的次缢痕部位,是rRNA基因所在部位,与间期细胞 核仁形成有关。但并非所有的次缢痕都是NOR。 9、核纤层:是位于细胞核内膜与染色质之间的纤维蛋白片层或纤维网络,与核 内膜紧密结合。它普遍存在于高等真核细胞间期细胞核中。 10、亲核蛋白:是指在细胞质基质内合成后,需要或能够进入细胞核内发挥功能 的一类蛋白质。 11、核基质: 广义的概念是由核纤层、核孔复合体和一个不溶的网络状结构(即 核基质)组成;狭义的概念是指细胞核中存在的一个纤维蛋白构成的纤维网架体 系,仅指核基质,即细胞核内除了核被膜、核纤层、染色质与核仁以外的网架结 构体系,它不包含核膜、核纤层、染色质和核仁等成分,但这些网络状结构与核 纤层及核孔复合体、染色质等有结构与功能联系。 12、核型:即细胞分裂中期染色体特征的总和。包括染色体的数目、大小和形态 特征等方面。 14、核定位信号:亲核蛋白一般都含有特殊的氨基酸序列,这些内含的特殊短肽 保证了整个蛋白质能够通过核孔复合体被转运到细胞核内。这段具有“定向”“定 位”作用的序列被命名为核定位序列或核定位信号(亲核蛋白的特殊氨基酸序列, 具有定向、定位的作用,保证蛋白质能够通过核孔复合体转运到细胞核内)。 二、填空题 1、核糖体,粗面内质网; 2、双向; 3、核定位序列(信号); 4、gp210,p62; 5、 核仁组织区6、DNA复制起始序列(或自主复制DNA序列)、着丝粒DNA序列、端 粒DNA序列。7、单一序列、中度重复序列、高度重复序列;8、活性染色质,非

翟中和第四版细胞生物学1~6章习题及答案

翟中和第四版《细胞生物学》习题集及答案 第一章绪论 一、名词解释 细胞生物学:是研究和揭示细胞基本生命活动规律的科学,它从显微、亚显微与分子水平上研究细胞结构与功能、细胞增殖、分化、代谢、运动、衰老、死亡,以及细胞信号传导,细胞基因表达与调控,细胞起源与进化等重大生命过程。 二、填空题 1、细胞分裂有直接分裂、减数分裂和有丝分裂三种类型。 2、细胞学说、能量转化与守恒和达尔文进化论并列为19世纪自然科学的“三大发现”。 3、细胞学说、进化论和遗传学为现代生物学的三大基石。 4、细胞生物学是从细胞的显微、亚显微和分子三个水平,对细胞的各种生 命活动展开研究的科学。 5、第一次观察到活细胞有机体的人是荷兰学者列文虎克。 三、问答题: 1、当前细胞生物学研究中的3大基本问题是什么? 答:①基因组是如何在时间与空间上有序表达的? ②基因表达产物是如何逐级组装成能行使生命活动的基本结构体系及各种细胞器的?这种自组装过程的调控程序与调控机制是什么? ③基因及其表达的产物,特别是各种信号分子与活性因子是如何调节诸如细胞的增殖、

分化、衰老与凋亡等细胞最重要的生命活动过程? 2、细胞生物学的主要研究内容有哪些? 答:①生物膜与细胞器②细胞信号转导③细胞骨架体系④细胞核、染色体及基因表达⑤细胞增殖及其调控⑥细胞分化及干细胞生物学⑦细胞死亡⑧细胞衰老⑨细胞工程⑩细胞的起源与进化 3、细胞学说的基本内容是什么? 答:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。 ②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。 ③新的细胞可以通过已存在的细胞繁殖产生。 第二章细胞的统一性与多样性 一、名词解释 1、细胞:生命活动的基本单位。 2、病毒(virus):非细胞形态生命体,最小、最简单的有机体,必须在活细胞体内复制繁殖,彻底寄生性。 3、原核细胞:没有核膜包裹的和结构的细胞,细菌是原核细胞的代表。 4、质粒:细菌的核外DNA。裸露环状DNA分子,可整合到核DNA中,常做基因工程载体。 二、选择题 1、在真核细胞和原核细胞中共同存在的细胞器是(D ) A. 中心粒 B. 叶绿体 C. 溶酶体 D. 核糖体

翟中和细胞生物学笔记(全)

第一章绪论 细胞生物学研究的内容和现状 细胞生物学是现代生命科学的重要基础学科 细胞生物学的主要研究内容 当前细胞生物学研究的总趋势与重点领域 细胞重大生命活动的相互关系 细胞学与细胞生物学发展简史 细胞的发现 细胞学说的建立其意义 细胞学的经典时期 实验细胞学与细胞学的分支及其发展 细胞生物学学科的形成与发展 细胞生物学的主要学术组织、学术刊物与教科书 细胞生物学 生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有 了细胞才有完整的生命活动。 细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。核心问题是将遗传与发育在细胞水平上结合起来。 主要内容 细胞结构与功能、细胞重要生命活动: 细胞核、染色体以及基因表达的研究 生物膜与细胞器的研究 细胞骨架体系的研究 细胞增殖及其调控 细胞分化及其调控 细胞的衰老与凋亡 细胞的起源与进化 细胞工程 总趋势 细胞生物学与分子生物学(包括分子遗传学与生物化学) 相互渗透与交融是总的发展趋势。 重点领域

?染色体DNA与蛋白质相互作用关系 —主要是非组蛋白对基因组的作用 ?细胞增殖、分化、凋亡的相互关系及其调控 ?细胞信号转导的研究 ?细胞结构体系的组装 美国科学情报研究所(ISI)1997年SCI(Science Citation Index)收录及引用论文检索,全世界自然科学研究中论文发表最集中的三个领域分别是: 细胞信号转导(signal transduction); 细胞凋亡(cell apoptosis); 基因组与后基因组学研究(genome and post-genomic analysis)。 美国国立卫生研究院(NIH)在1988年底发表的一份题为《什麽是当今科研领域的热门话题?》(―What is popular in research today?‖)的调查报告中指出,目前全球研究最热门的是 三种疾病: ?癌症(cancer) ?心血管病(cardiovascular diseases) ?爱滋病和肝炎等传染病 (infectious diseases:AIDS,hepatitis) 五大研究方向: ?细胞周期调控(cell cycle control); ?细胞凋亡(cell apoptosis); ?细胞衰老(cellular senescence); ?信号转导(signal transduction); ?DNA的损伤与修复(DNA damage and repair) “细胞学说”的基本内容 认为细胞是有机体,一切动植物都是由细胞 发育而来,并由细胞和细胞产物所构成; 每个细胞作为一个相对独立的单位,既有它―自己的‖ 生命,又对与其它细胞共同组成的整体的生命有所助益; 新的细胞可以通过老的细胞繁殖产生。

翟中和细胞生物学笔记-全-(整理打印版)

第一章绪论 生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命活动。 细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。核心问题是将遗传与发育在细胞水平上结合起来。 细胞生物学与分子生物学(包括分子遗传学与生物化学)相互渗透与交融是总的发展趋势。 “细胞学说”的基本内容 认为细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成; 每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益; 新的细胞可以通过老的细胞繁殖产生。 学习细胞生物学的注意点 ?抽象思维与动态观点 ?结构与功能统一的观点 ?同一性(unity)和多样性(diversity)的问题 ?细胞生物学的主要内容:基本概念与实验证据;细胞器的动态特征;化学能的产生与利用;细胞的活动及其调控等?实验科学与实验技术——细胞真知源于实验室——Whatweknow//Howweknow. 细胞是生命活动的基本单位 一切有机体都由细胞构成,细胞是构成有机体的基本单位细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位 细胞是有机体生长与发育的基础 细胞是遗传的基本单位,细胞具有遗传的全能性 没有细胞就没有完整的生命细胞概念的一些新思考 细胞是多层次非线性的复杂结构体系 细胞具有高度复杂性和组织性 细胞是物质(结构)、能量与信息过程精巧结合的综合体细胞完成各种化学反应; 细胞需要和利用能量; 细胞参与大量机械活动; 细胞对刺激作出反应; 细胞是高度有序的,具有自组装能力与自组织体系。 细胞能进行自我调控; 繁殖和传留后代;细胞的基本共性 所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。 所有的细胞都含有两种核酸:即DNA与RNA作为遗传信息复制与转录的载体。 作为蛋白质合成的机器─核糖体,毫无例外地存在于一切细胞内。 所有细胞的增殖都以一分为二的方式进行分裂。病毒是非细胞形态的生命体,它的主要生命活动必须要在细胞内实现。病毒与细胞在起源上的关系,目前存在3种观 生物大分子→病毒→细胞病毒 生物大分子细胞 生物大分子→细胞→病毒 原核细胞 基本特点: 遗传的信息量小,遗传信息载体仅由一个环状DNA构成;细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜。 主要代表: 支原体(mycoplast)——目前发现的最小最简单的细胞;细菌 蓝藻又称蓝细菌(Cyanobacteria) 真核细胞 原核细胞与真核细胞的比较 真核细胞的基本结构体系 以脂质及蛋白质成分为基础的生物膜结构系统; 以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达系统 由特异蛋白分子装配构成的细胞骨架系统。 原核细胞与真核细胞的比较 原核细胞与真核细胞基本特征的比较 原核细胞与真核细胞的遗传结构装置和基因表达的比较 植物细胞与动物细胞的比较 植物细胞与动物细胞的比较 细胞壁 液泡 叶绿体 古细菌 古细菌(archaebacteria)与真核细胞曾在进化上有过共同历程 主要证据 (1)细胞壁的成分与真核细胞一样,而非由含壁酸的肽聚糖构成,因此抑制壁酸合成的链霉素,抑制肽聚糖前体合成的环丝氨酸,抑制肽聚糖合成的青霉素与万古霉素等对真细菌类有强的抑制生长作用,而对古细菌与真核细胞却无作用。 (2)DNA与基因结构:古细菌DNA中有重复序列的存在。此外,多数古核细胞的基因组中存在内含子。 (3)有类核小体结构:古细菌具有组蛋白,而且能与DNA构建成类似核小体结构。 (4)有类似真核细胞的核糖体:多数古细菌类的核糖体较真细菌有增大趋势,含有60种以上蛋白,介于真核细胞(70~84)与真细菌(55)之间。抗生素同样不能抑制古核细胞类的核糖体的蛋白质合成。 (5)5S rRNA:根据对5S rRNA的分子进化分析,认为古细菌与真核生物同属一类,而真细菌却与之差距甚远。5S rRNA二级结构的研究也说明很多古细菌与真核生物相似。 除上述各点外,根据DNA聚合酶分析,氨基酰tRNA合成酶的作用,起始氨基酰tRNA与肽链延长因子等分析,也提供了以上类

细胞生物学(翟中和期末考试专用)

《细胞生物学》 翟中和第三版习题及解答 第一章绪论 一、名词解释 1、细胞生物学cell biology 2、显微结构microscopic structure 3、亚显微结构submicroscopic structure 4、细胞学cytology 5、分子细胞生物学molecular cell biology 二、填空题 1、细胞生物学是研究细胞基本规律的科学,是在、和三个不同层次上,以研究细胞的、、、和等为主要内容的一门科学。 2、年英国学者第一次观察到细胞并命名为cell;后来第一次真正观察到活细胞有机体的科学家是。 3、1838—1839年,和共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的。 4、19世纪自然科学的三大发现是、和。 5、1858年德国病理学家魏尔肖提出的观点,通常被认为是对细胞学说的一个重要补充。 6、人们通常将1838—1839年和确立的;1859年 确立的;1866年确立的,称为现代生物学的三大基石。 7、细胞生物学的发展历史大致可分为、、、和分子细胞生物学几个时期。 三、选择题 1、第一个观察到活细胞有机体的是()。 a、Robert Hooke b、Leeuwen Hoek c、Grew d、Virchow 2、细胞学说是由()提出来的。 a、Robert Hooke和Leeuwen Hoek b、Crick和Watson c、Schleiden和Schwann d、Sichold和Virchow 3、细胞学的经典时期是指()。 a、1665年以后的25年 b、1838—1858细胞学说的建立 c、19世纪的最后25年 d、20世纪50年代电子显微镜的发明 4、()技术为细胞生物学学科早期的形成奠定了良好的基础。 a、组织培养 b、高速离心 c、光学显微镜 d、电子显微镜 四、判断题 1、细胞生物学是研究细胞基本结构的科学。() 2、细胞的亚显微结构是指在光学显微镜下观察到的结构。() 3、细胞是生命体的结构和生命活动的基本单位。() 4、英国学者Robert Hooke第一次观察到活细胞有机体。() 5、细胞学说、进化论、遗传学的基本定律被列为19世纪自然科学的“三大发现”。() 6、细胞学说的建立构成了细胞学的经典时期。() 五、简答题 1、细胞学说的主要内容是什么?有何重要意义? 2、细胞生物学的发展可分为哪几个阶段? 3、为什么说19世纪最后25年是细胞学发展的经典时期? 六、论述题 1、什么叫细胞生物学?试论述细胞生物学研究的主要内容。 2、试论述当前细胞生物学研究最集中的领域。 七、翻译题 1、cell biology 2、cell theory 3、protoplasm 4、protoplast

最新细胞生物学 翟中和 第四版 课后习题答案资料

第一章 1. 细胞生物学在生命科学中所处的地位,以及它与其他学科的关系 1)地位:以细胞作为生命活动的基本单位,探索生命活动规律,核心问题是将遗传与发育在细胞水平上的结合。 2)关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生命现象及其规律。 1.根据细胞生物学研究的内容与你所掌握的生命科学知识,客观、恰当地评价细胞生物学在生命科学中所处的地位,以及它与其他学科的关系。 答细胞生物学是一门从细胞的显微结构、超微结构和分子结构的各级水平研究细胞的结构与功能的关系,从而探索细胞生长、发育、分化、繁殖、遗传、变异、代谢、衰亡及进化等各种生命现象规律的科学。 生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命,一切生命现象的奥秘都要从细胞中寻找答案。 许多高等学校在生命科学的教学中,将细胞生物学确定为基础课程。细胞生物学、分子生物学、神经生物学和生态学并列为生命科学的四大基础学科。细胞生物学与其他学科之间的交叉渗透日益明显。 2.通过学习细胞学发展简史,你如何认识细胞学说的重要性? 答1838-1839年,德国植物学家施莱登和德国动物学家施旺提出一切动植物都由细胞发育而来,并由细胞和细胞产物所构成;每个细胞作为相对独立的单位,但也与其他细胞相互影响。1858年Virchow对细胞学说做了重要的补充,强调细胞只能来自细胞。 细胞学说的提出对于生物科学的发展具有重大意义。细胞学说、进化论、孟德尔遗传学称为现代生物学的三大基石,而细胞学说又是后二者的基石。对细胞结构的了解是生物科学和医学分支进一步发展所不可缺少的。 3.试简明扼要地分析细胞生物学学科形成的客观条件,以及它今后发展的主要趋势。 答(1)细胞生物学学科形成的客观条件 细胞的发现(1665-1674) 1665年,胡克发表了《显微图谱》(《Micrographia》)一书,描述了用自制的显微镜(30倍)观察栎树软木塞切片时发现其中有许多小室,状如蜂窝,称为“cellar”。 1674年,荷兰布商列文虎克自制了高倍显微镜(300倍左右),观察到血细胞、池塘水滴中的原生动物、人类和其他哺乳动物的精子。 细胞学说的建立(1838-1858) 1838-1839年,德国植物学家施莱登和德国动物学家施旺两人共同提出细胞学说,1858年Virchow对细胞学说进行了补充。 细胞学的经典时期 各种主要的细胞分裂形式和细胞器被相继发现,构成了细胞学的经典时期。 (2)细胞生物学与分子生物学(包括分子遗传学与生物化学) 相互渗透与交融是总的发展趋势。 4.当前细胞生物学研究的热点课题中你最感兴趣的是哪些?为什么? ? 染色体DNA与非组蛋白的相互作用关系 ? 细胞增殖、分化、凋亡的相互关系及其调控 ? 细胞信号转导研究 ? 细胞结构体系的装配 第二章

相关文档
相关文档 最新文档