文档库 最新最全的文档下载
当前位置:文档库 › 量子力学课程论文由薛定谔方程引发的深思

量子力学课程论文由薛定谔方程引发的深思

量子力学课程论文由薛定谔方程引发的深思
量子力学课程论文由薛定谔方程引发的深思

量子力学课程论文题目:《由薛定谔方程引发的深思》

学院:数理信息工程学院

专业:物理112班

学生姓名:徐盈盈王黎明

学号:11260124 11180216 完成时间: 2013年12月20日

由薛定谔方程引发的深思

【摘要】

薛定谔方程的提出揭示了微观物理世界物质运动的基本规律,它是原子物理学中处理一切非相对论问题的有力工具[1]。作为量子力学之魂,薛定谔方程完整的向我们诠释了微观世界的魅力。为更加深入地学习薛定谔方程和量子力学,我们将分析薛定谔方程的推导过程、介绍其在求解粒子问题中的应用以及其在原子物理、核物理、固体物理等学科的应用,最后谈谈自己的想法。

【引言】

随着“任何粒子都具有波粒二象性”的德布罗意假说成功被戴维森-革末实验所证实,薛定谔思考着会有一个波动方程可以反应粒子的这种量子行为。于是,基于众多前人研究成果,薛定谔于1926年提出薛定谔方程,完美的解释了波函数的行为。正是因为薛定谔方程在量子力学进程中起着举足轻重的作用,所以我们必须深入学习其推导过程和应用。并且由薛定谔方程出发,深刻思考我们在物理学习过程中所必须具备的思维方式和学习态度。

【关键词】

薛定谔方程玻尔理论波函数深思

【正文】

一、薛定谔方程的提出与推导

1、薛定谔方程的历史背景

爱因斯坦认为普朗克的量子为光子,并且提出了奇妙的“波粒二象性”。1924年,路易·德布罗意提出“物质波”的概念,认为任何粒子都具有波粒二象性,并且这个假说于1927年成功被戴维森-革末实验所证实。薛定谔由此认为一定会有一个波动方程能够恰当的描述粒子的这种性质。最后他借助于经典力学的哈密顿原理以及光学的费马原理,将牛顿力学与光学类比,并且以哈密顿-雅克比方程为工具,成功建立了薛定谔方程,并且准确的计算了氢原子的谱线。

2、薛定谔方程的推导思路

①首先自由粒子可用平面波来表示,可当粒子收到随时间或位置变化的力场的作用时,应该用波函数来表示。波函数描写体系的量子状态。波函数是指在空间中某一点的强度和在该点找到粒子的概率成比例[2]。

②当讨论粒子状态随时间变化所遵从的规律时,必须建立波函数随时间变化的方程。

③用平面波描写自由粒子的波函数ψ(r,t)=Ae i(p.r-Et)/h,并且对时间求偏微商,对位置求二次偏微商,再利用能量和动量的关系式E=p2/2m+V(r),最终可得到薛定谔方程:

④从一维薛定谔方程出发,可以得出三维薛定谔方程和定态薛定谔方程:

3、薛定谔方程与玻尔理论的对比分析

一般认为以薛定谔方程为代表的量子力学是“新量子力学”,以玻尔理论为代表的量子力学是“旧量子力学”,但二者在根本上是同出一源,只是所用的概念和模型不同而已。

①玻尔理论:用粒子表示电子。

(1)玻尔理论的基础来源:牛顿定律、库仑定律、玻尔的定态及跃迁假设和玻尔

的角动量量子化假设。

(2)玻尔理论的逻辑推导过程:

A、氢原子中,电子绕核作圆周运动,根据牛顿第二定律kze2 /r2=mv2/r---(1)

B、电子的总能量E是电子的动能和势能之和E=mv2/2-kze2/r. ---(2)

C、玻尔关于电子轨道运动的角动量量子化假设mvr=nh/2π ----- (3)

D、玻尔关于电子轨道跃迁辐射的公式为E2-E1=hf---------- (4)

E、由以上四式可解得

r=n2h2/4π2mkze2, --------------------------------(5)

E=-z22π2mk2e4/n2h2 ------------------------------ (6)

1/λ=f / c=z22π2mk2e4/ch3(1/n12-1/n22) ---------(7)

以上三式成功的解释了氢原子中电子轨道的量子化和能量量子化和巴耳末系,并且成功的预告了其他线系的存在[3]。

②薛定谔方程:用波函数表示电子。

薛定谔方程的逻辑推导过程:

A、引来一个必需的、消去了时间的、一维的波动方程

d2u/dx2+(2π/λ)2u=0 -----(8)

B、粒子的能量关系

E=p2/2m+V -------------(9)

C、根据玻尔的角动量量子化假设

mvr=nh/2π=pr----------(10)

D、利用驻波理论2πr=nλ-------------------(11)

E、最后得到d2u/dx2+8π2m(E-V)u/h2=0这是一维不含时薛定谔方程。三维薛定谔

方程的推导原理相同。

③玻尔理论与薛定谔方程的对比分析:玻尔理论和薛定谔方程在一定程度上具有等价性。两者是解决粒子问题的两套不同的思路,但是殊途同归,具有异曲同工之处。

一、薛定谔方程在解决量子力学问题中的应用:

1、用薛定谔方程求解量子力学问题的基本步骤:

①写出具体问题的势函数V(r)的形式代入薛定谔方程;

②用变量分离法求解微分方程;

③用归一化条件和标准条件确定积分常数并得出波函数;

④讨论解的物理意义。

2、薛定谔方程应用于解决一维势阱中粒子问题

将薛定谔方程应用于解决一维势阱的问题时,首先要对势阱进行分区(不同区的势能不同),接着要求解二次微分方程的通解,根据边界条件、归一化条件、连接条件(波函数和波函数的导数的连续性)定系数A、B、C,最后根据得出的能量和波函数分析物理意义。

3、薛定谔方程应用于解决谐振子问题

主要解决势能为V(x)=m w2x2/2时的薛定谔方程

对于求解这个方程主要有代数法和解析法。

①解析法:先把薛定谔方程无量纲化,求出极限解,再用上边界条件得到尝试解,把尝试解代入无量纲化后的薛定谔方程,即可得到一个厄米微分方程。再用级数展开法,解这个微分方程。利用有限性条件,让u中断为一个多项式,即可得到λ-1=2n,从而可以得到本征值和本征态。

②代数解法:受解析法的启发,以解析解为基础构造出升幂算符和降幂算符,再利用升降幂算符的性质,在不求解薛定谔方程的基础上得到本征值和本征态。

4、薛定谔方程应用于解决三维体系中的量子力学问题

将薛定谔方程中的位置坐标扩展开,即可得到三维薛定谔方程。通过分离变量法可以求解若干三维体系中量子力学问题以及无相互作用的两体问题等。另外,可将三维薛定谔方程中的坐标(x,y,z)换成(r,θ,φ),从而得到球坐标系下的薛定谔方程,以此解决球势阱、氢原子等问题。

二、薛定谔方程在前沿领域中的应用

1、薛定谔方程在化学中的应用

①由于原子中的电子在核外的球形对称场中运动,把直角坐标系转换为球坐标系,通过波函数的解析图像来掌握核外电子的运动情况。薛定谔方程作为一个类比方程,可应用于原子核外电子的描述、分子中的化学键的描述等。

②对于原子,通过求解薛定谔方程得得到的波函数ψ即为原子轨道,而对于分子而言则称之为分子轨道。与该轨道对应的能量E则成为轨道能量。

2、薛定谔方程还被广泛应用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合的很好。

三、思考与总结

1、薛定谔方程的建立与创新思维

不管学习哪个学科都必须注重创造性思维的培养,而薛定谔方程的建立过程正是体现了很多创造性思维的特征。

①创造性思维定义及其操作模型:创造性思维的定义可归纳为:人脑对客观事物本质和事物之间内在联系规律所作出的概括、间接与能动的反映。而其具体操作模型为:

②薛定谔方程的创造性特征:

(1)问题提出:具有波粒二象性的粒子运动的基本规律是什么?

(2)发散思维:

A、建立方程需要选择物理量,要用什么物理量来描述具有波粒二象性的粒

子的运动以及其物理意义是什么?

B、建立方程的形式应基于那一基本类型?这个方程的解是什么?

C、建立方程中的自变量是什么?

D、被描述的实物粒子所处的环境将又怎样描述?

(3)联想思维:

A、从德布罗意和爱因斯坦那里吸收了关于电子波动和物质具有波动性的思

想,提出用波函数描述电子的状态;

B、从哈密顿的分析力学中悟出经典力学与几何光学类似的思想;

C、哈密顿的波动理论;

D、从玻尔理论得到能量是分立的,从而注意到数学中偏微分方程的本征值;

E、实物粒子一定要处于一个环境之中,因此描述实物粒子的环境应是经典

力学中粒子所处场中的势能。

(4)再造思想

A、原子领域中电子的能量是分立的;

B、在一定的边界条件下,波动方程的振动频率只能取一系列分裂的本征频

率;

C、哈密顿-雅可比方程不仅可用于描述粒子的运动,也可用于描述光波;

D、最关键的是爱因斯坦和德布罗意关于波粒二象性的思想。电子可以看成

是一种波,其能量E和动量P可用德布罗意公式与波长和频率联系在一起。(5)得出结论

A、得到氢原子的能级公式;

B、得到谐振子的能级和定态波函数;

C、处理了普朗克谐振子和双原子分子等问题;

D、可用于计算氢原子的Stark效应。

2、学习物理的思维方式和态度

①从薛定谔身上学到的思维方式和学习态度

薛定谔作为概率波动力学的创始人,他之所以能够在量子力学的舞台上如此熠熠生辉,并不只是因为他在物理知识上的贡献,还因为他具备值得我们学习的思维方式和学习态度。在文中提到,自从德布罗意假说被实验所证实,薛定谔就开始尝试用一个波动方程去描述这种量子行为,期间他通过发散思维找出自己应该解决的问题,借鉴了众多前人的研究成果与经验尽量解决每一个疑问,并且一步步完善自己的理论。所以薛定谔方程的成功提出并不是偶然,而是薛定谔在日复一日的辛苦付出后的成果。

②自己的反思与计划

首先,我深刻的反思了自己的学习态度是否端正。对于一个并不知道结果的问题,薛定谔一步步尝试着去解决,而且之后他还不断完善自己的理论。而想想我们在平日的学习过程中,并没有具备学习物理该有的态度。很多时候我们只是拘泥于老师的作业,认为只要完成作业就万事大吉了,其实我们根本就没有很好地锻炼自己的物理素养。真正的学习物理的态度是得像薛定谔那样深入的挖掘问题内在的含义,不断通过调研解决问题。(虽然老师也经常强调这一点,但是我们却没有将这个任务很好的落到实处。)

另外,通过这次研究,虽然意识到自己在日常学习过程中还存在很多问题,但是也让我更加明确接下来应该怎样规划自己的学习。在保质保量的完成老师的作业外,要多找一些拓展性的题目,每天花上1~2小时去深入调研,注意采用发散思维的方式,尽量找出问题的每一考察角度,然后依次解决,归纳一般解题步骤。这对于我们这些“未来的物理教师”来说,是非常重要的。因为这不仅锻炼了我们的解题能力,而且在日后的教学过程中难免会遇到学生会问问题的一个小侧面,所以我们自己事先去考虑问题的每个侧面能够帮助我们及时高效的解决学生的疑问。

总之,通过这次课程论文的书写,我不仅学习到了很多有关于薛定谔方程的知识,而且也让我学到了薛定谔思考问题的方式和学习的态度,也让我深刻的反思自己在日常学习中的问题,也让我有机会能够给自己制定一个更加科学高效的学习计划。

【参考文献】

[1]百度百科.薛定谔方程[OL].

https://www.wendangku.net/doc/272924595.html,/link?url=yBGqNTIiqti7U9EldcX8ktR3R03Lq1tdnTvT3 5ATnuli0KjEEmVrbp5Ri1qvtC1q

[2]周世勋.量子力学教程[M].第二版.高等教育出版社.

[3]张蓓蓓,李勇.由薛定谔方程引发的深思[D].浙江:浙江师范大学,2008.

[4]孙诒丹.谈薛定谔方程的建立与创造性思维特征[J].鞍山师范学院学报.2004,(04).

[5]苑壮东,考秀娟.薛定谔方程在化学中的应用[J].济宁学院学报.2008,(06).

[6]David J.Griffiths.Introduction to Quantum Mechanics[M].

最新薛定谔方程及其解法

关于薛定谔方程 一.定义及重要性 薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提 出的量子力学中的一个基本方程,也是量子力学的一个基本假定, 其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合 建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都 有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式 以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基 本假定,它的正确性只能靠实验来检验。 二.表达式 三.定态方程 ()() 2 2 2 V r E r m η ψψ + ?? -?= ?? ?? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E是粒子本身的能量;v(x,y,z)是描述势场的函数,假设不随时间变化。

2 2 22222 z y x ??????++=? 可化为 d 0)(222 =-+ψψv E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ). ()()((3) ) ,(),()( ,,(2) )(),( 311212 2111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==?????=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββα βα

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

大学物理-一维定态薛定谔方程的应用

一维定态薛定谔方程 的应用 授课人: 物理科学与技术学院

势 阱 日常生活中的各种井(阱) 物理学中研究微观粒子运动状态时常用的模型,因其势能函数曲线的形状如同井而得名 水井 窨井 陷阱 U x O a U

() U x x O a ∞ ∞00()0 , x a U x x x a ≤≤?=?∞<>? 这是一个理想化的物理模型, 应用定态薛定谔方程求解波函数, 有利于进一步理解在微观系统中 能量量子化和概率密度等概念 这样的势能函数称为 一维无限深势阱

建立定态薛定谔方程并求解 假设微观粒子质量为 ,由 m 22 2d ()()()2d U x x E x m x ψψ??-+=???? x a U x 0()0≤≤=阱内( ) : 22 2d ()()2d x E x m x ψψ-= x x a U x 0 , ()<>→∞ 阱外( ): 令: 2 22mE k =得通解: ()sin() x A kx ψ?=+ 微观粒子的能量不可能达到 无穷大,所以粒子不可能在阱外出现,或者说粒子在阱外出现的概率为零。 ()0 x ψ≡222 d 0d k x ψψ+=

利用标准条件确定 和 k ?因 在整个 轴上必须连续 x ()x ψsin() 0()0 0 0 A kx x a x x x ?ψ+≤≤?=? <>?,(0)sin 0 A ψ?== a A ka ()sin()0 ψ?=+=求归一化的波函数 一维无限深势阱中 微观粒子的波函数 2220π()d sin d a n x x A x x a ψ+∞-∞=??221 A a =?= 2A a = n a x x a x a x x a π2sin 0()00 , ψ? ≤≤?=??<>?() π ()sin 1,2,3n x A x n a ψ==??, 0?=π n k a =()1,2,3n =???,

薛定谔方程与提出背景

薛定谔方程 在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 ;(1) 其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 。(2) 假若,系统有个粒子,则波函数是定义于 -位形空间,所有可能的粒子位置空间。用方程表达, 。 其中,波函数的第个参数是第个粒子的位置。所以,第个粒子的位置是。 不含时薛定谔方程 不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。 应用分离变量法,猜想的函数形式为 ; 其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量. 代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程: 。 类似地,方程 (2) 变为

。 历史背景与发展 爱因斯坦诠释普朗克的量子为光子,光波的粒子;也就是说,光波具有粒子的性质,一种很奇奥的波粒二象性。他建议光子的能量与频率成正比。在相对论里,能量与动量之间的关系跟频率与波数之间的关系相同,所以,连带地,光子的动量与波数成正比。 1924年,路易·德布罗意提出一个惊人的假设,每一种粒子都具有波粒二象性。电子也有这种性质。电子是一种波动,是电子波。电子的能量与动量决定了它的物质波的频率与波数。1927年,克林顿·戴维和雷斯特·革末将缓慢移动的电子射击于镍晶体标靶。然后,测量反射的强度,侦测结果与X射线根据布拉格定律 (Bragg's law) 计算的衍射图案相同。戴维森-革末实验彻底的证明了德布罗意假说。 薛定谔夜以继日地思考这些先进理论,既然粒子具有波粒二象性,应该会有一个反应这特性的波动方程,能够正确地描述粒子的量子行为。于是,薛定谔试着寻找一个波动方程。哈密顿先前的研究引导著薛定谔的思路,在牛顿力学与光学之间,有一种类比,隐蔽地暗藏于一个察觉里。这察觉就是,在零波长极限,实际光学系统趋向几何光学系统;也就是说,光射线的轨道会变成明确的路径,遵守最小作用量原理。哈密顿相信,在零波长极限,波传播会变为明确的运动。可是,他并没有设计出一个方程来描述这波行为。这也是薛定谔所成就的。他很清楚,经典力学的哈密顿原理,广为学术界所知地,对应于光学的费马原理。借着哈密顿-雅可比方程,他成功地创建了薛定谔方程。薛定谔用自己设计的方程来计算氢原子的谱线,得到了与用玻尔模型计算出的能级相同的答案。 但是,薛定谔对这结果并不满足,因为,索末菲似乎已经正确地计算出氢原子光谱线精细结构常数的相对论性的修正。薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程(现今称为克莱因-高登方程),可以描述电子在库仑位势的量子行为。薛定谔计算出这方程的定态波函数。可是,相对论性的修正与索末菲的公式有分歧。虽然如此,他认为先前非相对论性的部分,仍旧含有足够的新结果。因此,决定暂时不发表相对论性的修正,只把他的波动方程与氢原子光谱分析结果,写为一篇论文。1926年,正式发表于物理学界[2]。从此,给予了量子力学一个新的发展平台。 薛定谔方程漂亮地解释了的行为,但并没有解释的意义。薛定谔曾尝试解释代表电荷的密度,但却失败了。1926年,就在薛定谔第四篇的论文发表之后几天,马克斯·玻恩提出概率幅的概念,成功地解释了的物理意义[3]。可是,薛定谔本人一直不承认这种统计或概率的表示方法,和它所伴随的非连续性波函数坍缩。就像爱因斯坦的认为量子力学是基本为确定性理论的统计近似,薛定谔永远无法接受哥本哈根诠释。在他有生最后一年,他写给马克斯·玻恩的一封信,薛定谔清楚地表明了这看法。 含时薛定谔方程导引

薛定谔方程

第一章 薛定谔方程 §1.1.波函数及其物理意义 1. 波函数: 用波函数描述微观客体的运动状态。 例:一维自由粒子的波函数 推广 :三维自由粒子波函数 2. 波函数的强度——模的平方 3. 波函数的统计解释 用光栅衍射与电子衍射对比的方式理解波函数的统计解释。 t 时刻,出现在空间(x,y,z )点附近单位体积内的粒子数与总粒子数之比。 t 时刻,粒子出现在空间(x,y,z )点附近单位体积内的概率。 t 时刻,粒子在空间分布的概率密度 4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1 标准条件:一般情况下, 有关特殊情况波函数所满足的条件参看曾谨言教程。 对微观客体的数学描述: 脱离日常生活经验,避免借用经典语言引起的表观矛盾 §1.2. 薛定谔方程 是量子力学的基本假设之一,只能建立,不能推导,其正确性由实验检验。 1. 建立 (简单→复杂, 特殊→一般) 一维自由粒子的振幅方程 非相对论考虑 2. 一维定态薛定谔方程 2 |),,,(|t z y x ψ1d d d d d ||2===?=ψ???N N N N V V N N V V V . 是单值、有限、连续的ψ0)(2d )(d 222=ψ+ψx mE x x 0)()(2d )(d 222=ψ-+ψx U E m x x

3. 三维定态薛定谔方程 4. 一般形式薛定谔方程 5. 多粒子体系的薛定谔方程 讨论: 1、薛定谔方程也称波动方程,描述在势场U 中粒子状态随时间的变化规律。 2 、建立方程而不是推导方程,正确性由实验验证。薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 3、薛定谔方程是线性方程。是微观粒子的基本方程,相当于牛顿方程。 4、自由粒子波函数必须是复数形式,否则不满足自由粒子薛定谔方程。 5、薛定谔方程是非相对论的方程。 量子力学的中心任务就是求解薛定谔方程。 求解问题的思路: 1. 写出具体问题中势函数U (r )的形式代入方程 2. 用分离变量法求解 3. 用归一化条件和标准条件确定积分常数 4. 讨论解的物理意义, 薛定谔的另一伟大科学贡献 《What is life ?》 薛定谔(Schroding,1897-1961)奥地利人,因发现原子理论的有效的新形式一波动力学与狄拉克(Dirac,1902-1984)因创立相对论性的波动方程一狄拉克方程,共同分享了1933年度诺贝尔物理学奖 定态薛定谔方程 一.定态薛定谔方程条件:V (r,t )=V(r), 与t 无关。用分离变量法, 令Ψ=φ(r)f(t),代入薛定谔方程,得两个方程: 此称定态薛定谔方程 整个定态波函数形式: ),,,(),,,()],,,(2[),,,(2121212221t r r t r r V t r r m t r r t i i i i ψ+ψ?-=ψ??∑)t (Ef t )t (f i =?? Et i ce )t (f -=)r (E )r ()r (V )r (m ?=?+??-222Et i e )r ( -?=ψ

量子力学专题二(波函数和薛定谔方程)

量子力学专题二: 波函数和薛定谔方程 一、波粒二象性假设的物理意义及其主要实验事实(了解) 1、波动性:物质波(matter wave )——de Broglie (1923年) p h =λ 实验:黑体辐射 2、粒子性:光量子(light quantum )——Einstein (1905年) h E =ν 实验:光电效应 二、波函数的标准化条件(熟练掌握)

1、有限性: A 、在有限空间中,找到粒子的概率是有限值,即有 =?ψψτ* d 有限值 有限空间 B 、在全空间中,找到粒子的概率是有限值,即有 =? ψψτ* d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续; 3、单值性:2 ψ是单值函数(注意:不是说ψ是单值!) 三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;

2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率); 四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解) 1、态叠加原理:设1ψ,2ψ是描述体系的态,则 2211ψψψC C += 也是体系的一个态。其中,1C 、2C 是任意复常数。 2、两种表象下的平面波的形式: A 、坐标表象中 r d e p r r p i 3/2/3)() 2(1)( ??=?πψ B 、动量表象中

p d e r p r p i 3/2/3)() 2(1)( ?-?=ψπ? 注意:2/3)2( π是热力学中,Maxwell 速率分布的一个常数,也可以使原子物理中,一个相空间的大小! 五、Schrodinger Equation (1926年) 1、Schrodinger Equation 的建立过程(熟练掌握) ψψH t i ?=?? 其中,V T H ???+=。 2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解) A 、定态:若某一初始时刻(0=t )

固体物理学 1-5-薛定谔方程应用举例II

薛定谔方程应用举例II---原子系统
? 氢原子 ? 电子自旋 ? 多电子原子
1

氢原子的定态薛定谔方程
?原子由一个原子核和核外电子构成,属于多粒子体系。多粒 子体系的总能量等于每一个粒子的能量与粒子间相互作用能量 之和。
?氢原子包括一个原子核和电子,库仑场是各向同性的,哈密 顿量可记作(绝热近似):
H?
=
?
h2 2me
?2
+
qeU(r)
me为电子质量,qe是电子电荷。U(r)为原子核静电场中的库 仑势,记作:
U(r) = ? Zqe = ? Z h2
4πε0r a1meqer
Z为核的电荷数,a1 = 4πε0?2/(meqe2) = 0.529?,为氢原子的第
一波尔轨道半径。
2

??? ?
h2 2me
?2
?
Zh 2 a1meqer
??ψ
?
(r)
=
E

(r)
中心力场问题,采用球坐标,薛定谔方程为:
? ?? ??
h2 2me
?
????
1 r2
? ?r
r2
? ?r
?
L?2 r2
???? ?
Zh2
?
?ψ (r,?,θ ) =
a1mer ??
E ?ψ (r,?,θ )
用分离变量法求解,令:
ψ (r,θ ,φ) = R(r) ?Y (?,θ )
分别求解径向波函数R(r)和角向波函数Y(?,θ)。
3

非线性薛定谔方程数值解的MATLAB仿真

[键入作者姓名] [键入文档标题] ——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(Fast Fourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

非线性薛定谔方程的孤子解和怪波解

非线性薛定谔方程的孤子解和怪波解 摘要:光纤中光波的传输模型一直是当前研究的热点理论模型之一,从非线性薛定谔方程到金格堡-朗道方程,都试图对其进行更好的阐释,其次对于非线性动力学系统中,非线性薛定谔方程的解有呈现出非常多有趣的特征,对于其中特定解的研究能够让我们了解脉冲演化的本质,所以本文主要从孤子解的传输入手,并且简单介绍了怪波解的解形式。 薛定谔方程又称薛定谔波动方程,是量子力学的一个基本方程,同时又是量子力学的基本假设之一,由奥地利物理学家薛定谔1926年在《量子化就是本征值问题》中提出的,它在量子力学中的地位非常重要,相当于牛顿定律对于经典力学一样。 随着人们对世界的不断探索,非线性现象逐渐走进人们的视野,这种现象一般大都用非线性偏微分方程的数学模型来描述,显然线性方程已经不能满足人们的需求。 1973年,Hasegawa从含有非线性项的色散方程中推导出了非线性薛定谔方程。非线性薛定谔方程(NLS)是普适性很强的一个基本方程,最简单的形式是: 其中为常数。因为这个方程在几乎所有的物理分支及其他科学领域得到了广泛的应用,如超导,光孤子在光纤中传播,光波导,等离子体中的Langnui波等,所以许多学者对此方程的研究投入了很大的热情,至今还在生机勃勃的向前发展着。 1 分步傅里叶法计算演化过程 对于处理非线性性薛定谔方程,常用的数值仿真方式为分步傅里叶方法,为了简单起见,只考虑二阶色散和自相位调制,不考虑高阶色散、自陡以及四波混频等高阶非线性效应。上述方程中做 2 β为二阶色散,γ表示Kerr效应系数,g和α分别代表光纤中的增益和损耗。对上述方程转化到频域,先不考虑增益和损耗。可以得到 2 k k k k k dA i A i a a dz βγ =?+F. 其中2 2 2 k i β β ?=Ω 令() exp k k A B i z β =?可以得到 () 2exp k k k k dB i a a i z dz γβ =-? F 以上方程可以用四阶龙格库塔直接求解,但是速度较慢,所以我们需要做差分处理。 ()() ()()() 2 exp k k k k k B z z B z i a z a z i z z γβ +?- =-? ? F 再利用() exp k k A B i z β =?可以得到 ()()()() ()()() 2 2 exp exp exp k k k k k k k k A z z A i a z a z z i z a z i a z z i z γβ γβ ?? +?=+??? ?? ?? ?? ≈????? ?? F F 然后做傅里叶反变换就可以得到最终的结果 ()()()() 2 1exp exp - k k k k a z z a z i a z z i z γβ ?? +?=????? ?? F F

薛定谔方程及其解法

关于薛定谔方程 一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理 学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。

2 2 22222z y x ?? ????++=? 可化为d 0)(222=-+ψψ v E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ).()()((3) ) ,() ,() ( ,,(2) )() ,( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==????? =≤≤=++的局部截断误差使以下数值解法 的值及确定常数ββα βα

薛定谔方程与它的基本意义

薛定谔方程 维基百科,自由的百科全书 跳转到:导航, 搜索 汉漢▼ 量子力学 不确定性原理 入门·数学表述显示▼背景 经典力学·旧量子论·干涉 哈密顿量·狄拉克符号 显示▼基本概念 量子态·波函数·态矢量 态叠加原理·波粒二象性 量子测量·不确定性原理 泡利不相容原理·量子缠结 量子脱散·量子隧穿效应 埃伦费斯特定理 显示▼实验 双缝实验·薛定谔的猫 戴维孙-革末实验 施特恩-格拉赫实验 贝尔不等式实验 波普尔实验·量子擦除器 显示▼构想

薛定谔绘景·海森堡绘景 相互作用绘景·矩阵力学 求和的历史 显示▼方程 薛定谔方程·泡利方程 克莱因-高登方程 狄拉克方程 显示▼量子力学诠释 哥本哈根诠释·Ensemble 隐变量·交易诠释 多世界诠释·一致性历史 系综诠释·量子逻辑 显示▼进阶理论 量子场论·量子引力 万有理论 显示▼科学家 普朗克、玻尔、薛定谔、海森堡 泡利、德布罗意、埃伦费斯特、玻姆 玻恩、爱因斯坦、冯?诺伊曼 费曼、狄拉克、维恩、埃弗里特 索末菲、其他 本模板:查看? 讨论? 编辑? 历史 薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程[1],也是量子力学的一个基本假定,其正确性只能靠实验来检验。就好像牛顿定律在经典力学的地位,薛定谔方程在量子力学里占有中心的地位。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的几率幅。而几率幅的绝对值的平方,就是事件发生的几率密度。薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的

薛定谔方程对氢原子的应用

(16.4.4) (16.4.5) (图16.4a )球极坐标 薛定谔方程对氢原子的应用 (一)氢原子的薛定谔方程 前一节讨论一维运动自由粒子的薛定谔方程及 其定态解.本节要讨论氢原子中电子的运动,这与 前一节有两点不同: (1)氢原子电子作三维空间运动,因此,薛定 谔方程(16.3.3)中的波函数ψ(x,t )应换成ψ(x,y,z,t ) 或ψ(r ,t ),而22x ??应换成=??+??+??222222z y x ▽2.此▽2称为拉普拉斯算符或拉氏算符. ??????<<的薛定谔方程三维运动自由粒子)c (v 222222222z y x )m 2/(t i ??+??+??=?=?ψ?-=?ψ? (16.4.1) (2)氢原子的电子不是自由粒子,它受到氢核的库仑力,此力的作用可用它们的电势能E p 表示.因此,氢原子电子的薛定谔方程可表示如下??,见〔附录16D 〕. ??????<<的薛定谔方程氢原子电子)c (v p 2p k p 22E )m 2/p (E E E E )m 2/(t i +=+=ψ+ψ?-=?ψ? (16.4.2) *(二)氢原子的定态薛定谔方程 定态解是解决氢原子各种问题的基础.参照(16.3.4)至(16.3.6)式,可把(16.4.2)式中的波函数ψ(r ,t )分离为空间部分u (r )和时间部分f (t ),并参照(16.3.10)式写出氢原子的定态薛定谔方程,见〔附录16E 〕. ψ(r ,t )=u (r )f (t ), f (t )=C /iEt e - (16.4.3) ??????<<的定态薛定谔方程氢原子电子)c (v r 4e E 0u )E E )(/m 2(u 02p p 22πε-==-+? 氢核的质量比电子的大得多,可认为氢核不动,电子绕核转动.其电势能可表成E p =-e 2/4πε0r .此势能E p 只与电子至氢核的距离r 有关,而与方向无关,即具有球对称性,应用球极坐标较为方便.如(图16.4a ),O 表氢核,e 表电子,r 为e 至O 的距离.θ为r 与z 轴的夹角,θ称天顶角或极角.?为r 在xOy 平面的投影与x 轴的夹角.故有 x=rsin θcos ?; y=rsin θsin ?; z=rcos θ (16.4.6) 拉氏算符 2222222z y x ??+??+??=?改用球坐标(r,θ,?)表示如下:?? ()() 22222222sin r 1sin sin r 1r r r r 1???θ+θ??θθ ??θ+????=?(16.4.7) 将此▽2算符代入(16.4.4)式,便得到以球坐标表示的氢原子定态薛定谔方程. ? 郭敦仁《量子力学初步》18—19,34—35页,1978年版. ? 程守洙、江之永编,王志符、朱讠永春等修订《普通物理学》第3册177—180页,1982年修订本. ? 郭敦仁《量子力学初步》35—45页,1978年版. ? 周世勋编《量子力学》59—72页,1961年版.

§16.3 一维定态薛定谔方程的建立和求解举例

§16.3 一维定态薛定谔方程的建立和求解举例 (一)一维运动自由粒子的薛定谔方程 波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程. 将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程: ψ-=?ψ?)/iE (t 即ψ=?ψ?E t i (16.3.1) ψ=?ψ ?22)/ip (x 2 ψ=ψ ?-2222p ????? ?????<<的薛定谔方程自由粒子轴运动的沿)c x (v 方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程. 请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式?. 这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明. (二)一维运动自由粒子的定态薛定谔方程?? 上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即 〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4) 将此式代入(16.3.3)式得: 22 2dx u d )t (f )m 2/(dt df )x (u i -= 两边除以ψ=uf 得: 22 2dx u d u 1)m 2/(dt df f 1i -= 此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即 ? 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版. ? 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版. ? 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.

求解非线性薛定谔方程的一类数值解法

求解非线性薛定谔方程的一类数值解法 张艳敏,刘明鼎 (青岛理工大学琴岛学院,山东青岛266106) 摘要:利用非标准有限差分方法构造了求解非线性薛定谔方程的两个非标准有限差分格式。对于离散后的差分格式,把关于时间和空间的步长函数作为分母逼近导数项。对于非线性项,通过非局部的离散方法计算了这两个非标准有限差分格式的局部截断误差。数值实验结果验证了非标准有限差分格式的有效性。关键词:非线性薛定谔方程;局部截断误差;数值解法中图分类号:O241.82 文献标识码:A 文章编号:2095-7726(2019)03-0008-03 薛定谔方程是物理学中量子力学的一个重要方程,可以用于研究深水波浪理论。柱(球)非线性薛定谔方程常用于描述单色波的一维自调适、光学的自陷现象、固体中的热脉冲传播和等离子体中的Langnui 波[1–5],因此对于此类方程的研究具有非常重要的意义。 薛定谔方程有线性和非线性两种,在本文中,我们研究的是非线性薛定谔方程。非线性薛定谔方程解的解析表达式是很难得到的,因此求解此类方程最常用的就是数值解法。求非线性薛定谔方程数值解的方法主要有差分方法、配置谱方法[6]、有限元方法[7]和平均离散梯度方法[8]等。在本文中,我们利用非标准有限差分方法研究了非线性薛定谔方程的数值解,这种方法已在求解偏微分方程中得到了广泛的应用[9],其优点是对非线性项作非局部离散,对导数项作离散后用步长函数作分母,这样不仅能保持差分方程的数值解与原方程的解析解具有相同的正性,而且能保持较好的数值稳定性。 1非标准有限差分格式的构造 现在我们利用文献[10-12]给出的方法构造非线 性薛定谔方程的两种非标准有限差分格式,要考虑的非线性薛定谔方程为 (1)相应的初边值条件为 其中:为虚数单位;、、和均为连续函数;和均为正数。 为了得到非线性薛定谔方程的差分格式,需要对式 (1)进行离散。首先,需要利用网格对区域进行分割,取空间步长时间步长其 次,在网格点处,定义数值解其中,且下面将分别构造式(1)的两种非标准有限差分格式。 1.1第一种非标准有限差分格式的构造 为了构造式(1)的第一种非标准有限差分格式,我们利用R.E.Mickens 提出的构造非标准有限差分格式的原理[10]和文献[13-14]中提到的方法,并利用给定的记号,对式(1)进行离散。离散后的差分方程为 其中,和为分母函数,且,且分母是通过步长函数逼近得到的。 从式(4)可以看出,和分别取代了和分母函数的选择依据了薛定谔方程解的性质[4]。 记对式(4)进行整理,可得第36卷第3期Vol.36No.3 新乡学院学报 Journal of Xinxiang University 2019年3月Mar.2019 收稿日期:2018-12-21 基金项目:山东省高校科技计划项目(J17KB053);青岛理工大学琴岛学院教育教学研究重点项目(2018003A)作者简介:张艳敏(1981—),女,山东东营人,副教授,硕士,研究方向:偏微分方程数值分析。通信作者:刘明鼎(1982—),男,辽宁大连人,副教授,硕士,研究方向:偏微分方程数值分析。 222 (,)(,) (,)(,)(,),i u x t u x t u x t u x t g x t t x ??=++??(,0)(), u x f x =(2) 01(0,)(), (,)()u t p t u L t p t =ìí =?。 (3)0,0;x H t T <£<£i (,)g x t ()f x 0()p x 1()p x H T [0,][0,]H T ′,h H M =Δt T N =。(,)m n x t (,),n m m n u u x t =(0,1,2,,),m x mh m M ==L Δ(0,1,2,,),n t n t n N ==L ,M N ++??Z Z 。111212 2(),i n n n n n m m m m m n n n m m m u u u u u u u g D D ++---+=++(4) 1D 2D 12exp(Δ)1,D t D =-=24sin ()2 h 1D 2D Δt 2,h 11122 ,,D R D R D ==

薛定谔方程及其解法

一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。 可化为 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法

二.边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 有限元方法 有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。不同于求解(往往是困难的)满足整个定义域边界条件的函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

非线性薛定谔方程数值解的MATLAB仿真

admin [非线性薛定谔方程数值解的MATLAB仿真]——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(FastFourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

量子力学_王学雷_第二章波函数薛定谔方程

§2.1 波函数的统计解释 一.波动-粒子二重性矛盾的分析 物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误? 实物粒子波长很短,一般宏观条件下,波动性不会表现出来。到了原子世界(原子大小约 1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。 传统对波粒二象性的理解: (1)物质波包物质波包会扩散,电子衍射,波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。电子双缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒子性一面。 对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。在经典概念下,粒子和波很难统一到一个客体上。 二.波函数的统计解释 1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。既描写粒子的波叫几率波。 描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。 几率波的概念将微观粒子的波动性和粒子性统一起来。微观客体的粒子性反映微观客体具有质量,电荷等属性。而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。 描述经典粒子:坐标、动量,其他力学量随之确定; 描述微观粒子:波函数,各力学的可能值以一定几率出现。 设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x到x+dx、 y到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体 积和强度 归一化条件:在整个空间找到粒子的几率为1。

薛定谔方程及其解法 - 副本

薛定谔方程 一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。

2 2 22222z y x ?? ????++=? 可化为d 0)(222=-+ψψ v E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ).()()((3) ) ,() ,() ( ,,(2) )(),( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==????? =≤≤=++的局部截断误差使以下数值解法 的值及确定常数ββα βα

相关文档
相关文档 最新文档