文档库 最新最全的文档下载
当前位置:文档库 › 天然气燃烧烟气相变传热计算

天然气燃烧烟气相变传热计算

天然气燃烧烟气相变传热计算
天然气燃烧烟气相变传热计算

3200KG/H(湿烟气)入口温度65度,出口温度30度,过剩系数1.1 总压力100000Pa

假设天然气全部为CH4

C质量分数:75%;H质量分数25%

完全燃烧理论烟气量(Nm3):

CO2:1.866*0.75=1.3995;H2O:11.1*0.25=2.775;V0:13.27143;N2:10.48443 实际烟气量(过剩系数1.1):

V:15.98607;水分压:17359Pa;饱和温度:57.09度;湿烟气H20质量分数:11.27%

干烟气质量百分比:

O2:2.27%;CO2:15.65%;N2:82.08%

干烟气比热(Cp):

1.01KJ/KG℃

烟气初始状态含湿量(d2):d2=0.622*17359/(100000-17359)=0.13;

焓值:h2=1.01*65+d2*(2501+1.86*65)=408.20 KJ/KG干烟气

冷却至30度(饱和)时和含湿量:d1=0.0276

焓值:h1=1.01*30+d1*(2501+1.86*30)=100.83KJ/KG干烟气

冷凝水量:mw=290.7KG/h(干烟气的质量流量*含湿量差){2839.39*(0.13-0.00276)

冷凝水:hw=42536.7KJ/h=(291.7*4.18*35)

干烟气质量流量:m=3200*(1-0.1127)=2839.36KG/h

烟气传热量:Q=m*h2-(m*h1+hw)=819114.7kj/h

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

注汽锅炉烟气冷凝技术方案

注汽锅炉烟气冷凝节能工 程技术方案 一.前言

在热能工程领域中计算锅炉的热效率都是用燃料的低位发热量来进行计算的,国外也是如此,如果按燃料的高位发位量来计算锅炉的热效率,则100%的热效率是不可能达到的(能量守恒)。一般来说,热效率100%以上的锅炉在常识上虽然难以理解,但如果将烟气中的水蒸汽凝结潜热利用起来,并且排烟温度降低得足够低,排烟损失很低的情况下,锅炉的热效率会提高到100%,甚至超过100%。 现在国外出现的利用高效的冷凝换热器和空气预热器来吸收锅炉尾部排烟中的显热和水蒸汽凝结所释放的潜热,从而达到提高锅炉热效率的冷凝余热回收锅炉。冷凝式锅炉发轫于欧洲。德国、荷兰、英国、奥地利等国家于上世纪70年代,开发家用冷凝式锅炉,到80年代末期90年代初期,韩国率先将冷凝式锅炉应用在大中型工业锅炉上,冷凝式锅炉除了具有传统锅炉的共性之外,更是制热机理的大胆革命与突破。在一些能源利用率较高的欧美国家,燃气冷凝式余热回收的热水锅炉其热效率高达103%以上,此外在烟气中的CO2和NOx等有害成份也大大降低,这对环保来说是非常有利的。在欧美等国,由于政府鼓励使用冷凝锅炉,所以需求量不断增加,冷凝锅炉的使用率瑞士60%、荷兰50%、德国20%、奥地利(20%)、英国(15%)。 国内通过特殊的换热器结构形式,吸收尾部排烟中的显热和水蒸汽凝结所释放的潜热的冷凝式燃气热水器,其热效率已提高到105%,达到了当今国际水平。冷凝式燃气热水器在国内的推广刚刚起步,但是他的市场潜力是非常大的。而在发达国家冷凝式燃气热水器约占热水器(炉)总产量的15%以上(个别国家达到95%)。

天然气及其燃烧产物成分的毒害

天然气及其燃烧产物成分的毒害 人们都说天然气使清洁燃料,是指天然气燃烧了的排气中对环境有污染的物质比其他化石燃料少,并非说天然气燃烧不排放对环境有污染的物质。尤其在家庭住宅利用天然气时,烟气直接排在室内,其中一些物质对人体有毒害,必须限制在允许的程度以下。 (1)天然气 输送到城市的天然气都经过处理加工,脱除不利于管网输气,配气和稳定燃烧以及有害人体的物质。天然气主要成分为甲烷,还有少量乙烷,丙烷,丁烷和非烃组分。甲烷对人生理上并非毒物,泄漏到居室内会造成空气中氧浓度降低,空气中甲烷含量达10%时,会使人体窒息。重质烃对人体中枢神经有麻痹作用,空气中丙烷含量达10%时,人在其中停留2~3min就会昏迷,长时间停留会导致死亡。管道输送到城市的 天然气要求硫化物含量小于270mg/m3,其中H 2S含量小于20mg/m3(均按硫计)。硫化物燃烧变成SO 2 ,对人体有害。 (2)硫化氢 H 2S是具有令人生厌的臭鸡蛋气味的酸性气体,剧毒。空气中H 2 S浓度在0.197mg/m3时,人的嗅觉就可觉察出它的存在,但人体嗅觉易受 麻痹,习惯于H 2S的气味,长时间处于这浓度或稍高一些浓度范围的人们往往不引起注意。当空气中H 2 S浓度增加到310 mg/m3时,人体的眼, 鼻,口腔粘膜会受到强烈刺激,引起流泪,呕吐,头痛。当空气中H 2 S浓度达到1.54~4062g/ m3时就会发生昏迷,死亡。 (3)一氧化碳 CO是无色无味的有毒气体,天然气燃烧不完全时烟气中含有CO,它通过呼吸进入人体与血液中的血红蛋白结合,阻碍血红蛋白对氧的结合使人体缺氧,发生窒息。空气中不同CO含量(体积分数)对人体的危害如表7-41 表7-41 空气中不同CO含量对人体的危害 (4)氮氧化物 NO X 是烟气中主要有害成分之一,它对环境的污染和对人体的危害近几十年来逐渐被人们所认识并引起极大关注。燃烧产生的NO X 主要是N O和NO 2 ,其中NO占了90%以上。 NO是无色,无臭,有毒的气体,它与人体血液中血红蛋白的结合能力比CO高数百倍,人们在高NO X 含量的空气中停留会因为缺氧出现中 枢神经麻痹症状。此外,NO还有致癌作用,对细胞分裂和遗传信息传递有不良影响。NO在空气中会部分氧化成NO 2 。 NO 2为红棕色有刺激性的气体,其毒性为NO的4~5倍。NO 2 与CO共存时会加剧NO 2 的危害。NO 2 与烃在紫外线作用下会生成强氧化性物质的 光化学烟雾,毒性更强,刺激人体的眼,鼻及伤害植物。空气中不同含量(体积分数)的NO X 对人体的毒害如表7-42。 表7-42 空气中不同NO X 含量对人体的危害

实用文库汇编之天然气-用气量指标和年用气量计算

*作者:蛇从梁* 作品编号:125639877B 550440660G84 创作日期:2020年12月20日 实用文库汇编之城市天然气的年用气量 1. 各类用户的用气量指标 用气量指标又称为耗气定额,常用热量指标来表示用气量指标。 (1) 居民生活用气量指标 居民生活用气量指标是指城镇居民每人每年平均天然气的用气量。 影响居民生活用气量指标的因素很多,如地区的气候条件、居民生活水平和饮食生活习惯、居民每户平均人口数、住宅内用气设备 的设置情况、公共生活服务网的发展情况、燃气价格等。通常,住宅 内用气设备齐全,地区的平均气温低,则居民生活用气量指标也高。 但是,随着公共生活服务网的发展以及燃具改进,居民生活用气量又 会下降。 上述各种因素错综复杂、相互制约,因此对居民生活用气量指标的影响无法精确确定。一般情况下需统计5~20年的实际运行数据作 为基本依据,用数学方法处理统计数据,并建立适用的数学模型,分 析确定;并预测未来发展趋势,然后提出可靠的用气量指标推荐值。 我国一些地区和城市的居民生活用气量指标见表4-1。 (2) 公共建筑用气量指标

影响公共建筑用户用气量指标的因素主要有城市天然气的供应情况、用气设备性能、热效率、加工食品的方式和地区的气候条件等。 公共建筑用气量指标一般也应根据当地公共建筑用气量的统计数据分析确定。 我国几种公共建筑用气量指标见表4-2。 (3) 工业企业用气量指标 工业企业用气量指标可由产品的耗气定额或其他燃料的实际消耗量进行折算,也可以按照同行业的用气量指标分析确定。我国部分工业产品的用气量指标见表4-3。 (4) 建筑采暖及空调用气量指标 采暖和空调用气量指标可按国家现行标准《城市热力管网设计规范》CJJ 34或当地建筑物耗热量指标确定。

烟气冷凝器废气潜热回收的设计开题报告

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 一、 脱硫塔作为一种对工业废气进行脱硫处理的塔式设备,研究发现在使用该设备对废气进行脱硫的过程中20%的热量会伴随着烟气的排放而流失[1]。烟气冷凝器作为一种热交换系统,其通过利用温度较低的水或空气冷却脱硫后的废气,降低废气温度,使得在靠近换热面的区域,烟气中水蒸汽冷凝,同时实现烟气显热释放和水蒸汽凝结潜热释放,而换热器内的水或空气吸热而被加热,实现热能回收。因此,为响应能源再使用原则,进一步实现热能的重复利用,本次课题中我们通过比对当前国内外的在冷凝器研究方向的进展,分析设计一能实际运用于火电厂脱硫塔后烟气冷凝装置。 关键词:脱硫塔;烟气冷凝器;热能回收 二、研究背景 (一)脱硫塔 1.脱硫塔的概念 烟气脱硫就是用化学或物理的方法将烟气中的SO2予以固定和脱除。按脱硫方式和产物的处理形式,烟气脱硫一般可分为湿法、半干法和干法三类。在这三类烟气脱硫技术中,湿法脱硫技术最成熟,工业应用最广泛,脱硫效率最高,但投资及运行费用也最高;半干法脱硫效率中等,投资及运行费用较湿法低,综合经济性能较好;干法脱硫投资及运行费用最低,且无结垢、腐蚀等问题,但脱硫效率有待于进一步提高[2]。 在烟气脱硫系统中,烟气脱硫塔是核心装置。烟气脱硫塔:下半部直径较大,主要用于脱硫;上半部直径较小,主要用作烟囱;属于直立、高耸结构[3]。 脱硫塔的结构设计,包括喷淋层的布置,塔径的计算,喷嘴在脱硫塔内的布置、烟气入口、烟气出口的选择设计等,这些是取得吸收塔最优化性能的重要先决条件[4]。 2.脱硫塔的发展 从90年代中期,在原国家经贸委的指导下电力部门陆续从国外引进了比较先进和成熟的主要脱硫工艺,建立了示范工程。并计划于2010年,湿法烟气脱硫设备国产化率达

天然气燃烧产生污染物计算方法(实用!推荐)

天然气燃烧产生污染物计算方法(非常实用)天然气燃烧产生污染物计算方法为保护环境,建设生态文明,国家鼓励使用天然气代替燃煤,但使用天然气仍会排放污染物,应当征收排污费。本文循着“污染物排放量=废气量×污染物浓度”这一计算公式,来探讨如何征收天然气锅炉的排污费。 一、废气量 根据《排污申报登记实用手册》231页举例计算,1m3天然气完全燃烧产生的废气量为10.89m3。 实际天然气燃烧时产生的废气,与天然气成分,完全燃烧的比例等都有关系,但通常认为废气量为天然气量的10-11倍。取10倍最好计算,但取10.5倍似乎更为合理。 例:1万m3天然气,燃烧后的废气量即为10.5万m3。 二、主要污染物 (一)二氧化硫 天然气中含有硫化氢(H2S),国家规定其出厂含量不能超过0.01%。天然气中硫化氢燃烧时,会生成等体积二氧化硫(SO2)。 《排污申报登记实用手册》231页举例计算,当硫化氢含量为0.0052%时,每万m3天然气产生二氧化硫为1.5kg。 李先瑞、韩有朋、赵振农合著《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化硫约为1.0kg。

天然气燃烧产生的二氧化硫,与天然气中所含硫化氢比例关系最大,在没有检测数据支撑时,二氧化硫浓度为确定为10-15mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为100mg/m3。 (二)氮氧化物 《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化氮约为6.3kg。 按这一数据,氮氧化物浓度约为60mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为400mg/m3。 (三)烟尘 天然气是清洁能源,烟尘产生量少,但也不能说没有。 《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生烟尘约为2.4kg。 按这一数据,烟尘浓度约为20-25mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为50mg/m3。 (四)其他污染物 经过计算,天然气燃烧后产生的其他污染物排放当量都更低,本文不再论证。按照《排污收费征收管理条例》,这些污染因子不予征收排污费。 三、征收标准 将上述三个污染因子按低限代入《排污费征收核定表》,则每万立方

天然气-用气量指标和年用气量计算

城市天然气的年用气量 1. 各类用户的用气量指标 用气量指标又称为耗气定额,常用热量指标来表示用气量指标。 (1) 居民生活用气量指标 居民生活用气量指标是指城镇居民每人每年平均天然气的用气量。 影响居民生活用气量指标的因素很多,如地区的气候条件、居民生活水平和饮食生活习惯、居民每户平均人口数、住宅内用气设备的设置情况、公共生活服务网的发展情况、燃气价格等。通常,住宅内用气设备齐全,地区的平均气温低,则居民生活用气量指标也高。但是,随着公共生活服务网的发展以及燃具改进,居民生活用气量又会下降。 上述各种因素错综复杂、相互制约,因此对居民生活用气量指标的影响无法精确确定。一般情况下需统计5~20年的实际运行数据作为基本依据,用数学方法处理统计数据,并建立适用的数学模型,分析确定;并预测未来发展趋势,然后提出可靠的用气量指标推荐值。 我国一些地区和城市的居民生活用气量指标见表4-1。 表4-1 城镇的居民生活用气量指标单位:MJ/(人·年) 有集中供无集中供暖有集中供无集中供城镇地区城镇地区暖的用户的用户暖的用户暖的用户25122303~~东北 地区1884~成都 2303 2931 2721 华东、中南地2303~2093~2303 上海—— 2512 区~27212512~2931 北京3140 (2) 公共建筑用气量指标 影响公共建筑用户用气量指标的因素主要有城市天然气的供应情况、用气设备性能、热效率、加工食品的方式和地区的气候条件等。 公共建筑用气量指标一般也应根据当地公共建筑用气量的统计数据分析确定。 我国几种公共建筑用气量指标见表4-2。 表4-2 公共建筑用气量指标

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

传热基本方程及传热计算

第三节传热基本方程及传热计算 可知,要强化传热过程主要应着眼于增加推动力和减少热阻, 也就是设法增大 t m 或者 增大传热面积A 和传热系数K 。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建 立在上述基本方程的基础上的, 传热计算则主要解决基本方程中的 Q ,A,K, tm 及有关量的 计算。传热基本方程是传热章中最主要的方程式。 、传热速率Q 的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热 量Qh ,必等于冷流体所吸收的热量 Qc ,即Qn Qc ,称之热量衡算式。 i.i. 无相变化时热负荷的计算 (1) ( 1)比热法 Q m h c ph T 1 T 2 m c C pc t 2 11 式中 Q ――热负荷或传热速率, J .S 1或W ; mh , mc ――热、冷流体的质量流量, kg.s -1; Cpc,Cph ――冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J . (kg.k ) -1; T 1 ,T 2——热流体进、出口温度,K(° C ); t 1 ,t 2 —冷流体的进出口温度,K(° C )。 (2) 热焓法 Q m(l 1 I 2) (4 — 13) 式中 丨 1 ――物料始态的焓,k J .kg -1; I 2 ――物料终态的焓,k J .kg -1。 2 ?有相变化时热负荷计算 Q Gr (4—14) 式中 G ――发生相变化流体的质量流量, kg.s -1; r ---- 液体汽化(或蒸汽冷凝)潜热, k J .kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化, 然后根据不同算式进行计算。 对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有: 从传热基本方程 或 Q kA t m t Q m 1 kA 传热推动力 传热热阻 (4-11) (4-lla) (4-12)

天然气用量计算公式(精选.)

天然气市场用气量预测公式 一、相关换算数值 (一)1方天然气相当于1.1升汽油 (二)一吨柴油相当于1134方天然气 (三)一吨重油相当于1080方天然气 (四)一吨石油液化气相当于1160方天然气 (五)一吨煤相当于740方天然气(煤的热值为7000大卡)(六)新疆天然气热值一般在8500-9000大卡不等 二、民用气用气量测算公式 (一)已知市场用量测算(已有市场深度开发) 1、商服用气量测算公式 (1)餐饮用气量测算公式: A、职工食堂用气量测算公式:人数×0.09方/人=日用气量×年用气量天数=年用气量; B、酒店餐饮日均用气量测算公式(住宿):酒店床位数(人)×入住率×0.09方/人(设计院提供三餐)=日均用气量×年用气量天数=年用气量; C、餐厅日均用气量测算公式(对外营业):客流量(人次)×0.03方/人(设计院提供一餐)=日均用气量×年用气量天数=年用气量。 (2)洗浴业用气量测算公式: 客流量(人次)×0.09方/人=日均用气量×年用气量天数=年用气量。 2、居民用气量测算公式 居民用气量测算公式:户数×0.4方/户=日用气量×年用气量天

数=年用气量。 3、民用气用气量测算公式 民用气用气量=商服用气+居民用气。 (二)未知市场用量测算(新市场开发) 1、数据来源:各地统计局,各年度《统计年鉴》 2、历史人口增长率 (1)历史人口:《统计年鉴》三-五年人口数据 (2)在计算出个年人口环比的情况下,求出三-五年人口环比平均自然增长率 (3)历史城镇人口:《统计年鉴》三-五年人口数据 (4)历史城镇人口环比增长率:由《统计年鉴》三-五年人口数据中,计算出平均人口环比增长率 3、未来若干年人口增长预测 (1)当年人口数量=上一年人口数量×历史人口环比平均自然增长率+上一年人口数量(以此类推) (2)当年城镇人口数量=上一年城镇人口数量×历史城镇人口环比平均自然增长率+上一年城镇人口数量(以此类推) (3)居民户数测算=当年城镇人口数量÷单户均平人口数(《统计年鉴》) 4、民用气预测 (1)居民用气市场容量预测: 居民用气市场容量=居民户数×0.4方/户×80%(开发率,根据城市规模、居民居住集中度、楼房与平房比率确定,一般按80%计算较为适宜,在分年度计算时,请把握年度开发梯度)

燃气锅炉排烟温度降低对烟气扩散的影响分析讲课讲稿

燃气锅炉排烟温度降低对烟气扩散的影响分析锅炉烟气中蕴含着大量的显热和潜热,充分利用烟气中的热量可以减少能源消耗,从而实现污染物减排。天然气锅炉烟气含湿量较高,水蒸气冷凝过程会放出大量的气化潜热,同时产生大量的水,且天然气杂质较少,凝结水相对清洁,因此天然气的烟气余热回收成为研究的热点。在供热系统中,燃气锅炉烟气余热回收可以采取不同的技术路线。最常见的是在常规燃气锅炉尾部增设冷凝式换热器,这方面的研究包括传热理论与实验研究[1-4]、强化传热与防腐研究[5-7]、冷凝换热装置的设备开发及示范工程的应用等[8-9]。 燃气锅炉烟气的露点在55℃左右(过剩空气系数在1.15时),只有被加热介质温度低于55℃才能回收烟气中的冷凝热,在30℃甚至以下才能取得更好的热回收效果。在我国的集中供热领域,热网回水温度一般在50℃以上,因此不能充分回收烟气冷凝热。这种直接在燃气锅炉尾部增设冷凝式换热器的方法往往只能回收烟气的部分潜热,不能实现冷凝热的深度回收。 近年来随着吸收式换热技术[10-11]的日趋成熟,利用吸收式换热技术可以实现烟气余热的深度利用,系统利用吸收式热泵产生一种低温冷介质,使得烟气的排烟温度更低,余热回收更彻底,水蒸气被大量冷凝下来,节能和环保效果均更为显著,这种技术路线逐步得到了业内人士的认可并备受关注。文献[12]介绍了这种技术,并就该系统及余热回收装置进行了传热理论与实验研究、冷凝换热装置的设计和设备开发,并陆续在几个锅炉房中成功应用。随着新技术的应用,水蒸气被冷凝的量越来越大,烟气中的碳氧化物、氮氧化物等污染物会溶于冷凝液中,从而减少了直接排放到大气环境中的各种污染物的量,其减排总量多大?该技术使系统的排烟温度越来越低,可以做到低于30℃排放,排烟温度的降低对污染

天然气消耗量计算方法

天然气消耗量计算法 注:以下为各种用途天然气的测算公式,属经验值。 一、相关换算数值 (一)1天然气相当于1.1升汽油 (二)一吨柴油相当于1134天然气 (三)一吨重油相当于1080天然气 (四)一吨油液化气相当于1160天然气 (五)一吨煤相当于740天然气(煤的热值为7000大卡) (六)新疆天然气热值一般在8500-9000大卡不等 (七)一标天然气相当于10度电 二、民用气用气量测算公式 (一)已知市场用量测算(已有市场深度开发) 1、商服用气量测算公式 (1)餐饮用气量测算公式: A、职工食堂用气量测算公式:人数×0.09/人=日用气量×年用气量天数=年用气量; B、酒店餐饮日均用气量测算公式(住宿):酒店床位数(人)×入住率×0.09/人(提供三餐)=日均用气量×年用气量天数=年用气量; C、餐厅日均用气量测算公式(对外营业):客流量(人次)×0.03/人(提供一餐)=日均用气量×年用气量天数=年用气量。 (2)洗浴业用气量测算公式:

客流量(人次)×0.09/人=日均用气量×年用气量天数=年用气量。 2、居民用气量测算公式 居民用气量测算公式:户数×0.4/户=日用气量×年用气量天数=年用气量。 3、民用气用气量测算公式 民用气用气量=商服用气+居民用气。 (二)未知市场用量测算(新市场开发) 1、数据来源:各地统计局,各年度《统计年鉴》 2、历史人口增长率 (1)历史人口:《统计年鉴》三-五年人口数据 (2)在计算出个年人口环比的情况下,求出三-五年人口环比平均自然增长率 (3)历史城镇人口:《统计年鉴》三-五年人口数据 (4)历史城镇人口环比增长率:由《统计年鉴》三-五年人口数据中,计算出平均人口环比增长率 3、未来若干年人口增长预测 (1)当年人口数量=上一年人口数量×历史人口环比平均自然增长率+上一年人口数量(以此类推) (2)当年城镇人口数量=上一年城镇人口数量×历史城镇人口环比平均自然增长率+上一年城镇人口数量(以此类推) (3)居民户数测算=当年城镇人口数量÷单户均平人口数(《统计年鉴》)

管道总传热系数计算18

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡 层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: (1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。 2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。r G r P 在层流状态(Re<2000),当时:500Pr

烟气冷凝器设计与应用

烟气冷凝器设计与应用 【摘要】介绍了烟气冷凝器的设计思路,主要从结构形式,耐腐蚀性、经济性等方面进行了阐述,通过实际应用说明了其设计的可行性和经济型,证明设计和应用是成功的。 【关键词】锅炉;烟气冷凝器;节能环保 0.引言 由于近几年人们对环境保护的日益重视,燃天然气锅炉的应用得到了空前的应用和发展。而节约天然气资源的重要措施之一就是提高燃气锅炉的热效率。 提高天然气锅炉热效率的两个主要途径:一是提高燃烧系统的燃烧效率,开发和利用低氮燃烧技术;二是提高排烟热能利用率。在燃烧系统一定条件下,提高排烟热能利用率,是高效利用天然气、减少环境污染的有效途径。 目前,普通燃气锅炉的排烟温度均很高,燃气锅炉在180~220℃以上,在天然气燃烧设备尾部增设冷凝式换热器,将排烟温度降到烟气露点温度以下,不仅可以回收利用排烟显热,还可利用天然气燃烧时产生的大量水蒸气凝结时放出的大量潜热。同时凝结液对烟气中的CO2、NOx和SOx等有害气体有一定的吸收作用,因此,可提高能源利用率,并减少排烟对环境的污染。开发应用带有冷凝换热器的冷凝式锅炉设备,或者将目前既有的普通燃气锅炉房改造为冷凝式锅炉房,是高效利用天然气、减少环境污染的有效途径。而开发冷凝式天然气锅炉和既有燃气锅炉房改造的关键技术,是冷凝式换热器的研究与开发。 由于烟气中的部分有害气体会溶解到凝结液中,形成了具有酸性的腐蚀液(pH值约为4-5),对换热器会产生严重腐蚀。冷凝式换热器的设计必须考虑到换热管(层)的抗腐蚀能力,采用耐腐蚀材料或耐腐蚀涂、镀层,且尽量将冷凝下来的酸性凝结水排出换热器外是研发与设计过程中的关键内容。 这就需要从三个方面入手进行研究:开发导热性能良好的防腐换热材料;换热器的整体设计合理化;对含有水蒸气的烟气凝结换热传热传质过程进行强化,这是使设备高效能、小型化和安全可靠的关键技术。 1.设计与制造 1.1烟气冷凝器工作原理 天然气主要成分为甲烷(CH4),燃烧后会产生大量的水蒸气,根据天然气成份、过量空气系数及混合用空气湿度的不同,烟气中含水蒸气量有所不同,水蒸气体积份额约为16%,其燃烧化学方程式为:

传热过程的计算

1 总传热速率方程 如图所示,以冷热两流体通过圆管的间壁进行换热为例,热流体走管内,温度为T,冷流体走管外温度为t,管壁两侧温度分别为T W和t w,壁厚为,b,其热导率为λ,内外两侧流体与固体壁面间的表面传热系数分别为αi和α0。根据牛顿冷却定律及傅立叶定律分别列出对流传热及导热的速率方程: 对于管内侧: 对于管壁导热: 对于管外侧: 即 故有 令(4.6.1) 则(4.1.1) 该式称为总传热速率方程。 A为传热面积,可以是内外或平均面积,K与A是相对应的。 2 热流量衡算 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:

(热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 3 传热系数和传热面积 (1)传热系数K和传热面积A的计算 传热系数K是表示换热设备性能的极为重要的参数,是进行传热计算的依据。K的大小取决于流体的物性、传热过程的操作条件及换热器的类型等,K值通常可以由实验测定,或取生产实际的经验数据,也可以通过分析计算求得。 传热系数K可利用式(4.6.1)进行计算。但传热系数K应和所选的传热面积A相对应,假设和传热面积A i、A m和A0相对应的传热系数K分别为K i、K m和K0,则其相互关系为:

玻璃的传热系数计算

4.3 热工设计 4.3.1 本系统用于外墙外保温时的保温层设计厚度,应根据《河南省公共建筑节能设计标准》(DBJ41/075-2006)、《河南省居住建筑节能设计标准(寒冷地区)》(DBJ41/062-2005)、《河南省居住建筑节能设计标准(夏热冬冷地区)》(DBJ41/071-2006)规定的外墙传热系数限值,通过热工计算确定。 4.3.2 ZCK无机复合保温板用于外墙外保温时,其导热系数(λ)、蓄热系数(S)设计计算值和修正系数按下表取值。 表4.3.2 ZCK无机复合保温板λ、S、修正系数 4.3.3 热工计算示例,以采用60mm保温板为例。 示例一:200mm混凝土剪力墙外贴60mm保温板,计算如下: Ra=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.1149+1.1429+0.005+0.04=1.4343 Ka=1/R=1/1.4333=0.70W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为混凝土剪力墙层热阻,0.2/1.74=0.1149 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W; R外为外表面换热阻,0.04m2.K/W; 示例二:200mm加气混凝土砌块外贴60mm保温板,计算如下: Rb=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.80+1.1429+0.005+0.04=2.1194 Kb=1/R=1/2.1194=0.47W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为加气混凝土砌块层热阻,0.2/(0.20*1.25)=0.80 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W;

4-4-传热过程计算

知识点4-4 传热过程计算 【学习指导】 1.学习目的 通过本知识点的学习,掌握换热器的能量衡算,总传热速率方程和总传热系数的计算。在传热计算的两种方法中,重点掌握平均温度差法,了解传热单元数法及应用场合。 2.本知识点的重点 换热器的能量衡算,总传热速率方程和总传热系数的计算,用平均温度差法进行传热计算。 3.本知识点的难点 传热单元数法。 4.应完成的习题 4-4 在某管壳式换热器中用冷水冷却热空气。换热管为φ25×2.5 mm的钢管,其导热系数为45 W/(m·℃)。冷却水在管程流动,其对流传热系数为2600 W/(m2·℃),热空气在壳程流动,其对流传热系数为52 W/(m2·℃)。试求基于管外表面积的总传热系数以及各分热阻占总热阻的百分数。设污垢热阻可忽略。 4-5 在一传热面积为40m2的平板式换热器中,用水冷却某种溶液,两流体呈逆流流动。冷却水的流量为30000kg/h,其温度由22℃升高到36℃。溶液温度由115℃降至55℃。若换热器清洗后,在冷、热流体量和进口温度不变的情况下,冷却水的出口温度升至40℃,试估算换热器在清洗前壁面两侧的总污垢热阻。假设: (1)两种情况下,冷、热流体的物性可视为不变,水的平均比热容为4.174 kJ/(kg·℃); (2)两种情况下,αi、αo分别相同;

(3)忽略壁面热阻和热损失。 4-6 在套管换热器中用水冷却油,油和水呈并流流动。已知油的进、出口温度分别为140℃和90℃,冷却水的进、出口温度分别为20℃和32℃。现因工艺条件变动,要求油的出口温度降至70℃,而油和水的流量、进口的温度均不变。若原换热器的管长为1m,试求将此换热器管长增至若干米后才能满足要求。设换热器的热损失可忽略,在本题所涉及的温度范围内油和水的比热容为常数。 4-7 冷、热流体在一管壳式换热器中呈并流流动,其初温分别为32℃和130℃,终温分别为48℃和65℃。若维持冷、热流体的初温和流量不变,而将流动改为逆流,试求此时平均温度差及冷、热流体的终温。设换热器的热损失可忽略,在本题所涉及的温度范围内冷、热流体的比热容为常数。 4-8 在一管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。已知苯蒸汽的体积流量为1600 m3/h,常压下苯的沸点为80.1℃,气化潜热为394kJ/kg。冷却水的入口温度为20℃,流量为35000kg/h,水的平均比热容为4.17 kJ/(kg·℃)。总传热系数为450 W/(m2·℃)。设换热器的热损失可忽略,试计算所需的传热面积。 4-9 在一传热面积为25m2的单程管壳式换热器中,用水冷却某种有机物。冷却水的流量为28000kg/h,其温度由25℃升至38℃,平均比热容为4.17 kJ/(kg·℃)。有机物的温度由110℃降至65℃,平均比热容为1.72 kJ/(kg·℃)。两流体在换热器中呈逆流流动。设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机物的处理量。 4-10 某生产过程中需用冷却水将油从105℃冷却至70℃。已知油的流量为6000kg/h,水的初温为22℃,流量为2000kg/h。现有一传热面积为10 m2的套管式换热器,问在下列两种流动型式下,换热器能否满足要求: (1)两流体呈逆流流动; (2)两流体呈并流流动。 设换热器的总传热系数在两种情况下相同,为300 W/(m2·℃);油的平均比热容为1.9 kJ/(kg·℃),水的平均比热容为4.17kJ/(kg·℃)。热损失可忽略。

天然气消耗量计算方法

天然气消耗量计算方法 注:以下为各种用途天然气的测算公式,属经验值。 一、相关换算数值 (一)1方天然气相当于1.1升汽油 (二)一吨柴油相当于1134方天然气 (三)一吨重油相当于1080方天然气 (四)一吨石油液化气相当于1160方天然气 (五)一吨煤相当于740方天然气(煤的热值为7000大卡) (六)天然气热值一般在8500-9000大卡不等 (七)一标方天然气相当于10度电 二、民用气用气量测算公式 (一)已知市场用量测算(已有市场深度开发) 1、商服用气量测算公式 (1)餐饮用气量测算公式: A、职工食堂用气量测算公式:人数×0.09方/人=日用气量×年用气量天数=年用气量; B、酒店餐饮日均用气量测算公式(住宿):酒店床位数(人)×入住率×0.09方/人(提供三餐)=日均用气量×年用气量天数=年用气量; C、餐厅日均用气量测算公式(对外营业):客流量(人次)×0.03方/人(提供一餐)=日均用气量×年用气量天数=年用气量。 (2)洗浴业用气量测算公式: 客流量(人次)×0.09方/人=日均用气量×年用气量天数=年用气量。

2、居民用气量测算公式 居民用气量测算公式:户数×0.4方/户=日用气量×年用气量天数=年用气量。 3、民用气用气量测算公式 民用气用气量=商服用气+居民用气。 (二)未知市场用量测算(新市场开发) 1、数据来源:各地统计局,各年度《统计年鉴》 2、历史人口增长率 (1)历史人口:《统计年鉴》三-五年人口数据 (2)在计算出个年人口环比的情况下,求出三-五年人口环比平均自然增长率 (3)历史城镇人口:《统计年鉴》三-五年人口数据 (4)历史城镇人口环比增长率:由《统计年鉴》三-五年人口数据中,计算出平均人口环比增长率 3、未来若干年人口增长预测 (1)当年人口数量=上一年人口数量×历史人口环比平均自然增长率+上一年人口数量(以此类推) (2)当年城镇人口数量=上一年城镇人口数量×历史城镇人口环比平均自然增长率+上一年城镇人口数量(以此类推) (3)居民户数测算=当年城镇人口数量÷单户均平人口数(《统计年鉴》) 4、民用气预测

烟气冷凝热回收方案设计与计算

烟气冷凝热回收方案设计与计算 《燃气应用》课程2010-2011学年春季学期大作业

目录 一、研究背景 (2) 二、研究问题 (3) 三、方案设计及计算 (4) 1.方案一计算 (4) 2.方案二计算 (10) 3.1给定方案计算 (10) 3.2扩展方案设计及计算 (10) 四、比较探讨 (15) 五、总结思考 (15) 六、课程总结 ...........................................................................错误!未定义书签。 一、研究背景

在北京,近几年出现了许多作为区域供热热源的中小型天然气锅炉,2005年北京用于采暖的天然气耗量约20亿Nm3/年,如果50%的锅炉能够回收这些天然气燃烧的烟气冷凝热,将节约天然气用量1.5亿Nm3/年。天然气价格按1.8元/Nm3计,则每年可减少燃料费用2.7亿元。可见,实现天然气烟气冷凝余热在采暖的应用,将会显示出巨大的经济效益和社会效益。 由于天然气的主要成分为甲烷,含氢量很高,因而燃烧后排出的烟气中含有大量的水蒸气(容积成分接近20%),水蒸气的汽化潜热占天然气高位发热量的比例为10%-11%,若将烟气冷凝潜热回收,可较大幅度提高天然气的利用效率,因此回收利用烟气余热是提高天然气利用效率的一种有效途径。 目前,燃气锅炉回收烟气冷凝热利用系统是按照温度低的供热回水通过设臵在锅炉尾部的凝水换热器使烟气冷却,从而获取烟气的部分显热和水蒸气潜热。在空气温度低的环境中,一些冷凝锅炉还在冷凝换热器后设臵空气预热器,使烟气温度进一步降低,冷凝热进一步得到利用,被加热的空气进入锅炉燃烧。 具体分析实际工程:锅炉工 作将产生较高温度的水,同时为 了避免低温水通入锅炉导致锈蚀 等一系列问题,需要对送进锅炉 的水有一定温度要求。另一方面, 房间侧采用地板采暖或者暖气片 采暖等不同形式所需要的供水温 度不一样(回水温度也相应不一 样),但都比锅炉出水温度低。 因此合理的安排利用锅炉高温出 水、房间低温回水、高温烟气等资源(如图1所示)满足各处温度需求的同时利用烟气冷凝回收热减少能耗是一个很值得研究探讨的问题。 二、研究问题 基于上述研究背景,课程设臵研讨问题,分析比较采取下述两种不同的方案实现烟气冷凝热回收时的效率: 方案一: 此方案采用换热器+混水的方式, 具体图示如右图所示。 从图中可以看出此方案通过将锅 炉中排出的高温烟气与房间回水通过 换热器进行换热从而实现烟气冷凝热 回收。之后被烟气初步加热的水与锅 炉出口的高温水进行混水从而实现锅炉入口水的预热同时将锅炉出口水温降至房间供水温度要求。

相关文档