文档库 最新最全的文档下载
当前位置:文档库 › 条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布练习题及答案
条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布

1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次至少击中3次的概率为( )

A .

B . 2

C .

D .

2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )

3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为、、,则系统正常工作的概率为( )

A .

B .

C .

D .

4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )

5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n =

?

????

1 第n 次抛掷时出现正面,-1 第n 次抛掷时出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( )

6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( )

7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16

25,则该队员每次罚球的命中率为________.

8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.

9.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.

10.(2012·厦门质检)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则从袋外另取一个红球替换该白球放入袋中,继续做下一次摸球试验;如果摸出红球,则结束摸球试验.

(1)求一次摸球后结束试验的概率P1和两次摸球后结束试验的概率P2;

(2)记结束试验时的摸球次数为X,求X的分布列.

11.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.

(1)任选1名下岗人员,求该人参加过培训的概率;

(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.

12.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)

(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;

(2)求在2次游戏中获奖次数X的分布列.

1.选B P=C34××+C44×=2.

2.选A问题等价为两类:第一类,第一局甲赢,其概率P1=1

2;第二类,需比赛2

局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=3

4.

3.选B 可知K 、A 1、A 2三类元件正常工作相互独立.所以当A 1,A 2至少有一个能正常工作的概率为P =1-(1-2=,所以系统能正常工作的概率为P K ·P =×=.

4.选B P (A )=C 23+C 22

C 25

=410=25,P (A ∩B )=C 22C 25

=110.

由条件概率计算公式,得P (B |A )=PA ∩B PA =1

10410

=1

4.

5.选C 依题意得知,“S 4=2”表示在连续四次抛掷中恰有三次出现正面,因此“S 4=2”的概率为C 34

????123·

12=14.

6.选C 设“甲、乙二人相邻”为事件A ,“甲、丙二人相邻”为事件B ,则所求概率为P (B |A ),由于P (B |A )=PAB PA ,而P (A )=2A 44

A 55

=25,

AB 是表示事件“甲与乙、丙都相邻”,故P (AB )=2A 33

A 55

=110,于是P (B |A )=11025=14.

7.解析:设该队员每次罚球的命中率为p , 则1-p 2=1625,p 2=925.又0<p <1.所以p =3

5. 答案:35

8.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1××=.

答案:

9.解析:设种子发芽为事件A ,种子成长为幼苗为事件B .出芽后的幼苗成活率为P (B |A )=,P (A )=. 故P (AB )=×=.

答案:

10.解:(1)一次摸球结束试验的概率P 1=36=12; 两次摸球结束试验的概率 P 2=36×46=1

3. (2)依题意得,X 的所有可能取值有1,2,3,

4.

P (X =1)=12,P (X =2)=13,P (X =3)=36×26×56=536,P (X =4)=36×26×16×66=1

36.

则X 的分布列为

11.解:(1)任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与事件B 相互独立,且P (A )=,P (B )=.

所以该下岗人员没有参加过培训的概率是 P (A B )=P (A )·P (B )=(1-(1-=. 所以该人参加过培训的概率为1-=.

(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X 服从二项分布B (3,,

P (X =k )=C k 3×-

k

,k =0,1,2,3,

所以X 的分布列为

12.解:(1)①设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),

则P (A 3)=C 23C 25·C 12

C 2

3

=15. ②设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.

P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12

C 23=12

,且A 2,A 3互斥, 所以P (B )=P (A 2)+P (A 3)=12+15=710. (2)由题意可知X 的所有可能取值为0,1,2.

由于X 服从二项分布,即X ~B ????2,710.∴P (X =0)=????1-7102=9100; P (X =1)=C 12710×????1-710=2150;P (X =2)=???

?7102=49

100.

所以X 的分布列为

§11.4 条件概率、二项分布

§11.4 条件概率、二项分布 【复习目标】 独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 【知识梳理】 1. 条件概率 叫作B 发生时A 发生的条件概率,用符号P (A |B )来表示,其公式为 2. 相互独立事件 (1)一般地,对于两个事件A ,B ,如果有 ,则称A 、B 相互独立. (2)如果A 、B 相互独立,则 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有: . 3. 二项分布 进行n 次试验,如果满足以下条件: (1)每次试验只有两个相互对立的结果: ; (2)每次试验“成功”的概率均为p ,“失败”的概率均为 ; (3)各次试验是 . 用X 表示这n 次试验成功的次数,则P (X =k )= (k =0,1,2,…,n ) 若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的二项分布,简记为X ~B (n ,p ). 【复习自测】 1. 把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于 ( ) A.12 B.14 C.16 D.18 2. 某一批花生种子,如果每粒发芽的概率都为4 5 ,那么播下4粒种子恰有2粒发芽的概率是 ( ) A.16 625 B.96 625 C.192625 D.256625 3. 某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋 级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________. 4.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反 对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为1 3,他们的投 票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资. (1)求该公司决定对该项目投资的概率; (2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 【合作探究】 例1 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取 到不合格品后,第二次再取到不合格品的概率为________. 例2 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3 次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为1 2,且各次投篮互不影响. (1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.

1.2.1条件概率与独立事件

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

北师大数学选修课时分层作业2 条件概率与独立事件 含解析

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

【方法指导】《条件概率与独立事件、二项分布》学习指导1

《条件概率与独立事件、二项分布》学习指导 一.重、难点释疑及实例剖 1.重、难点释疑 (1)了解条件概率,并掌握条件概率的公式P (A|B )= ) ()(B P AB P ,并理解条件概率的 性质:任何事件的条件概率都在0和1之间,即0≤P (A|B )≤1; (2)了解两个事件相互独立的概念,区别事件的“互斥”与“相互独立”是两个不同的概念;掌握公式P (AB )=P (A )P (B )使用的前提条件:事件A 、B 为相互独立事件;理解1-P (A )P (B )表示两个相互独立事件A 、B 至少有一个不发生的概率. (3)理解二项分布:X ~B (n ,p ),掌握二项分布的概率计算公式:P (X=k )=k n C (1-p )n -k p k ,以及对应的概率分布列,掌握二项分布的常见实例:反复抛掷一枚均匀硬币、已知次品率的抽样、有放回的抽样、射手射击目标命中率已知的若干次射击等,并能解决一些简单的实际问题; (4)独立事件的概率、二项分布是高考考查的重点内容,对这部分知识的考查通常与其他知识结合在一起有一定的综合性. 2.实例剖析 (1)条件概率问题 例1.在10个各不相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( ) A . 5 3 B .5 2 C .10 1 D .9 5 分析:从题设可知,这是一个条件概率问题,可设出要求的事件A 、B ,由条件概率公式进行求解. 解析:方法一:设事件A =“第二次摸到红球”,事件B =“第一次摸到红球”, 则事件A|B 表示“在第一次摸出红球的条件下,第二次也摸到红球”, 由题意知,B 发生后,袋中还有9个球,其中5个红球4个白球,A 发生的概率为9 5, 即P (A|B )= 9 5. 方法二:设事件A =“第二次摸到红球”,事件B =“第一次摸到红球”, 则有P (B )=106 =53 ,P (AB )= 210 26A A = 31 ,那么有P (A|B )= ) () (B P AB P =5 331 =95 . 点评:此题为一典型的求解条件概率问题,解决中用了不同的思路,既可以根据条件概率的含义解决,也可以由条件概率公式求解,无论哪种方法,必须准确地找对事件A 、B 、 A|B 、AB ,并熟练地求出其概率. (2)独立事件问题 例2.某集团公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过; 方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

2019年秋浙教版初中数学九年级下册《简单事件的概率》单元测试(含答案) (626)

浙教版初中数学 九年级数学下册《简单事件的概率》测试卷 学校:__________ 一、选择题 1.(2分)一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A .28个 B .30个 C .36个 D .42个 2.(2分)从分别写着A 、B 、C 、D 、E 的 5 张卡片中,任取两张,这两张上的字母恰好按字母顺序相邻的概率是( ) A .15 B .25 C . 110 D .12 3.(2分)抛掷一枚普通的骰子(各个面分别标 12、3、4、5、6),朝上一面是偶数的概率为( ) A .16 B .12 C .13 D .14 4.(2分)如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为( ) A . 6 1 B . 8 1 C . 9 1 D . 12 1 5.(2分)下列事件,是必然事件的是( ) A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1 B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数 C .打开电视,正在播广告 D .抛掷一枚硬币,掷得的结果不是正面就是反面 6.(2分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A .6 B .16 C .18 D .24

7.(2分)“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是() A.1 B. 5 2 C. 5 3 D. 18 7 二、填空题 8.(3分)一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外其它完全相同,随机的 从袋中摸出两只恰好是一双的概率是. 9.(3分)某口袋里有红色、蓝色玻璃球共 60 个. 小明通过多次摸球实验后,发现模到红球的频率为 15%,则可估计口袋中红色玻璃球的数目是. 10.(3分)某单位内线电话的号码由 3 个数字组成,每个数字可以是 1,2,3 的一个,如果不知道某人的内线电话号码,任意拨一个号码接通的概率是. 11.(3分)一只口袋内装有3个红球,3 个白球,5个黄球,这些球除颜色外没有其它区别,从中任意取一球,则取得红球的概率为. 12.(3分)从 1、2、3、4、5 中任选两个数,这两个数的和恰好等于 7 的概率是.13.(3分)一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若 任意摸出一个绿球的概率是1 4 ,则任意摸出一个蓝球的概率是. 14.(3分)掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是. 15.(3分)在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是. 16.(3分)如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为. 17.(3分)已知29 x ,则3x= . 18.(3分)一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有个黑球. 19.(3分)某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是. 20.(3分)在一个布袋里装有红、自、黑三种颜色的玻璃球各一个,它们除颜色外没有其它

概率 2 条件概率与相互独立事件

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次至少击中3次的概率为( ) A . B . 2 C . D . 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为、、,则系统正常工作的概率为( ) A . B . C . D . 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n = ? ???? 1 第n 次抛掷时出现正面,-1 第n 次抛掷时出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________. 9.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.

2019年高考数学(理科)必考题突破讲座:第61讲 条件概率、n次独立重复试验与二项分布

第61讲 条件概率、n 次独立重复试验与二项分布 1.条件概率 (1)定义:设A ,B 为两个事件,且P (A )>0,称P (B |A )=__P (AB ) P (A )__为在事件A 发生的条 件下,事件B 发生的条件概率. (2)性质:①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=__P (B |A )+P (C |A )__. 2.事件的相互独立性 (1)定义:设A ,B 为两个事件,如果P (AB )=__P (A )·P (B )__,则称事件A 与事件B 相互独立. (2)性质:①若事件A 与B 相互独立,则P (B |A )=__P (B )__,P (A |B )=P (A ),P (AB )=__P (A )·P (B )__. ②如果事件A 与B 相互独立,那么__A 与B __,__A 与B __,__A 与B __也都相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 在__相同__条件下重复做的n 次试验称为n 次独立重复试验. A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=__P (A 1)P (A 2)…P (A n )__. (2)二项分布 在n 次独立重复试验中,用 X 表示事件 A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作__X ~B (n ,p )__,并称p 为__成功概率__.在 n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=__C k n p k (1-p ) n - k __(k =0,1,2,…,n ).

浙教版数学九年级上册2.2《简单事件的概率》word教案

2.2简单事件的概率(1) 教学目标: 1、了解事件A 发生的概率为()n m A P = ; 2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。 3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。 教学重点: 进一步经历用树状图、列表法计算随机事件发生的概率。 教学难点: 正确地利用列表法计算随机事件发生的概率。 教学过程: 一、实验操作,探索新知。 师:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出 一棋子,是黑棋子的可能性是多少? 生:由几名学生动手摸一摸。 (教师准备一个不透明的小袋子,里面装有3个黑围棋和2个白围棋) 师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的 各种可能结果的可能性相同,结果总数为n(事件A 发生的可能的结果总数为m),事 件A 发生的概率为()n m A P = 。 二、新课教学。 1、热身练习: 如图,三色转盘,每个扇形的圆心角度数相等,让转盘自由转 动一次, “指针落在黄色区域”的概率是多少? 师:结合定义作详细分析,为两个例题教学做准备。 (分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区域 的可能性相同,所有可能的结果总数为3=n ,其中“指针落在黄色区域”的可能结果 总数为1=m 。若记“指针落在黄色区域”为事件A ,则()n m A P = 3 1 =。 ) 设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学。 2、例题讲解: 例1 如图,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转 动,求(1)转盘转动后所有可能的结果; (2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率; (3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 例题解析: (1) 例1关键是让学生学会 分步思考的方法。 (2) 教师分析并让学生学会画树状图(教师板演)。 3、巩固练习:任意抛掷两枚均匀硬币,硬币落地后,

条件概率与超几何分布与二项分布练习题

条件概率及乘法公式练习题 1.一个袋中有9 张标有 1,2,3, , , 9 的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率() 2.有一批种子的发芽率为 0.9,出芽后的幼苗成活率为 0.8,在这批种子中,随机抽取一 粒,求这粒种子能成长为幼苗的概率。 3.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的11 概率是 2 ,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是 都出现红灯的概率。 3 ,求两次闭合4.市场供应的灯泡中,甲厂产品占有70%,乙厂产品占有30%,甲厂产品的合格率为95%,乙厂产品的合格率为80%。现从市场中任取一灯泡,假设A=“甲厂生产的产品”,A=“乙厂生产的产品” , B=“合格灯泡”,B =“不合格灯泡”,求: (1) P(B|A) ;( 2)P( B |A) ;( 3)P(B| A ) ;( 4) P(B | A ). 超几何分布及二项分布练习题 1.一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5 的 5 个红球与编号为1,2,3,4 的 4个白球,从中任意取出3个球. (Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率; (Ⅱ)求取出的3个球中恰有 2 个球编号相同的概率; 2.今年雷锋日,某中学从高中三个年级选派 4 名教师和 20 名学生去当雷锋志愿者,学生的名额分 配如下: 高一年级10 人高二年级 6 人 高三年级 4 人 ( I )若从 20 名学生中选出 3 人参加文明交通宣传,求他们中恰好有 1 人是高一年级学生的概率; ( II )若将 4 名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望 .

条件概率与超几何分布及二项分布练习题()

条件概率及乘法公式练习题 1.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) 2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽 取一粒,求这粒种子能成长为幼苗的概率。 3?某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的 1 1 概率是2,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是3,求两次闭合都出现红灯的概率。 4.市场供应的灯泡中,甲厂产品占有70%乙厂产品占有30%甲厂产品的合格率为95% 乙厂产品的合格率为80%现从市场中任取一灯泡,假设A= “甲厂生产的产品” ,A = “乙厂生产的产品”,B=“合格灯泡”,B = “不合格灯泡”,求: (1) P(B|A) ; (2) P( B |A) ; (3) P(B| A ) ; ( 4) P( B | A). 超几何分布及二项分布练习题 1. 一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5 的5个红球与编号为1,2,3,4 的4个白球,从中任意取出3个球. (I)求取出的3个球颜色相同且编号是三个连续整数的概率; (n)求取出的3个球中恰有2个球编号相同的概率; 2.今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的 名额分配如下: (I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率; (II )若将4名教师安排到三个年级 (假设每名教师加入各年级是等可能的,且各位教师

的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.

第十章 第九节 条件概率、事件的独立性与二项分布(理)

第十章第九节条件概率、事件的独立性与二项分布 (理) 题组一条件概率 1.已知盒中装有3 现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为() A. 3 10 B. 2 9 C.7 8 D. 7 9 解析:设事件A为“第1次抽到是螺口灯泡”,事件B为“第2次抽到是卡口灯泡”, 则P(A)=3 10 ,P(AB)=3 10× 7 9 =21 90 =7 30.在已知第1次抽到螺口灯泡的条件下,第2次抽 到卡口灯泡的概率为P(B|A)=P(AB) P(A) = 7 30 3 10 =7 9. 答案:D 2.设A、B为两个事件,若事件A和B同时发生的概率为 3 10,在事件A发生的条件下,事件B发生的概率为 1 2,则事件A发生的概率为________________. 解析:由题意知,P(AB)= 3 10 ,P(B|A)=1 2 , ∴P(A)= P(AB) P(B|A) = 3 10 1 2 =3 5. 答案: 3 5 3.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 解析:设种子发芽为事件A,种子成长为幼苗为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为: P(B|A)=0.8,P(A)=0.9. 根据条件概率公式P(AB)=P(B|A)·P(A)=0.9×0.8=0.72,即这粒种子能成长为幼苗的

概率为0.72. 答案:0.72 题组二 相互独立事件 4.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,1 5.假定三人的 行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.1 60 解析:因甲、乙、丙去北京旅游的概率分别为13,14,1 5.因此,他们不去北京旅游的概率 分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35. 答案:B 5.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是1 2,且 是相互独立的,则灯泡甲亮的概率为 ( ) A.18 B.14 C.12 D.116 解析:理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件AB - C ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C ) =12,所以P (AB - C )=P (A )·P (B )·P (C )=18 . 答案:A 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率. 解:(1)设甲、乙两人考试合格的事件分别为A 、B ,则 P (A )=C 26C 14+C 3 6C 310=23. P (B )=C 28C 12+C 38C 310 =1415. (2)因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为 P (A -B - )=P (A - )P (B - )=(1-23)(1-1415)=1 45 ,

【浙教版】九年级数学上册 第二章 简单事件的概率 自我评价测试(一)及答案

第二章 简单事件的概率每周自我评价测试 (第一周) 一.选择题(共10小题,每小题3分,共30分) 温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来! 1.一个盒子内装有大小.形状相同的四个球,其中红球1个.绿球1个.白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) 21.A 41.B 61.C 12 1.D 2.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( ) 161. A 163. B 41. C 16 5.D 3.一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是( ) A.16 B.15 C.25 D.35 4.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( ) A. B. C. D. 5.以上说法合理的是( )

A.小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30% B.抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6 C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖。 D.在一次课堂进行的试验中,甲.乙两组同学估计硬币落地后,正 面朝上的概率分别为0.48和0.51。 6.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情 况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球() A.28个 B.30个 C.36个 D.42个 7.有6张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8, 9.若将这六张牌背面 朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为() A. 2 3 B. 1 2 C. 1 3 D. 1 6 8.如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3, 4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形了乙:只要指针连续转六次,一定会有一次停在6号扇形丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等丁:运气好的时候,只要在转动前默默想好

2019年北师大版数学选修1-2练习(第1章)条件概率与独立事件(含答案)

2019年北师大版精品数学资料 条件概率与独立事件 同步练习 【选择题】 1、一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,第一次 取后不放回.则若已知第一只是好的,第二只也是好的概率为( ) A .53 B .52 C .95 D .3 1 2、袋中有2个白球,3个黑球,从中依次取出2个,则取出两个都是白球的概率 ( ) A .53 B .101 C .31 D .5 2 3、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为 ( ) A .P 3 B .(1-P)3 C .1-P 3 D .1-(1-P)3 4、设某种产品分两道独立工序生产,第一道工序的次品率为10%,第二道工序的 次品率为3%,生产这种产品只要有一道工序出次品就将生产次品,则该产品的次品率是( ). A .0.873 B .0.13 C .0.127 D .0.03 5、甲、乙、丙三人独立地去译一个密码,分别译出的概率为51,31,4 1,则此密码能译出的概率是 ( ) A . 60 1 B .5 2 C .5 3 D . 60 59 6、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为 81 80 ,则此射手的命中率为 ( ) A .3 1 B .4 1 C .3 2 D .5 2 7、n 件产品中含有m 件次品,现逐个进行检查,直至次品全部被查出为止.若第 n-1次查出m-1件次品的概率为r ,则第n 次查出最后一件次品的概率为( ) A .1 B .r-1 C .r D .r +1 8、对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4, 0.5和0.7,则三次射击中恰有一次命中目标的概率是 ( ) A .0.36 B .0.64 C .0.74 D .0.63 【填空题】 9、某人把6把钥匙,其中仅有一把钥匙可以打开房门,则前3次试插成功的概率 为 __. 10、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:

最新高中数学--条件概率与独立事件二项分布

高中数学--条件概率与独立事件二项分布 1.两个实习生每人加工一个零件.加工为一等品的概率分别为23和3 4,两个零件是否加 工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.1 2 B.512 C.14 D.16 【解析】 记两个零件中恰好有一个一等品的事件为A ,则P (A )=P (A 1)+P (A 2)=23×1 4+ 13×34=512 . 【答案】 B 2.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( ) A .[0.4,1] B .(0,0.4] C .(0,0.6] D .[0.6,1] 【解析】 设事件A 发生的概率为p ,则C 14p (1-p )3≤C 24p 2(1-p )2 ,解得p ≥0.4,故选 A. 【答案】 A 3.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( ) A .p 1=p 2 B .p 1

p 2 D .以上三种情况都有可能 【解析】 p 1=1-????1-110010=1-????99 10010 =1-????9 80110 0005 , p 2=1-????C 2 99C 21005 =1-????981005则p 1

浙教版九年级数学第二章简单事件的概率全章教案

课题:2.1事件的可能性 教学目标: 1、通过生活中的实例,进一步了解概率的意义; 2、理解等可能事件的概念,并准确判断某些随机事件是否等可能; 3、体会简单事件的概率公式的正确性; 4、会利用概率公式求事件的概率。 教学重点: 等可能事件和利用概率公式求事件的概率。 教学难点:判断一些事件可能性是否相等。 教学过程:第一课时 一、引言 出示投影: (1)1998年,在美国密歇根州的一个农场里出生了一头白色奶牛。据统计平均出生1千万头牛才会有一头是白色的。你认为出生一头白色奶牛的概率是多少? (2)设置一只密码箱的密码,若要使不知道秘密的人拨对密码的概率小于999 1 ,则密码的位数至少需要多少位? 这些问题都需要我们进一步学习概率的知识来解决。本章我们将进一步学习简单事件的概率的计算、概率的估计和概率的实际应用。 二、简单事件的概率 1、引例:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出一棋子,是黑棋子的可能性是多少? 小结:在数学中,我们把事件发生的可能性的大小,称为事件发生的概率 如果事件发生的各种可能结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为m ,那么事件A 发生的概率是n m A P )(。 2、练习: 如图 三色转盘,每个扇形的圆心角度数相等,让转盘自由转动一次, “指针落在黄色区域”的概率是多少? 3、知识应用: 例1、如图,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转动,求

(1)转盘转动后所有可能的结果; (2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率; 3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 解:将两个转盘分别自由转动一次,所有可能的结果可表示为如图,且各种结果的可能性相同。所以所有可能的结果总数为n =3×3=9 (1)能配成紫色的总数为2种,所以P = 9 2 。 (2)能配成绿色或紫色的总数是4种,所以P = 9 4。 练习:课本第32页课内练习第1题和作业题第1题。 例2、 一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。 (1)写出两次摸球的所有可能的结果; (2)摸出一个红球,一个白球的概率; (3)摸出2个红球的概率; 解:为了方便起见,我们可将3个红球从1至3编号。根据题意,第一次和第二摸球的过程中,摸到4个球中任意一个球的可能性都是相同的。两次摸球的所有的结果可列表表示。 (1)事件发生的所有可能结果总数为n = 4×4=16。 (2)事件A 发生的可能的结果种数为m =6, ∴n m A P = )(= 83 166= (2)事件B 发生的可能的结果的种数 m =9 ∴16 9)(== n m B P 练习:课本第32页作业题第2、3、4题 三、课堂小结: 1、概率的定义和概率公式。 2、用列举法分析事件发生的所有可能请况的结果数一般有列表和画树状图两种方法。 3、在用列表法分析事件发生的所有情况时往往第一次在列,第二次在行。表格中列在前,行在后,其次若有三个红球,要分红1、红2、红3。虽然都是红球但摸到不同的红球时不能表达清楚的。 四、布置作业:见课课通

2.2.1条件概率与事件的相互独立性

2. 2.1条件概率与事件的相互独立性 教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。 2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率. 2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自 动提款机上取钱时,忘记了密码的最后一位数字.求 (1) 任意按最后一位数字,不超过2次就对的概率; (2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则1 12()A A A A =表示不超过2次就按对 密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095 P A P A P A A ?=+=+=?. (2)用B 表示最后一位按偶数的事件,则 112(|)(|)(|)P A B P A B P A A B =+ 14125545 ?=+=?. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩, 问这时另一个小孩是男孩的概率是多少? 解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。 这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3. 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为 P ( AB )=P (A )P (B )=0.6×0.6=0.36 (2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。 因此所求概率为 48.06.0)6.01()6.01(6.0)()()()()()(=?-+-?=+=+B P A P B P A P B A P B A P 。

条件概率与正态分布

编号 115 二项分布及其应用、条件概率与正态分布(学案) 审核人签字:_____ 领导签字:___________ 【学习目标】:1、记忆条件概率与正态分布的概念,了解正态分布曲线的特点及其所表示的意义; 2、会准确判断概型,理解n次独立重复实验的模型,并能解决一些实际问题. 【知识梳理】: 1、互相独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,即 (|)(),(|)()P B A P B P A B P A ==,这样的两个事件叫做相互独立事件。 2、如果两个事件A 与B 相互独立,那么事件A 与B , A 与 B ,A 与B 也都是 。 3、两个相互独立事件A 、B 同时发生的概率为()P A B ?= ,此公式可以推广到n 个相互独立事件的情形:12()____________.n P A A A ?? ?= 4、条件概率:一般地,设A 、B 是两个事件,且()0P A >,称() (|)() P AB P B A P A = 为在事件A 发生的条件 下事件B 发生的条件概率。条件概率具有以下性质: 5、函数,()______________x μσ?= 的图象称为正态密度曲线,简称正态曲线。 6、对于任何实数a b <,随机变量X 满足()____________,P a X b <≤≈则称X 的分布为正态分布,正 态分布完全由参数 确定。因此正态分布常记作 ,如果X 服从正态分布,则记为 。 7、正态分布的特点:(1)曲线位于x 轴上方,与x 轴不相交,曲线与x 轴之间所围成的平面图形的面积为1; (2)曲线是单峰的,它关于直线 对称; (3)曲线在x μ=处达到峰值 ; (4)当μ一定时,曲线的形状由σ确定,σ越大,曲线 ,表示总体的分布越 ; σ越小,曲线 ,表示总体的分布越 。 8、在实际应用中,通常认为服从正态分布2 (,)N μσ的随机变量X 只取(3,3)a a μμ-+之间的值,并简称 为3δ原则。 一自我检测 1.设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=45 4 ,则n 与p 的值为( ) A .60,34 B .60,14 C .50,34 D .50,1 4 2.设随机变量X ~N (1,52 ),且P (X ≤0)=P (X >a -2),则实数a 的值为( ) A. 4 B. 6 C. 8 D. 10 3..某校约有1000人参加摸底考试,其数学考试成绩ξ~N (90,a 2 )(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的3 5,则此次数学考试成绩不低 于110分的学生人数约为( ) A. 200 B. 300 C. 400 D. 600 4、掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,则在30次试验中成功次数X 的期望是 5.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班所占的概率为__________. 6.抛掷红、黄两枚骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是_________. 7..设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是__________. 8.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则 (1)P (A )=__________; (2)P (B |A )=_________ 9、设在一次数学考试中,某班学生的分数服从X ~N(110,202 ),且知满分150分,这个班的学生共54人。求这个班在这次数学考试中及格(不小于90分)的人数和130分以上的人数。 。

相关文档
相关文档 最新文档