文档库 最新最全的文档下载
当前位置:文档库 › 数学中的归纳法及应用

数学中的归纳法及应用

数学中的归纳法及应用
数学中的归纳法及应用

题目归纳法在数学中的应用与地位学生

学号

指导老师

年级

学院

系别

xx年xx月

目录

目录 (2)

摘要 (3)

引言 (4)

一、数学归纳法的历史由来 (4)

二、归纳法的特点 (4)

二基本步骤 (5)

三数学归纳法的常用方法举例 (6)

3.1求同法 (6)

3.2求异法 (6)

3.3求同求异并用法 (7)

3.4共变法 (7)

3.5剩余法 (7)

四、在高等数学中的归纳法运用举例 (8)

五、数学归纳法解决应用问题 (9)

5.1代数恒等式方面的问题 (9)

5.2几何方面的应用 (9)

5.3排列和组合上的应用 (10)

5.4对于不等式的证明上的应用 (11)

六、总结 (11)

参考文献 (12)

致谢 (13)

摘要

数学归纳法是中学数学中一种常用的证题方法,是从特殊的具体的认识推进到一般的抽象的认识的一种思维方式,它是科学发现的一种长用的有效的思维方式.

它的应用极其广泛.本文讨论了数学归纳法的步骤,它集归纳,猜想,证明于一体,体现了数学归纳法的证题思路.本文归纳总结了数学归纳法解决代数恒等式,几何,排列组合等方面的一些应用问题的方法,并对应用中常见的误区加以剖析,以及一些证法技巧介绍,有利于提高对数学归纳法的应用能力.

数学归纳法的具体应用时,有许多更为灵活的形式,这一点是宜于注意的.

不完全归纳法仅仅依据同一事实的几次重复作出结论,只是停留在对事物的表面现象的观察上,没有深入地分析产生现象的原因,只有对现象产生的原因有了了解,才会提高结论的可信程度.

人们在长期的科学实践过程中,总结出了确定因果关系的几种逻辑方法:求同法、求异法、求同求异并用法、共变法、剩余法.

归纳法在数学中运用十分广泛.

关键词:数学归纳法数学归纳法的特点步骤应用.

Abstract

Mathematical induction is a common evidence method in secondary school mathematics, it is have very broad application. In this paper, author reaserch into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz themethod of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application.So-called mathematics inductive method is from the special concrete understanding propulsion to general of abstract of a kind of mode of thinking of[with] understanding, it is science discovers of a kind of long use of valid mode of thinking.

The inductive method is in mathematics make use of very extensively. Key words:Mathematical induction; steps;Application.

引 言

在中学数学学习的过程中,有一种很常见且基本的数学方法——数学归纳法.对于数学归纳法,有人问:为什么说数学归纳法是严格的证明方法?数学归纳法的原理是什么?数学归纳法的证明过程为什么要有这样的规定格式?数学归纳法的应用前景如何?下面将逐一进行解答

一、数学归纳法的历史由来

曾经有一个叫皮亚诺的意大利人把我们小时侯数数的过程归纳整理出来,称作正整数公理.这个公理有五条:“简单归纳一下,前四条是说:1是正整数,且它不是任何正整数的后面的一个数(称作后继),即1是第一个正整数,每个正整数都有唯一的后继,而且是正整数”;关键是第五条:“一个正整数集合,如果包含1,并且假设包含x ,也一定包含它的后继,那这个集合包含所有的正整数.”这一条就是数学归纳法的原理[]1.用符号表示,即:

如果S N í,且满足(1)1S ? (2)若k S ?则1k S + ,那么 S N = . 根据这一原理,就有了数学归纳法,设()P n 是与正整数有关的命题.如果

(1)当1n =时正确,即(1)P 正确

(2)若假设()P k 正确前提下,可以证明命题(1)P k 也正确

那么命题对任意正整数都是正确的.

数学归纳法的正确性可以用“正整数最小数原理”加以证明,正整数最小数原理是说,任何非空正整数集合一定含有最小数.

二、归纳法的特点

(1)归纳法是根据特殊现象推断一般现象,因而,由归纳所得的结论,超越了前提所包含的内容.

(2)归纳法是依据若干已知的不完尽的现象推断上属未知的现象,因而结论具有猜测的性质.

(3)归纳法的前提是单个事实、特殊情况,所以归纳是立足于观察、经验或实验的基础上的.

由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对于科学的发现却是十分有用的.观察、实验、对有限的资料作归纳整理,提出带有规律性的说法,乃是科学研究的最基本的方法之一.

例如多面体的面数F 、顶点数V 和棱数E 之间有什么关系呢?应该从何处着手来研究这个问题呢?最容易下手的莫过于拿几个多面体来看,具体地数一数它

们的面、顶点和棱.于是产生了下面的表:

分析这些特例的数据的基础上就可以归纳出一个结论:

F V E +=+.

尽管这时还不能认为这个结论是正确的,但是它毕竟为我们提供可一个研究的方向,即根据这个结论再去证实它符合一般多面体的情形.

又如,已知函数

()f x =,求{[()]}f f f x .显然无法下手直接计算得

出结果,最自然的想法乃是先求[()]f f x 及{[()]}f f f x 等特殊的简单的形式.易得:

f f x

=;

{[()]}f f f x

x =

;

于是,可以自然地归纳出结论:

{[()]}f f f x

=.

有了这个猜测性的结论之后,再去严格证明它.

二 基本步骤

数学归纳法是数学中一种重要而独特的证明方法,对与自然数n 有关的命题的证明是行之有效的.首先它的两个步骤缺一不可 ,其次它的应用非常广泛,可以用它解决好多方面的数学问题[]2.数学归纳法的步骤:

(1)当1n =时,这个命题是正确的

(2)假设当n k =时,这个命题是正确的,那么当1n k =+时,这个命题也是正确的.

数学归纳法的两个步骤缺一不可.一方面不要认为,一个命题在1

n=的时候正确,在2

n=

n=时也正确,则这个命题就正确了.老实说,不要说当3 n=时正确,在3

的时候正确不算数,就是n为1000的时候正确,或者1万的时候正确,对任何自然数是否正确,还得证明了再说.

三数学归纳法的常用方法举例

3.1求同法

某种被研究的对象,在几种不同的情形下都出现,而在各种情形中只有一个条件是共同的,于是,就可以认为这个条件是被研究现象产生的原因.

它的公式可以表示为:

情形各种条件被研究的对象

I ,,

A B C a

II ,,

A D E a

III ,,

A F G a

可以认为A是a的原因.

两个边长相等的正方形,其中一个正方形某顶点重合于另一个正方形的中心O,并绕O点旋转,无论旋转到任何位置,两个正方形重叠部分的面积总是一个定值.两个边长相等的正六边形也具有同样的性质.由此使我们猜想到,这个现象产生的原因只在于两个多边形边长相等而且是正多边形,它与边数的多少无关.

伽利略观察到,摆长相等﹑振幅不相等时,摆动一个周期的时间不变,于是,肯定了摆长是周期的决定因素.

3.2 求异法

某种被研究的现象a,只有在第I种情形出现,在第II种情形不出现,而I﹑II两种情形除I有条件A而II没有条件A外,其余条件都相同,于是,可以认为A 是现象a产生的原因或部分原因。

求异法的公式是:

情形各种条件被研究的对象

I ,,

A B C a

II ,B C—

可以认为是现象a产生的原因或部分原因

在种子、土地、气温相同的条件下,如果施用有机肥,产量就低。由此可以说明,施用有机肥时增产的原因,在相同的饲养条件下,如果给牛播送轻音乐,则牛奶产量高,说明播送轻音乐可以使牛奶产量增加。

3.3 求同求异并用法

在一系列的情形中,凡有条件A 的都有现象a 出现凡没有条件A 的则现象a 不出现,则可认为A 是现象a 的原因。

求同求异并用法:

情形 各种条件 被研究的对象

I ,,A B C a

II ,,A D E

a III ,,A F G a

IV M N —

V X Y —

可以认为A 是a 的原因。

这种方法比单纯的求同法或求异法更为可靠。

3.4 共变法

在一系列的情形中,其余条件保持不变,只把条件A 作大小强弱的变化,如果由此也只引起现象a 的大小强弱变化,则可认为A 是a 的原因.

共变法的公式是:

情形 各种条件 被研究的对象

I 1A ,,B C 1a

II 2A ,,B C 2a

III 3A ,,B C 3a 可以认为A 是a 的原因。

共变法多用于两种因素之间的量的依存关系.用柱面图或曲线表示两个变量之间的关系,也是共变法的一种表现.

3.5 剩余法

一组条件引起一组现象,如果除去条件A 和现象a 外,可以其余条件是其余现象的原因,就是A 是a 的原因.

剩余法的公式是:

情形 各种条件 被研究的对象

I ,,A B C ,,a b c

II B

b III C

c 可以认为A 是a 的原因。

含铀的沥青矿可以发出放射线,,居里夫人已经掌握了这种放射的强度.一次,居里夫人从含铀的沥青矿中,发现了超乎寻常的放射线的强度.于是,他推测应当有另一种放射性元素存在,经过艰苦的工作终于发现了镭.

四、在高等数学中的归纳法运用举例

例1 证明若1x >-,则不等式(1)1n x n +? (1)n ⑴

为真,且仅当0x =时,等号成立.

证明:当0x =时,显然式⑴等号成立.

下面设1x - 且0x 1,n

当2n 时,(1)1212,x x x x +=++>+ 式⑴成立.

假设n k =时, 式⑴成立, 即 (1)1k x kx +? ;

当1n k =+时, 由上式得

1(1)(1)(1)(1)(1)k k x x x kx x ++=++>++

21(1)1(1)k x kx k x =+++>++

可见,当1n k =+时, 式⑴也成立.

故对一切n >的自然数, 式⑴都成立.

例2 用数学归纳法的思想证明

n +++= (1)2n n + (2) , 对任何自然数n 皆成 立.

证明:当1n =时, 12n +++= 12

12′==(1)

2n n +, 则式(2)显然成立.

假设n k =时, 式(2)成立, 即

12k +++= (1)2k k + 当1n k =+时, 由上式得

12(1)k ++++= (12)1k ++++= (1)2k k ++1 =22

2k k ++=(1)(2)

2

k k ++ ; 则,显然可以看出当1n k =+时式(2)也成立;

故对一切自然数, 式(2)都成立.

五、数学归纳法解决应用问题

数学归纳法在讨论涉及正数无限性的问题时是一种非常重要的方法,在中学数学着中它的地位和作用可以从三个方面来看:(1)中学数学中的许多重要结论,如等差数列、等比数列的的通项公式与前n 项和公式,二项公式定理等都可以用数学归纳法进行证明. 对于由完全归纳法得到的某些与自然数有关的数学命题,我们也常采用数学归纳法来证明它们的正确性。(2)运用数学归纳法可以证明许多数学问题.既可以开阔眼界,又可以受到推理论证的训练.对于一些用常规的分析终合法不好证明的题,用数学归纳法往往会得到一些意想不到的好结果 (3) 数学归纳法在进一步学习数学时会经常用到,因此掌握这种方法可以为今后的高等数学的学习打下一个良好的基础.通过对数学归纳法的了解,我们不难发现,它的应用是十分广泛的,用这个数学方法可解决以下几个方面的数学问题[4].

5.1代数恒等式方面的问题

有不少的代数恒等式,它的严格证明需要用到数学归纳法.

例1 数列的第n 项,可以用公式1(1)n a a n d =+- ()* 表示,这里1a 是它的首项,d 是公差.

证明:当1n =时,11a a =,()*式成立

假设当n k =时,

()*式成立,那么当1n k =+时,有:111(1)[(1)1]k k a a d a k d d a k d +=+=+-+=++-

当1n k =+时,()*式也成立

由此可知,对于所有的自然数n ,()*式均成立.

5.2几何方面的应用

例2 凸n 边形的内角和等于 ()(2)180f n n =-

证明:当3n =时,就是三角形内角和为180 ,而

(3)(2)180(32)180180f n =-?-?

即3n =时,命题成立

假设当n k =时,凸k 边形内角和等于()(2)180f k k =- 成立

因为凸(1)k +边形可以添一条对角线而成一个凸k 边形与一个三角形,所以凸(1)k +边形内角和为凸k 边形内角与三角形内角的和.

即(1)(2)180180f k k +=-?

[(1)2]180k =+-

也就是说,当1n k =+时,命题也成立.

5.3 排列和组合上的应用

数学归纳法最简单的应用之一,是用来研究排列和组合的公式.

例3 证明: !!()!m n n C m n m =- 1

证明:首先,1n

C n =,这是显然的.如果再能证明当1m n <<的时候,111m m m n n n C C C ---=+ 2 , 那么式子1也就可用数学归纳法来证明.

我们假定有n 个不同的元素12,,,,n a a a 每次取出m 个元素的组合里,可以分为两

类,一类含有1a ,一类不含有1a ,含有1a 的组合数,就等于从2,,,n a a 里取1

m -个元素的组合数,它等于11m n C --;不含有1a 的组合数, 就等于从2,,,n a a 里取m 个

的组合数,它等于1m n C -;所以,111m m m n n n C C C ---=+ 下面我们证明式子1

因为当1n =的时候,这个定理是正确的

假设当1n k =-的时候,这个定理是正确的,那么,

111(1)!(1)!

!(1)!(1)!()!m m m k k k k k C C C m k m m k m -----=+=+----

!

!()!k m k m =- (这里1m k <<)

所以n k =时,这个定理也是正确的 故,公式!!()!m n n C m n m =-是成立的.

5.4对于不等式的证明上的应用

例4

1

<+

n个根号

(0)

a>

证明:当1

n=时,左边

1 =

因为0

a>,

所以1

<成立

即当1

n=时,命题成立

假设当n k

=时这个命题成立,即

1

<

k个根号

当1

n k

=+时,

<

k+1个根号k个根号

1

<<==

这就是说,当1

n k

=+时,命题成立

由上述可知,对于n N

命题成立

总之,数学归纳法是一种非常好,非常简便,应用广泛的证明命题的方法.数学归纳法是直接证明命题的一种重要方法,一般地说,与正整数有关

的恒等式,不等式,数的整除性,数列的通项及前n项和等问题,都可用数

学归纳法解决.下面对数学归纳法应用中常见误区加以剖析,以及一些证法

技巧介绍,从而提高学生对数学归纳法的应用能力.

六、总结

在数学归纳法中,目标意识的作用特别重要.本文结合实例,对数学归纳法进行了介绍和论述.

控制原理及实践表明:解数学问题时,首先必须按照问题的要求确立一个解题目标,然后比较初始条件、中间状态、解题目标之间的差异,以此确定和控制解题方向,再进行推理运算,使差异逐步缩小,最终实现解题.众所周知,数学归纳法是一种重要的证明方法,是数学教学中的一大难点,为了解决这一难点,可以将目标意识运用在数学归纳法中.经过多年的探索和尝试,数学归纳法在人类的各个领域内都有很大的贡献,数学归纳法是科学研究最基本的方法.

在现代数学,特别是高等数学中,数学归纳法未来的发展是十分有前景的,它不仅使数学问题的解决变得简单化,规范化,也使我们更容易在解决这些数学问题时轻而易举的观察到在这些数学问题中的普遍规律.

参考文献

[1]吕宝兴.关于数学归纳法[J].数学教学. 2004.4

[2]乌仁.浅谈数学归纳法的两个步骤及其应用[J].赤峰学院学报. 2007.6

[3]余元希等.初等代数研究(上册)[M].高等教育出版社

[4]张黎民.数学归纳法的应用与技巧[J].青海师范大学民族师范学院学报.

2001.1

[5]武瑞雪.数学归纳法应用技巧及常见误区剖析[J].语数外学习(高中版).

2007.11

[6]李世杰.数学归纳法应用功能的拓广[J].上海中学数学. 2004.5

[7]韩文.例析数学归纳法的应用[J].安徽电子信息职业技术学院学报. 2006.6

[8] 闫晓红、王贵鹏. 数学分析[M].出版社地址:中国时代经济出版社,2001年

[9]王仲春、李元中、顾莉雪、孙名符.数学思维与数学方法论[M]. 出版社地址:高等教育出版社,1986年

[10]黄光谷、黄川、蔡晓英、李杨.吉米多维奇数学分析习题集选解[M]. 出版社地址:华

科技大学出版社,2006年

致谢

本篇论文虽然凝聚着自己的汗水,但却不是我个人智慧的产品,没有老师的指导和赠予,没有同学们和朋友们的帮助和支持,我的论文质量会大打折扣。当我完成毕业论文的最后一个字符的时候。涌上心头的不是我已经完成了毕业论文带给我的喜悦,而是源自心底的诚挚谢意。我首先要感谢老师的指导,我也在努力的积蓄着力量,尽自己最大的努力回报学校校的培育之情,争取让自己在以后的人生中对社会产生积极的价值从而提升自己的人生价值!

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

数学中的归纳法及应用

题目归纳法在数学中的应用与地位学生 学号 指导老师 年级 学院 系别 xx年xx月

目录 目录 (2) 摘要 (3) 引言 (4) 一、数学归纳法的历史由来 (4) 二、归纳法的特点 (4) 二基本步骤 (5) 三数学归纳法的常用方法举例 (6) 3.1求同法 (6) 3.2求异法 (6) 3.3求同求异并用法 (7) 3.4共变法 (7) 3.5剩余法 (7) 四、在高等数学中的归纳法运用举例 (8) 五、数学归纳法解决应用问题 (9) 5.1代数恒等式方面的问题 (9) 5.2几何方面的应用 (9) 5.3排列和组合上的应用 (10) 5.4对于不等式的证明上的应用 (11) 六、总结 (11) 参考文献 (12) 致谢 (13)

摘要 数学归纳法是中学数学中一种常用的证题方法,是从特殊的具体的认识推进到一般的抽象的认识的一种思维方式,它是科学发现的一种长用的有效的思维方式. 它的应用极其广泛.本文讨论了数学归纳法的步骤,它集归纳,猜想,证明于一体,体现了数学归纳法的证题思路.本文归纳总结了数学归纳法解决代数恒等式,几何,排列组合等方面的一些应用问题的方法,并对应用中常见的误区加以剖析,以及一些证法技巧介绍,有利于提高对数学归纳法的应用能力. 数学归纳法的具体应用时,有许多更为灵活的形式,这一点是宜于注意的. 不完全归纳法仅仅依据同一事实的几次重复作出结论,只是停留在对事物的表面现象的观察上,没有深入地分析产生现象的原因,只有对现象产生的原因有了了解,才会提高结论的可信程度. 人们在长期的科学实践过程中,总结出了确定因果关系的几种逻辑方法:求同法、求异法、求同求异并用法、共变法、剩余法. 归纳法在数学中运用十分广泛. 关键词:数学归纳法数学归纳法的特点步骤应用. Abstract Mathematical induction is a common evidence method in secondary school mathematics, it is have very broad application. In this paper, author reaserch into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz themethod of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application.So-called mathematics inductive method is from the special concrete understanding propulsion to general of abstract of a kind of mode of thinking of[with] understanding, it is science discovers of a kind of long use of valid mode of thinking. The inductive method is in mathematics make use of very extensively. Key words:Mathematical induction; steps;Application.

数学归纳法的应用习题

第2课时数学归纳法的应用双基达标(限时20分钟) 1.利用数学归纳法证明1 n+ 1 n+1 + 1 n+2 +…+ 1 2n<1(n∈N *,且n≥2)时,第二步 由k到k+1时不等式左端的变化是 (). A.增加了 1 2k+1 这一项 B.增加了 1 2k+1 和 1 2k+2 两项 C.增加了 1 2k+1 和 1 2k+2 两项,同时减少了 1 k这一项 D.以上都不对 解析不等式左端共有n+1项,且分母是首项为n,公差为1,末项为2n 的等差数列,当n=k时,左端为1 k+ 1 k+1 + 1 k+2 +…+ 1 2k;当n=k+1时, 左端为 1 k+1 + 1 k+2 + 1 k+3 +…+ 1 2k+ 1 2k+1 + 1 2k+2 ,对比两式,可得结论. 答案 C 2.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是 ().A.假使n=2k+1时正确,再推n=2k+3正确 B.假使n=2k-1时正确,再推n=2k+1正确 C.假使n=k时正确,再推n=k+1正确 D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N*) 解析因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第(k+1)个正奇数即n=2k+1正确. 答案 B 3.已知平面内有n条直线(n∈N*),设这n条直线最多将平面分割成f(n)个部分,则f(n+1)等于

().A.f(n)+n-1 B.f(n)+n C.f(n)+n+1 D.f(n)+n+2 解析要使这n条直线将平面所分割成的部分最多,则这n条直线中任何两条不平行,任何三条不共点.因为第n+1条直线被原n条直线分成n+1条线段或射线,这n+1条线段或射线将它们所经过的平面区域都一分为二,故f(n+1)比f(n)多了n+1部分. 答案 C 4.已知S n=1 1·3+ 1 3·5+ 1 5·7+…+ 1 (2n-1)(2n+1) ,则S1=________,S2=________, S3=________,S4=________,猜想S n=________. 解析分别将1,2,3,4代入观察猜想S n=n 2n+1 . 答案1 3 2 5 3 7 4 9 n 2n+1 5.用数学归纳法证明“当n为正偶数时x n-y n能被x+y整除”第一步应验证n =________时,命题成立;第二步归纳假设成立应写成________________.解析因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除. 答案2x2k-y2k能被x+y整除 6.用数学归纳法证明: 1+1 22+ 1 32+…+ 1 n2<2- 1 n(n≥2). 证明:(1)当n=2时,1+1 22= 5 4<2- 1 2= 3 2,命题成立. (2)假设当n=k时命题成立,即1+1 22+ 1 32+…+ 1 k2<2- 1 k,当n=k+1时, 1+1 22+ 1 32+…+ 1 k2+ 1 (k+1)2 <2- 1 k+ 1 (k+1)2 <2- 1 k+ 1 k(k+1) =2- 1 k+ 1 k- 1 k+1=2- 1 k+1 ,命题成立. 由(1)、(2)知原不等式在n≥2时均成立. 综合提高(限时25分钟)

数学归纳法在离散数学中应用

数学xx在离散数学中的应用 在由一系列有限的特殊事例得出一般性结论的推理方法称为归纳法。而数学归纳法则是用于证明与自然数n有关的结论的归纳法:如果我们能够证明当n=1时结论是成立的,而且我们能用相同的方法由n=1命题成立证得n=2命题也成立;由n=2命题成立证得n=3成立;由n=3命题成立证得n=4成立…而且这个过程显然可以无穷进行下去。则我们就断言对于所有自然数n命题都是成立的。 数学xx的一般形式为,关键是归纳: 初始步):先证n=1时,结论成立; 归纳步):再证若假设对自然数n=k结论成立(或者对所有小于等于n的自然数k结论都成立),则对下一个自然数n=k+1结论也成立;文档收集自网络,仅用于个人学习 结论):根据初始步和归纳步的证明得出结论对所有自然数都成立。 当结论与多个自然数有关时这样一类题目的时候,要注意的一点就是对所要进行归纳的自然数的选择。 例1、对群的任意元素a,b,及任何正整数m,n, am an= am n 问题解析:这是自然数有关的结论。但这里涉及到两个自然数,但由元素 的幂的定义以及m和n的作用的对称性,故只要任意选择其中一个即可。 文档收集自网络,仅用于个人学习 证明:用数学xx对n进行归纳证明。 对任何正整数m,当n=0时,有am an= am a0= am e= am0。 故结论成立。

假设当n=k时,am ak= am k。则当n=k+1时,由*满足结合律、元素的幂的定义及归纳假设am ak1= am(ak*a)= (am ak)*a=am k*a= am(k1),即结论对n=k+1也成立。 文档收集自网络,仅用于个人学习故对任何正整数m,n, e am an= am n mn m1n1n m1(n m)1m n a a(a)(a)(a a)(a) a 例2、设d 1,d 2,…,d n为n个正整数,n≥2,并且 d i=2n-2。证明:存在i 1 n n个顶点的树T使它的顶点度数分别是d 1,d 2,…,d n。 文档收集自网络,仅用于个人学习 问题解析:在这个问题中,结论显然与顶点的个数n有关。故对n进行归纳,先构造出具有2个顶点满足条件的树。然后假设已经构造出具有k个顶点的树,由此构造出具有k+1个顶点的树。数学归纳法成功的关键是如何从k+1

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

数学归纳法在离散数学中的应用

数学归纳法在离散数学中的应用 在由一系列有限的特殊事例得出一般性结论的推理方法称为归纳法。而 数学归纳法则是用于证明与自然数n 有关的结论的归纳法:如果我们能够证明当n=1时结论是成立的,而且我们能用相同的方法由n=1命题成立证得n=2命题也成立;由n=2命题成立证得n=3成立;由n=3命题成立证得n=4成立…而且这个过程显然可以无穷进行下去。则我们就断言对于所有自然数n 命题都是成立的。数学归纳法的一般形式为,关键是归纳: 初始步):先证n =1时,结论成立; 归纳步):再证若假设对自然数n =k 结论成立(或者对所有小于等于n 的 自然数k 结论都成立),则对下一个自然数n =k+1结论也成立; 结论): 根据初始步和归纳步的证明得出结论对所有自然数都成立。 当结论与多个自然数有关时这样一类题目的时候,要注意的一点就是对所要进行归纳的自然数的选择。 例1、对群的任意元素 a,b ,及任何正整数m ,n, a m *a n = a n m + 问题解析:这是自然数有关的结论。但这里涉及到两个自然数,但由元素 的幂的定义以及m 和n 的作用的对称性,故只要任意选择其中一个即可。 证明:用数学归纳法对n 进行归纳证明。 对任何正整数m ,当n=0时,有 a m *a n = a m *a 0= a m *e= a 0+m 。 故结论成立。 假设当 n=k 时, a m *a k = a k m +。则当n=k+1时,由*满足结合律、 元素的幂的定义及归纳假设a m *a 1+k = a m *(a k *a)= (a m *a k )*a= a k m +*a= a )1(++k m ,即结论对n=k+1也成立。 故对任何正整数m,n, e a m *a n = a n m + n m m n m n n m n m a a a a a a a a +-+--------==*=*=*1 ) (1 1 1 ) () () () ( 例2、设d 1,d 2,…,d n 为n 个正整数,n ≥2,并且∑=n i i d 1 =2n-2。证明:存在 n 个顶点的树T 使它的顶点度数分别是d 1,d 2,…,d n 。

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。 一、用数学归纳法证明整除问题 用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。 例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. 证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立. (2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1), 由于3k -1-1是2的倍数,故18(3k - 1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除. 由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36. 二、用数学归纳法证明恒等式问题 对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 例2、是否存在常数c b a ,,,使得等式)(12 )1()1(32212222c bn an n n n n +++=+?++?+?对一切自然数n 成立?并证明你的结论. 解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得 ???? ?????++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11 ,3===c b a ,于是对3,2,1=n ,下面等式成立: )10113(12)1()1(32212222+++= +?++?+?n n n n n n 令222)1(3221+?++?+?=n n S n 假设k n =时上式成立,即)10113(12 )1(2+++= k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12 )1(++++++=k k k k k k

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4是证明一个命题对于所有的自然数都是成立的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为:

数学归纳法在高中数学中应用

数学归纳法在高中数学中的应用-中学数学论文 数学归纳法在高中数学中的应用 冯宁 (东莞市玉兰中学,广东东莞523413) 摘要:《全日制高中数学课程标准》指出在培养学生演绎推理能力的同时要重视合情推理能力的培养,与之对应的是归纳、猜想的思想和数学归纳的方法。数学归纳法是高中阶段一种重要的数学方法,它可用来解答或证明数列、函数、恒等式、不等式和几何等方面的问题,培养学生的观察、猜想与归纳的合情推理能力。 关键词:数学归纳法;高中数学;合情推理;演绎推理 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-02-0123-01 数学归纳法是高中阶段一种重要的数学方法,它常用来处理数列通项和其它关于自然数N的变化规律问题,以培养学生的观察、猜想与归纳的合情推理能力。在实际的教学中,教师对于数学归纳法的讲授和应用多停留在数列相关问题上。其实数学归纳法在中学数学中的应用远不止于此,它还可用来解答或证明恒等式、不等式、整除性和几何等方面的问题。 一、利用数学归纳法处理恒等式问题 例1、证明:C1n+2C2n+…+nCnn=n·2n-1n∈N。 分析:本题可运用二项展开式定理和倒序相加的技巧方法来证明,也可应用数学归纳法来证明。 证明:(1)当n=1时,显然命题成立; (2)假设当n=k时命题成立,即:C1k+2C2k+…+kCkk=k·2k-1。

则当n=k+1时,C1k+1+2C2k+1+3C3k+1+…+k+1Ck+1k+1=C0k+C1k+2C1k+C2k+3C2k +C3k+…+k+1Ckk=C1k+2C2k+…+kCkk+C0k+2C1k+…+k+1Ckk=k·2k-1+C0k+C1k+…+Ckk+C1k+2C2k+…+kCkk=k·2k-1+2k+k·2k-1 =k+1·2k 即当n=k+1时等式成立。 综上所述,当n∈N时,等式C1n+2C2n+…+nCnn=n·2n-1恒成立。二、利用数学归纳法处理不等式问题

数学归纳法的应用

数学归纳法的应用 姓名甘国优指导教师赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛。本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力。 关键词:数学归纳法;步骤;证明方法. Abstract:Mathematical induction is a common evidencemet hod in mathematics, it is have very broad application。 In this paper,author research into the step ofthe Mathematica l induction , it includes summariz,evidence andguess embod y the idea ofthe evidence ofmathematicalinduction. Also at here ,we summariz themethodof the mathemat ical inductionapplication insolvealgebra identities , g eometric ,order and portfolio ,and so on .also analyze the c ommonerrors on application and into duct skill of the proof ,proof ofskills introduced. It is help to incr eased the level of the Mathematical induction’s application.Key words:Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法。我们在学习

数学归纳法几种常见方式及其应用中存在的问题论文

数学归纳法几种常见方式及其应用中存在的问题 摘要 在处理数学问题时,经常涉及与任意自然数有关的一些命题,这些命题实质上是由无限个n取具体整数时得到的无限个命题组成的,我们往往不能逐一验证,这时,数学归纳法就是我们最常应用的一个有效的推理方法,为什么我们能够相信数学归纳法的证明呢?因为数学归纳法实质上是一种演绎推理法,华罗庚老先生是这样解释数学归纳法原理的:“我们采用形式上的讲法,也就是:有一批编了号码的数学命题,我们能够证明第1号命题是正确的;如果我们能够证明在第K 号命题正确的时候,第K+1号命题也是正确的,那么,这一批命题就全部正确.”其实,数学归纳法的正确性在我们学到的自然数的公理系统已经得到说明,他是与皮亚诺公理等价的一个本原性命题. 关键字数学归纳法常见方式及问题无限有限 数学归纳法(Mathematical Induction,通常简称为MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。是用来研究与正整数有关的数学问题,在高中数学中常用来证明等式(不等式)成立和数列通项公式成立。 数学归纳法一般分为以下几种常见的方式: (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤 (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (三)倒推归纳法(反向归纳法): (1)验证对于无穷多个自然数n命题P(n)成立, (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (四)螺旋式归纳法

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

相关文档
相关文档 最新文档