文档库 最新最全的文档下载
当前位置:文档库 › 固体从溶液中的吸附实验报告

固体从溶液中的吸附实验报告

固体从溶液中的吸附实验报告
固体从溶液中的吸附实验报告

固体从溶液中的吸附实验报告

院(系)生化系年级 10级专业化工姓名学号

课程名称物化实验实验日期 2012 年 11月 29 日实验地点 3栋指导老师

一、实验目的:

1·熟悉溶液吸附法测定固体比表面的原理和实验方法。

2?测定活性炭的比表面。

二、实验原理:

吸附能力的大小常用吸附量Γ表示之。Γ通常指每克吸附剂上吸附溶质的物质的量。吸附量Γ的大小与吸附平衡时溶质的浓度C有关,常用的关联式有两个:(1)Freundlich经验公式:

式中,x 表示吸附溶质的物质的量(mol);m 表示吸附剂的质量(g);c 表示吸附平衡时溶液的浓度(mol/L);k,n表示经验常数,由温度、溶剂、吸附

质与吸附剂的性质决定。

以lg Γ对lgc 作图可得一直线,由直线的斜率和截距可求得n 和k。

(2)Langmuir吸附方程:

式中,Γ∞表示饱和吸附量;C 表示吸附平衡时溶液的浓度;K 为常数.

用c/Γ对c作图得一直线,由此直线的斜率和截距可求得Γ∞,并进一步计算出吸附剂的比表面积S0

S0(m2/g)=

三、实验准备:

1.仪器:电动振荡器、分析天平、碱式滴定管、带塞锥形瓶(5个)、移液管、锥形瓶

2:药品:活性炭;HAC(0.4mol·ml-3);NaOH (0.1mol·ml-3);酚酞指示剂。

四、实验步骤:

1.

2.

4.

五、注意事项

1.溶液的浓度配制要准确,活性炭颗粒要均匀并干燥

2. 醋酸是一种有机弱酸,其离解常数Ka = 1.76×10-5 ,可用标准碱溶液直接滴定,化学计量点时反应产物是NaAc ,是一种强碱弱酸盐,其溶液pH 在8.7 左右,酚酞的颜色变化范围是8-10,滴定终点时溶液的pH 正处于其内,因此采用酚酞做指示剂,而不用甲基橙和甲基红。直到加入半滴NaOH 标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。

3.变红的溶液在空气中放置后,因吸收了空气中的CO2,又变为无色。

4. 以标定的NaOH 标准溶液在保存时若吸收了空气中的CO2,以它测定醋酸的浓度,用酚酞做为指示剂,则测定结果会偏高。为使测定结果准确,应尽量避免长时间将NaOH 溶液放置于空气中。 六、数据处理

1、已知 CNaOH=0.1040 mol/L

标准滴定醋酸:V HAC =10.00 ml c 0

V

V C

HAC

NaoH

NaoH

* 消耗NaoH 的平均体积 37.10ml

C 0=0.3858 mol/L

2、利用 V

V c

NaoH

NaoH

C 样品

*= 、 C=

m

C C 碳

1

.0*)(0- 求C 、Γ.

3、吸附等温线的绘制:以吸附量Γ对平衡浓度C 作出曲线。

4、作lg Γ=j

1

*lgc+lgk

求得:J=-4.983 k=0.0169

5、由c/Γ=1/(Γ∞*K)+C/T ∞得:

求得:Γ∞=0.02128 k= -0.03456 6、 由Γ∞计算活性炭的比表面积。

S 。= =3112.966 (m 2/g) 七、误差分析

对实验结果造成影响的原因可能如下:

1、活性炭表面上吸附有水分子,而计算时忽略了被水分子

占据的表面积。

2、活性炭表面上有小孔,有的小孔脂肪酸不能钻进去。

3、振荡时间过短或过长。

4、活性炭在称量过程中,由于暴露于空气中,会吸附空气

中的气体。

5、实验过程中温度会对实验结果造成影响。

八、思考题

1.吸附作用与哪些因素有关?固体吸附剂吸附气体与从溶液中吸附溶质有何不同?

答:吸附作用与温度、压力、溶剂、吸附质和吸附剂性质有关。

固体在溶液中的吸附,除了吸附溶质还有溶剂,液固吸附到达平衡时间更长;固体吸附剂吸附气体受温度、压力及吸附剂和吸附质性质影响:气体吸附是放热过程,温度升高吸附量减少;压力增大,吸附量和吸附速率增大;一般吸附质分子结构越复杂,被吸附能力越高。2.弗罗因德利希吸附等温式与朗缪尔吸附等温式有何区别?

答:朗缪尔吸附等温式是一个理想的吸附公式,它代表了在均匀

表面上,吸附分子彼此没有作用,而且吸附是单分子层情况下吸附达平衡时的规律性,有饱和吸附量值;弗罗因德利希吸附等温式属于真实吸附,是经验公式,但也有理论说明,θ范围比Langmuir 等温式要大一些,没有饱和吸附量值。

3.如何加快吸附平衡的到达?如何判断是否达到吸附平衡?

答:提高振荡速度;滴定两次不同时间的醋酸浓度时,两次消耗NaOH 体积相同,即可判断吸附已达到平衡。

九、实验小结

1. 测定固体比表面时所用溶液中溶质的浓度要选择适当,即初始溶液的浓度以及吸附平衡后的浓度都选择在合适的范围内。既要防止初始浓度过高导致出现多分子层吸附,又要避免平衡后的浓度过低使吸附达不到饱和。

2. 按朗格谬尔吸附等温线的要求,溶液吸附必须在等温条件下进行,使盛有样品的磨口锥形瓶置于恒温器中振荡,使之达到平衡。本实验是在空气浴中将盛有样品的磨口锥形瓶置于振荡器上振荡。实验过程中温度会有变化,这样会影响测定结果。

3.由实验结果可知,活性炭在醋酸溶液中的吸附为单分子层吸附,可用Langmuir 吸附等温式表征其吸附特性。用溶液吸附法测定活性炭比表面积,不需要特殊仪器,但测定过程中要防止溶剂挥发,以

免引起测量误差。此外,由于忽略界面上被溶剂占据部分,因此由这一方法所测得的比表面积一般偏小。但由于方法简便,可以作为了解固体吸附剂特性的一种简便方法。

溶液吸附法测固体比表面积

实验五 溶液吸附法测固体比表面积 一、实验目的: 1.了解溶液吸附法测定固体比表面的优缺点。 2.掌握溶液吸附法测定固体比表面积的基本原理和测定方法。 3.用亚甲基蓝水溶液吸附法测定活性碳、硅藻土、碱性层析氧化铝比表面积。 二、实验原理: ① Langmuir 吸附定律: 在一定温度下以及一定的浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,与固体对气体的吸附很相似,可用Langmuir 单分子层吸附模型来处理。 Langmuir 吸附理论的基本假定是: a) 固体表面是均匀的; b) 吸附是单分子层吸附; c) 被吸附在固体表面上的分子相互之间无作用力; d) 吸附剂一旦被吸附质覆盖就不能被再吸附; e) 吸附平衡时,吸附和脱附建立动态平衡; f) 吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。 根据以上假定,推导出吸附方程: 设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有 ?)c (kr= kN (1-为吸附速率常数) 吸附速率: 1 1吸? = rkN(k 为脱附速率常数) 脱附速率: -1 -1脱?? N = N (1-k )c 当达到吸附平衡时: r= r 即 k -11 脱吸Kc :由此可得 (1) 吸 θ? 1?Kc 吸式中K=k/k 称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温11-吸度,K 值越大,固体对吸附质吸附能力越强。若以q 表示浓度c 时的平衡吸附量,吸? =q/: q 以q 表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则?? q 代入式(1)得)(2 式中:K 为吸附作用的平衡常数,也称为吸附系数,与吸附质、吸附剂性质及温度有关,其值越大,则表示吸附能力越强;q 为平衡吸附量,1g 吸附剂达吸附平衡时,吸附的溶质的物质的量(mg/g );q 为饱和吸附量,1g 吸附剂的表面∞上盖满一层吸附质分子时所能吸附的最大量(mg/g );c 为达到吸附平衡时,溶 质在溶液本体中的平衡浓度。. ② 吸附剂对亚甲基蓝的吸附 溶液吸附法的吸附质一般用亚甲基蓝、苯酚、硬脂酸等,水溶性吸附质广泛应用于测定固体比表面积,由于在所有染料中亚甲基蓝具有最大的吸附倾向,故本实验选用亚甲基蓝作为吸附质,以活性碳、硅藻土、碱性层析氧化铝作为固体吸附剂。

吸收实验实验报告

一、 实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数K Y a. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速o u [m/s]为横坐标,单位填料层压降 Z P ?[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量L 0=0时,可知 Z P ?~o u 关系为一直线,其斜率约—2,当喷淋量为L 1时, Z P ?~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。每条折线分为三个区段, Z P ?值较小时为恒持液区, Z P ?~o u 关系曲线斜率与干塔的相同。Z P ?值为中间时叫截液区,Z P ?~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。 Z P ?值较大时叫液泛区,Z P ?~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。在液泛区塔已无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 吸收实验

图2-2-7-1 填料塔层的 Z P ?~o u 关系图 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: m Ya A Y H K N ???Ω?= (1) 式中:N A ——被吸收的氨量[kmolNH 3/h]; Ω——塔的截面积[m 2] H ——填料层高度[m] ?Y m ——气相对数平均推动力 K Y a ——气相体积吸收系数[kmolNH 3/m 3 ·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀2,后启动鼓风机,用阀2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为

_固体在溶液中的吸附

固体在溶液中的吸附 一、实验目的 (1)测定活性炭在醋酸水溶液中对醋酸的吸附作用,并由此计算活性炭的比表面; (2)验证弗罗因德利希(Freundlich )经验公式和兰格缪尔(Langmuir)吸附公式; (3)了解固-液界面的分子吸附。 二、实验原理 对于比表面很大的多孔性或高度分散的吸附剂,象活性炭和硅胶等,在溶液中有较强的吸附能力。由于吸附剂表面结构的不同,对不同的吸附质有着不同的相互作用,因而吸附剂能够从混合溶液中有选择地把某一种溶质吸附。根据这种吸附能力的选择性,在工业上有着广泛的应用,如糖的脱色提纯等 吸附能力的大小常用吸附量Г表示之。Г通常指每克吸附剂吸附溶质的物质的量,在恒定温度下,吸附量与溶液中吸附质的平衡浓度有关,弗罗因德利希(Freundlich )从吸附量和平衡浓度的关系曲线,得出经验方程: n kc m x 1 ==Γ (1) 式中:x 为吸附溶质的物质的量,单位为mol ;m 为吸附剂的质量,单位为g ;c 为平衡浓度,单位为mol·L -1;k ,n 为经验常数,由温度、溶剂、吸附质及吸附剂的性质决定(n 一般在0.1-0.5之间)。 将(1)式取对数: lg Г = lg m x =n 1lg c +lg k (2) 以lg Г对lg c 作图可得一直线,从直线的斜率和截距可求得n 和k 。(1)式纯系经验方程式,只适用于浓度不太大和不太小的溶液。从表面上看,k 为c =1时的Г,但这时(1)式可能已不适用。一般吸附剂和吸附质改变时,n 改变不大,而k 值则变化很大。 兰格缪尔(Langmuir)根据大量实验事实,提出固体对气体的单分子层吸附理论,认为固体表面的吸附作用是单分子层吸附,即吸附剂一旦被吸附质占据之后,就不能再吸附。固体表面是均匀的,各处的吸附能力相同,吸附热不随覆盖程度而变,被吸附在固体表面上的分子,相互之间无作用力;吸附平衡是动态平衡,并由此导出下列吸附等温式,在平衡浓度为c 时的吸附量Г可用下式表示: ck ck +Γ=Γ∞1 (3) Г∞为饱和吸附量,即表面被吸附质铺满单分子层时的吸附量。k 是常数,也称吸附系数。

物质对伽马射线的吸收实验报告

近代物理实验报告指导教师:得分: 实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节 实验者:班级材料0705 学号 5 姓名童凌炜 同组者:班级材料0705 学号 7 姓名车宏龙 实验地点:综合楼 507 实验条件:室内温度℃,相对湿度 %,室内气压 实验题目:物质对伽马射线的吸收 实验仪器:(注明规格和型号) 射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。 仪器组成如下图所示: 实验目的: 1.了解掌握射线与物质相互作用的性质和特点 2.学习掌握物质对射线的吸收规律 3.测量射线在不同物质中的吸收系数 4. 实验原理简述: 当原子核发生α和β衰变时,通常衰变到原子 核的激发态,由于处于激发态的原子核是不稳定的, 它要向低激发态跃迁,同时往往放出γ光子,这一现 象称为γ衰变。γ光子会与下列带电体发生相互作 用,原子中的束缚电子,自由电子,库伦场及核子。 这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。如右所示为为γ射线与物质相互作用的示意图

图中的三种状况分别为: 1. 低能时以光电效应为主。 2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。 3. 若入射光子的能量超过,则电子对的生成成为可能 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。射线束有一定宽度,只要没有散射光子,就可称之为“窄束”。 射线强度随物质厚度的衰减服从指数规律,即x e I I μ-=0 I 和0I 分别是穿透物质前后的γ射线强度;x 是γ射线穿过物质的厚度是光电、康普顿、电子对三种 效应截面之和;N 是吸收物质单位体积中的原子数;μ是物质的吸收系数, 反映了物质吸γ收射线能力的大小, 并且可以分解成这样几项: p c ph μμμμ++= γ射线与物质相互作用的三种效应的截面都随入射γ射线的能量γE 和吸收物质的原子序数Z 而改变。 如右所示, 图中给出了铅对γ射线的吸收系数与γ射线能量的线性关系图。 实际中通常用质量厚度)(2 -??=cm g x R m ρ来表示 吸收体的厚度,以消除密度的影响, 则射线强度的表达式修改为:ρ μ/0)(m R m e I R I -= 计数率N 总是与该时刻的射线强度成正比,因此可得:0InN R InN m +- =ρ μ 将对数形式的吸收曲线表达为图像, 得到这样的一条直线, 如右图所示. 并且可以从这条直线的斜率求出

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

固体表面的吸附

§12.8 固体表面的吸附 一、固体表面的特点 固体表面上的原子或分子与液体一样,受力也是不均匀的,所以固体表面也有表面张力和表面能。 固体表面的特点是: 1.固体表面分子(原子)移动困难,只能靠吸附来降低表面能。 2.固体表面是不均匀的 ,不同类型的原子的化学行为、吸附热、催化活性和表面态能级的分布都是不均匀的。 3.固体表面层的组成与体相内部组成不同。 二、吸附等温线 1、当气体或蒸气在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。 常用的吸附剂有:硅胶、分子筛、活性炭等。 为了测定固体的比表面,常用的吸附质有:氮气、水蒸气、苯或环己烷的蒸气等。 2、吸附量的表示 吸附量通常有两种表示方法: (1)单位质量的吸附剂所吸附气体的体积 (2)单位质量的吸附剂所吸附气体物质的量 3、吸附量与温度、压力的关系 对于一定的吸附剂与吸附质的系统,达到吸附平衡时,吸附量是温度和吸附质压力的函数,即: 通常固定一个变量,求出另外两个变量之间的关系,例如: (1)T =常数,q = f (p ),称为吸附等温式; (2)p =常数,q = f (T ),称为吸附等压式; (3)q =常数,p = f (T ),称为吸附等量式; 注:①这三种关系式中,吸附等温式最常用,从一组某类型的曲线可以得到其他两组曲线。 ②从吸附等温线可以反映出吸附剂的表面性质、孔分布以及吸附剂与吸附质之间的相互作用等有关信息。 常见的吸附等温线有如下5种类型:(图中p /p s 称为比压,p s 是吸附质在该温度时的饱和蒸气压,p 为吸附质的压力)。 见教材P359图13.34 三、Langmuir 吸附等温式 Langmuir 吸附等温式描述了吸附量与被吸附蒸气压力之间的定量关系。他在推导该公式的过程引入了两个重要假设: (1) 吸附是单分子层的; (2) 固体表面是均匀的,被吸附分子之间无相互作用。 31 m g V q m -=?单位:1 mol g n q m -=?单位:(,)q f T p =1ap ap θ=+a d k a k =

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

药物分析实验报告

实验四苯甲酸钠的含量测定 一、目的 掌握双相滴定法测定苯甲酸钠含量的原理和操作 二、操作 取本品1.5g,精密称定,置分液漏斗中,加水约25mL,乙醚50mL和甲基橙指示液2滴,用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,分取水层,置具塞锥形瓶中,乙醚层用水5mL洗涤,洗涤液并入锥形瓶中,加乙醚20mL,继续用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,即得,每1mL的盐酸滴定液(0.5mol/L)相当于72.06mg的C7H5O2Na。 本品按干燥品计算,含C7H5O2Na不得少于99.0% 三、说明 1.苯甲酸钠为有机酸的碱金属盐,显碱性,可用盐酸标准液滴定。 COO Na +H C l COOH +N aC l 在水溶液中滴定时,由于碱性较弱(Pk b=9.80)突跃不明显,故加入和水不相溶混的溶剂乙醚提除反应生成物苯甲酸,使反应定量完成,同时也避免了苯甲酸在瓶中析出影响终点的观察。 2.滴定时应充分振摇,使生成的苯甲酸转入乙醚层。 3.在振摇和分取水层时,应避免样品的损失,滴定前,使用乙醚检查分液漏斗是否严密。 四、思考题 1.乙醚为什么要分两次加入?第一次滴定至水层显持续橙红色时,是否已达终点?为什么? 2.分取水层后乙醚层用5mL水洗涤的目的是什么? 实验五阿司匹林片的分析 一、目的 1.掌握片剂分析的特点及赋形剂的干扰和排除方法。 2.掌握阿司匹林片鉴别、检查、含量测定的原理及方法。 二、操作 [鉴别] 1.取本品的细粉适量(约相当于阿司匹林0.1g),加水10mL煮沸,放冷,加三氯化铁试液1滴,即显紫堇色。 2.取本品的细粉(约相当于阿司匹林0.5g),加碳酸钠试液10mL,振摇后,放置5分钟,滤过,滤液煮沸2分钟,放冷,加过量的稀硫酸,即析出白色沉淀,并发生醋酸的臭气。 [检查] 游离水杨酸 取本品的细粉适量(约相当于阿司匹林0.1g),加无水氯仿3mL,不断搅拌2分钟,用无水氯仿湿润的滤纸滤过,滤渣用无水氯仿洗涤2次,每次1mL,合并滤液和洗液,在室温下通风挥发至干;残渣用无水乙醇4mL溶解后,移至100mL量瓶中,用少量5%乙醇洗涤容器、洗液并入量瓶中,加5%乙醇稀释至刻度,摇匀,分取50mL,立即加新制的稀硫酸铁铵溶液[取盐酸液(1mol/L)1mL,加硫酸铁铵指示液2mL后,再加水适量使成100mL] 1mL,摇匀;30秒钟内如显色,和对照液(精密称取水杨酸0.1g,置1000mL量瓶中,加冰醋酸1mL,

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定 课程名称:过程工程原理实验(乙) 指导老师: 成绩:__________________ 实验名称: 同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.了解填料吸收塔的构造并熟悉吸收塔的操作。 2.观察填料吸收塔的液泛显现,测定泛点空塔气速。 3.测定填料层压降ΔP与空塔气速u的关系曲线。 4.测定含氨空气—水系统的体积吸收系数K Yα。 二、实验装置 1.本实验装置的流程示意图见图5-1。主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。 2.物系是(水—空气—氨气)。惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计

20—液位计 图5-1 填料塔吸收操作及体积吸收系数测定实验装置流程示意图 三、基本原理 (一)填料层压力降ΔP 与空塔气速u 的关系 气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。 在一定喷淋密度下,气速增大至一定程度时,随气速增大,液膜增厚,即出现“拦液状态”(如图6中L 点以上),此时气体通过填料层的流动阻力剧增;若气速继续加大,喷淋液的下流严重受阻,使极具的液体从填料表面扩展到整个填料层空间,谓之“液泛状态”(如图6中F 点),此时气体的流动阻力急剧增加。图6中F 点即为泛点,与之相对应的气速称为泛点气速。 原料塔在液泛状态下操作,气液接触面积可达最大,其传质效率最高。但操作最不稳定,通常实际操作气速取泛点气速的60%~80%。 塔内气体的流速以其体积流量与塔截面积之比来表示,称之为空塔气速u 。 Ω = ' V u (1) 式中: u ——空塔气速,m/s V’——塔内气体体积流量,m 3/s Ω——塔截面积,m 2。 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定 相同,故转子流量计的读数值必须进行校正,校正方法详见附录四。 填料层压降ΔP 直接可由U 型压差计读取,再根据式(1)求得空塔气速u ,便可得到 一系列ΔP ~u 值,标绘在双对数坐标纸上,即可得到ΔP ~u 关系曲线。 (二)体积吸收系数K Y α的测定 1.相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为: mx y =* (2) 相平衡常数m 与系统总压P 和亨利系数E 的关系如下:

试验十六固体在溶液中的吸附

实验十六 固体在溶液中的吸附 一 实验目的 1. 测定活性炭在醋酸水溶液中对醋酸的吸附量; 2. 通过实验进一步理解吸附等温线及弗兰德列希方程的意义。 二 实验原理 1. 溶质在溶液中被吸附于固体表面是一种普遍现象,也是物质提纯的主要方法之一。活性炭是用途广泛的吸附剂,它不仅可以用于吸附气体物质,也可以在溶液中吸附溶质。 2. 吸附量通常以每克吸附剂吸附溶质的物质的量来表示。在一定温度下,达到吸附平衡的溶液中,吸附量与溶液浓度的关系,符合弗兰德列希经验方程: n c k m x q ?== (16-1) 式中 x - 吸附质物质的量(mol ); m - 吸附剂的质量(g ); q - 吸附量(mol·g -1c - 平衡时溶液的浓度(mol·dm ); -3k 、n - 常数,由温度、溶剂、吸附质及吸附剂的性质决定,一般由实验确定; ); 将式(16-1)取对数,则有: k c n m x lg lg lg += (16-2) 若以m x lg 对c lg 作图,可得一斜率为n ,截距为k lg 的直线,由直线可求得n 和k 的值。 式(16-1)中m x 可以通过吸附前后溶液浓度的变化及活性炭准确称量值求等得,即: V m c c m x ??=)(0 (16-3) 式中 V - 溶液的总体积(dm 3m - 活性炭的质量(g )。 ); 三 仪器和试剂 125cm 3锥形瓶8个;25 cm 3酸式、碱式测定管各1支; 5 cm 3、10 cm 3和25 cm 30.4mol·dm 移液管各1支;漏斗6只;振荡机一台。 -3HAc 标准溶液;0.1mol·dm -3四 实验步骤 NaOH 标准溶液;酚酞指示剂一瓶;活性炭(颗粒状或粉状)若干。 1.将0.4mol·dm -3HAc 标准溶液按下列比例稀释配制成50 cm 3 不同浓度的HAc 溶液并分别置于干燥洁净的锥形瓶中,编好号并盖好瓶塞,防止醋酸挥发。

填料吸收塔实验报告

填料吸收塔 一、实验目的 1.熟悉填料吸收塔的构造和操作。 2.测定气体通过干湿填料塔的压力降,进一步了解填料塔的流体力学特征。3.测定填料吸收塔的吸收传质系数。 二、实验原理 填料吸收塔一般要求控制回收率越高越好。填料塔为连续接触式的气液传质设备,填料塔操作时液体从塔顶经分布器均匀喷洒至塔截面上,沿填料表面下流经塔底出口管排出,气体从支承板下方入口管进入塔内,在压力的作用下自下而上的通过填料层的空隙而由塔顶气体出口管排出。填料层内气液两相成逆流流动,在填料表面的气液界面上进行传质,因此两相组成沿塔高边缘变化,由于液体在填料中有倾向塔壁的流动,故当填料层较高时,常将其分为若干段,在两段之间设置液体再分布装置,以利于流体的重新均匀分布。 填料的作用: 1.增加气液接触面积。满足(1)80%以上的填料润湿;(2)液体为分散相,气体为连续相。 2.增加气液接触面的流动。满足(1)合适的气液负荷;(2)气液逆流。 三、实验步骤 (1)将液体丙酮用漏斗加入到丙酮汽化器,液位高度约为液体计高度的2/3以上。 (2)关闭阀V3,向恒压槽送水,以槽内水装满而不溢出为度,关闭阀V5。 (3)启动空气压缩机,调节压缩机使包内的气体达到0.05~0.1Mpa时,打开V2,然后调节气动压力定值器,使进入系统的压力恒定在0.03Mpa。

(4)打开V4,调节空气流量(400L/H~500L/H); 打开V6,调节空气流量 (5)室温大于15℃时,空气不需要加热,配制混合气体气相组成y1在12%~14%mol 左右;若室内温度较低,可预热空气,使y1达到要求。 (6)要改变吸收剂温度来研究其对吸收过程的影响,则打开液体加热电子调节器,温度t3<35℃。 (7)各仪表读数恒定5min以后,既可记录或取样分析有关数据,再按预先设计的试验方案调节有关参数。 (8)A1为取样测y1; A2为取样测y2; (9)阀V10为控制塔底液面高度,以保证有液封。 四、实验记录 测试方案: 1.固定气体流量,改变液体流量; 固定CO2的流量,改变H2O的流量:

伽马射线的吸收实验报告

实验3:伽马射线的吸收 实验目的 1. 了解γ射线在物质中的吸收规律。 2. 测量γ射线在不同物质中的吸收系数。 3. 学习正确安排实验条件的方法。 容 1. 选择良好的实验条件,测量60 Co (或 137 Cs )的γ射线在一组吸收片(铅、 铜、或铝)中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1. 窄束γ射线在物质中的衰减规律 γ射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当γ射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的γ射线,通常称为窄束γ射线。单能的窄束γ射线在穿过物质时,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度的衰减服从指数规律,即 x Nx e I e I I r μσ--==00 ( 1 ) 其中I I ,0分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位为cm ),r σ是三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(N r σμ=,单位为1 =cm )。显然μ的大小反映了物质吸收γ射线能力的大小。 由于在相同的实验条件下,某一时刻的计数率n 总是与该时刻的γ射线强度I 成正比,因此I 与x 的关系也可以用n 与x 的关系来代替。由式我们可以得到 x e n n μ-=0 ( 2 ) ㏑n=㏑n 0-x μ ( 3 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直线的斜率的绝对值就是线性吸收系数μ。

由于γ射线与物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收物质的原子序数Z 而变化,因此单能γ射线的线性吸收系数μ是物质的原子序数Z 和能量γE 的函数。 p c ph μμμμ++= ( 4 ) 式中ph μ、c μ、p μ分别为光电、康普顿、电子对效应的线性吸收系数。其中 5 Z ph ∝μ Z c ∝μ ( 5 ) 2 Z p ∝μ 图2给出了铅、锡、铜、铝对γ射线的线性吸收系数与γ射线能量的关系曲线。 物质对γ射线的吸收系数也可以用质量吸收系数m μ来表示。

化工原理实验报告吸收实验要点

姓名 院 专业 班 年 月 日 实验内容 指导教师 一、 实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数K Y a . 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速o u [m/s]为横坐标,单位填料层压降Z P ?[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量L 0=0时,可知 Z P ?~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,Z P ?~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。每条折线分为三个区段, Z P ?值较小时为恒持液区,Z P ?~o u 关系曲线斜率与干塔的相同。Z P ?值为中间时叫截液区,Z P ?~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。 Z P ?值较大时叫液泛区,吸收实验

姓名 院 专业 班 年 月 日 实验内容 指导教师 Z P ?~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。在液泛区塔已无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的Z P ?~o u 关系图 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收

固体从溶液中的吸附实验报告

固体从溶液中的吸附实验报告 院(系) 生化系年级 10级专业化工姓名学号 课程名称物化实验实验日期 2012 年 11月 29 日实验地点 3栋指导老师 一、实验目的: 1·熟悉溶液吸附法测定固体比表面的原理与实验方法。 2?测定活性炭的比表面。 二、实验原理: 吸附能力的大小常用吸附量Γ表示之。Γ通常指每克吸附剂上吸附溶质的物 质的量。吸附量Γ的大小与吸附平衡时溶质的浓度C有关,常用的关联式有两个: (1)Freundlich经验公式: 式中,x 表示吸附溶质的物质的量(mol);m 表示吸附剂的质量(g);c 表示吸附 平衡时溶液的浓度(mol/L);k,n表示经验常数,由温度、溶剂、吸附质与吸附剂 的性质决定。 以lg Γ对lgc 作图可得一直线,由直线的斜率与截距可求得n 与k。 (2)Langmuir吸附方程: 式中,Γ∞表示饱与吸附量;C 表示吸附平衡时溶液的浓度;K 为常数、 用c/Γ对c作图得一直线,由此直线的斜率与截距可求得Γ∞,并进一步计算出吸 附剂的比表面积S S0(m2/g)=

三、实验准备: 1、仪器:电动振荡器、分析天平、碱式滴定管、带塞锥形瓶(5个)、移液管、锥形瓶 2:药品:活性炭;HAC(0、4mol·ml-3);NaOH (0、1mol·ml-3);酚酞指示剂。 四、实验步骤: 1、 2 五、注意事项 1、溶液的浓度配制要准确,活性炭颗粒要均匀并干燥

2、 醋酸就是一种有机弱酸,其离解常数Ka = 1、76×10-5 ,可用标准碱溶液直接滴定,化学计量点时反应产物就是NaAc ,就是一种强碱弱酸盐,其溶液pH 在8、7 左右,酚酞的颜色变化范围就是8-10,滴定终点时溶液的pH 正处于其内,因此采用酚酞做指示剂,而不用甲基橙与甲基红。直到加入半滴NaOH 标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。 3.变红的溶液在空气中放置后,因吸收了空气中的CO2,又变为无色。 4、 以标定的NaOH 标准溶液在保存时若吸收了空气中的CO2,以它测定醋酸的浓度,用酚酞做为指示剂,则测定结果会偏高。为使测定结果准确,应尽量避免长时间将NaOH 溶液放置于空气中。 六、数据处理 1、已知 CNaOH=0、1040 mol/L 标准滴定醋酸:V HAC =10、00 ml c 0 V V C HAC NaoH NaoH * 消耗NaoH 的平均体积 37、10ml C 0=0、3858 mol/L

固体在溶液中的吸附

实验报告 溶液吸附法测固体比表面积 一.实验目的 1. 用次甲基蓝水溶液吸附法测定颗粒活性炭的比表面积 2. 了解溶液吸附法测定比表面积的基本原理 二.实验原理 对于比表面积很大的多孔性或高度分散的吸附剂,像活性炭和硅胶等,在溶液中有较强的吸附能力。由于吸附剂表面结构的不同,对不同的吸附质有着不同的相互作用,因而,吸附剂能够从混合溶液中有选择地把某一种溶质吸附。这种吸附能力的选择性在工业上有着广泛的应用,如糖的脱色提纯等。 吸附能力的大小常用吸附量Г表示。Г通常指每克吸附剂上吸附溶质的量。在恒定的温度下,吸附量和吸附质在溶液中的平衡浓度c 有关,弗朗特里希从吸附量和平衡浓度的关系曲线,得一经验方程 1 n x kc m Γ== ⑴ 式中:x 为吸附溶质的量,以mol 为单位;m 为吸附剂的质量,以g 为单位;c 为吸附平衡时溶液的浓度,以mo l ·dm -3 为单位;k 和n 都是经验常数,由温度、溶剂、吸附质的性质所决定(一般n>1)。将⑴式取对数,可得下式 1313 1 1lg lg lg n n n c k mol g n mol dm mol dm g ----Γ=+ ⑵ 因此根据方程以lg[Γ/(1 mol g -)]对[lgc/(3 mol dm -)]作图,可得一直线,由斜率和截 距可求得n 及k 。⑴式纯系经验方程式,只适用于浓度不太大和不太小的溶液。从表面上看,k 为c=13 mol dm -时的Г,但这时⑴式可能已不适用。一般吸附剂和吸附质改变时,n 改变不大而k 值变化很大。 朗格缪尔吸附方程式系基于吸附过程的理论考虑,认为吸附是单分子层吸附,即吸附剂一旦被吸附质占据之后,就不能再吸附;在吸附平衡时,吸附和脱附达成平衡。设∞Γ为饱和吸附量,即表面被吸附质铺满单分子层时的吸附量。在平衡浓度为c 时的吸附量Г由 式 1cK cK ∞ Γ=Γ+ ⑶ 表示。将⑶式重新整理,可得 11c c K ∞∞ =+ΓΓΓ ⑷

溶液吸附法测定固体比表面积

实验五溶液吸附法测定固体比表面积 一、实验目的 了解Langmuir吸附理论及溶液法测定比表面积的基本原理 二、实验原理 比表面积是粉末及多孔性物质的一个重要特性参数。它在催化、色谱、环保及纺织等生产和科研部门有着广泛的应用。 测定比表面积的方法有电子显微镜法、色谱法及BET法。常用BET法(又分静态法和动态法),但仪器及数据处理复杂是其缺点。而本法所用仪器简单,操作方便。 本实验采用亚甲蓝染料水溶液吸附法测定硅胶的比表面积,亚甲蓝具有很强的吸附倾向,可被大多数固体物质吸附,在一定条件下为单层吸附,该吸附具有Langmuir吸附特征。 根据Langmuir理论,当吸附达饱和时,吸附质(亚甲蓝)分子铺满整个吸附剂(硅胶)表面而不留下空位。此时,单位质量的吸附质分子所占的面积就等于被吸附的吸附质的分子数与每个分子在表面层所占面积的乘积。通常通过测定吸附质的重量而求得吸附质分子数。按下式计算吸附剂的比表面积S(m2/g): S=Γ∞N A A/ΓM 5-1 式中:M为吸附质分子量(亚甲蓝的分子量为373.88),N A为阿弗伽德罗常数 (6.0222 ×1023),Γ为吸附剂的质量(g),Γ∞为吸附达饱和时吸附质的质量(g),A为吸附质(亚甲蓝)分子吸附投影面积。 亚甲蓝易溶于水呈天蓝色,在空气中较稳定,不易受吸附剂酸碱性的影响。亚甲蓝水溶液在445nm和665nm处具有吸收峰,用紫外分光光度计测定吸附前后溶液吸收度值的变化,求出Γ∞。 由于亚甲蓝分子具有矩形结构,分子长16.0 ?,宽8.4 ?,最小的宽度为4.7 ?,如下图所示:它吸附于吸附剂上有三种取向,平面吸附投影面积为135 ?2,侧面吸附投影面积为75 ?2,端积吸附投影面积为39.5 ?2。因此,对于不同吸附剂或同种吸附剂的不同条件,吸附取向不同,投影面积也不同,测得的A也不同。所以实验时要严格控制实验条件的一致。通常用已知比表面积的样品,实验测得Γ∞和Γ,用上式反求A。 三、仪器和试剂 水浴振荡器亚甲蓝硅胶蒸馏水 四、实验操作 1.配制0.05mg/ml亚甲蓝标准液的配制 水为溶剂。 2.硅胶比表面积的测定 精密量0.05mg/ml亚甲蓝标准液15ml加入50ml具塞三角瓶中,共三份,然后准确称未知硅胶15mg加入,盖塞,在振荡器上振荡2小时,静置后取滤液稀释4倍,加水稀释至刻度。以蒸馏水为空白分别测定溶液的吸收度,按标准曲线计算溶液浓度。 3.亚甲蓝吸附投影面积的测定 除样品用已知比表面积的微粉硅胶,其余操作和步骤2一致。将已知比表面积S和测得的Γ和Γ∞代入式S=Γ∞N A A/ΓM,求得A值。 4.亚甲蓝标准曲线的绘制 用水稀释得到分别浓度为2.5μg/ml,5μg/ml,7.5μg/ml,10μg/ml,12.5μg/ml, 15μg/ml的溶液,以蒸馏水为空白分别测定溶液吸收度,以吸收度值对溶液浓度(μg/ml)进行直线拟合,得拟合直线方程。 五、实验数据及处理

相关文档
相关文档 最新文档