文档库 最新最全的文档下载
当前位置:文档库 › 采暖补偿器的计算

采暖补偿器的计算

采暖补偿器的计算
采暖补偿器的计算

采暖补偿器的经验计算

1 固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结

合示例详述如下,望能起到抛砖引玉的作用。

2 设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完

成,系统每一段的管径已经计算确定,固定支架可以开始布置。

2.1 计算管道热伸长量

(1)

△ X——管道的热伸长量,mm;

t1——热媒温度,℃,

t2——管道安装时的温度, ℃,一般按-5℃计算.

L——计算管道长度m;

0.012——钢铁的线膨胀系数,mm/m·℃

按t1=95℃简化得

(2 )

2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段

对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;

最大允许距离与管径关系见表1。“Z” 型补偿器可以看做两个“г”型补偿器。

2.3 确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器。能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,如果较长要设置多个补偿器,应注意均匀设置;并在两个补偿器中间设置固定支架。选择时注意套筒补偿器容易漏水漏气,适合安装在地沟内,不适宜安装在建筑物上部;波纹管补偿器能力大耐腐蚀,但造价高并且需要设置导向支架;方形补偿器需要的安装空间较大,但运行可靠应

用广泛。设计时可以根据工程具体情况选用。

3 例题[已知] 如图1所示,某民用建筑95/70℃热媒供热管道a-b段长度为32m,b-c

段长度为24m,c-d段长度为63m,d-e段长度为48m,管径如图所示。

[求] 计算管道热伸长量,设置补偿器和固定支架。

[解] 首先按照公式(2)计算可得

a-b段管道热伸长量=38.4mm

b-c段管道热伸长量=28.8mm

c-d段管道热伸长量=75.6mm

d-e段管道热伸长量=57.6mm

图1 供热干管示意图

由以上计算可知,

a-b段和b-c段伸长量不超过规定值,可不设补偿器,但应在管段中部(点f、g)设一固定支架,使管道可以有固定点向两侧自由伸缩。

d-e段可以从e点开始向d点量33m的p处设一固定支架。p-d段长15m.。

c-d段上设h和k点,这样g-c和c-h形成“г”型补偿器, k-d和d-p形成另一“г”型补偿器。根据管径查表1知c-h长度介于2.5m到18m之间,本系统定为15m; k-d长度介于3m到20m之间,本系统定为15m.。h-k长度为33m设置一个方形补偿器,详见国标图N106,本不再赘述。设定好固定支架和补偿器的系统如图2所示。

图2 供热干管补偿器和固定支架设置示意图

4 固定支架和补偿器的设置应按照一定的步骤精心设计,并密切配合施工单位施工才能

获得较好的效果。对此我们应充分重视,不能草草了事。

【供暖方式】常用的供暖方式有哪些

【供暖方式】常用的供暖方式有哪些 导读:本文介绍在房屋租房,租房注意事项的一些知识事项,如果觉得很不错,欢迎点评和分享。 深冬已到,供暖的问题是大家关注的焦点,人们应根据实际情况选择正确的供暖方式,供暖方式有很多蜂窝煤供暖、空调供暖、电采暖、分户壁挂式燃气采暖等等。下面我们就来详细看看供暖方式有哪些。 供暖方式之蜂窝煤取暖 蜂窝煤是用煤粉、黄土、水等按照适当比例搅拌均匀后,用固定的模具做出来的蜂窝状圆柱形煤球。蜂窝煤具有使用方便、制作简单、成本较低的优点,但是用它采暖时,味道较为刺鼻,且存在较大的一氧化碳中毒的隐患,因此在现代家居中也比较少见了。 供暖方式之空调取暖 不管是哪种空调取暖方式,大的优点就是操作简单方便,启动升温速度快,且能够定时、定温,调节温度。此外,不用的时候,可以将之关闭,灵活。而且对于集中供暖可以起到一个补充作用,很多家中有老人和孩子的家庭,在集中供暖之前、之后,都要开一段时间的空调取暖。这其中舒适的应该是空调,解决了风口直接吹向人的缺点,气流组织好,使得整个房间都处于空调的回风区域,人的感觉好。

供暖方式之电热膜采暖 以电力为能源,是将特制的导电油墨印刷在两层聚酯薄膜之间制成的纯电阻式发热体,配以独立的温控装置,以低温辐射电热膜为发热体,大多数为天花板式,也有少部分铺设在墙壁中甚至地板下。具有恒温可调、经济舒适、绿色环保、寿命长、免维护等特点。 供暖方式之地板辐射式采暖 低温辐射地板采暖是通过埋设于地板下的加热管——铝塑复合管或导电管,把地板加热到表面温度18至32摄氏度,均匀地向室内辐射热量而达到采暖效果。同时它可以由分户式燃气采暖炉、市政热力管网、小区锅炉房等各种不同方式提供热源。 供暖方式之柴火取暖 人类在很早之前,就掌握了钻木取火采暖的技能。这种取火方法现在除了在野外可能还会被用到,在日常生活中早已不见。不过用烧柴火取暖的方式却一直延续到今天,虽然在城市居民楼里很少见,但在不发达农村地区,柴火给许多人带来了温暖。不过这种直接用柴火取暖的方式比较落后,需要用到大量的薪柴,存在安全隐患,既不方便也不环保。 供暖方式之集中式供暖 技术比较成熟,安全、可靠,使用方便,价格。以100平方米居室为例,按北京市规定煤气供暖的运行和支付费用

采暖固定支架及补偿器

快速设计热水采暖系统固定支架和补偿器 简介:对设计中经常遇到的热水(95/70℃)采暖系统的固定支架和管道补偿器的设计计算和设置问题进行了 归纳总结,给出了具体设计方法和实例。 关键字:热水采暖固定支架补偿器 1 引言 固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之 处,望各位指正。 2 设计计算 系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径 已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补

热力管线补偿器的计算

采暖补偿器的经验计算2010-12-06 16:40 1 、固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。 2 、设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 、计算管道热伸长量 △X=0.012(t1-t2)L (1) 其中:△ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得: △X=1.2L ……(2 ) 2.2 、确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 2.3 、确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,如果较长要设置多个补偿器,应注意均匀设置;并在两个补偿器中间设置固定支架。选择时注意套筒补偿器容易漏水漏气,适合安装在地沟内,不适宜安装在建筑物上部;波纹管补偿器能力大耐腐蚀,但造价高并且需要设置导向支架;方形补偿器需要的安装空间较大,但运行可靠应用广泛。设计时可以根据工程具体情况选用。 3 、例题[已知] 如图1所示,某民用建筑95/70℃热媒供热管道a-b段长度为32m,b-c 段长度为24m,c-d段长度为63m,d-e段长度为48m,管径如图所示。 [求] 计算管道热伸长量,设置补偿器和固定支架。 [解] 首先按照公式(2)计算可得 a-b段管道热伸长量=38.4mm

8各种供暖方式优缺点比较

各种供暖方式优缺点比较 集中供暖 类型:集中供热是热力集团把市政热力通过管线输送到住户家中,是最清洁最有保证的一种供热方式。 优点:价格便宜,适合于有老人、孩子、需要持续安全供热的家庭。 缺点:住户不能根据自己的需要调整热量,住与不住,用多少都得统一交钱。 地板辐射采暖 类型:可以由分户式燃气采暖炉、市政热力管网、小区锅炉房等各种不同方式提供热源。 优点:温度均匀,比大部分采暖方式节能百分之二十,便于装修与摆放家具。 缺点:不便于二次装修,要选择耐压耐温耐腐蚀、热稳定性能好的环保管材,对层高有影响,时间长了,家具会变形。 分户中央空调 类型:有"风冷式"和"水冷式"两种。

优点:档次高、外形好、舒适度高。带新风系统的"风冷式"更为舒适。中央空调系统买房时多由开发商免费赠送。 缺点:成本高,每套机组价值约数万元,每平方米铺装成本高达500元左右,运行费用高(大多走电费),多用于饭店及高档公寓,不适合大多数普通家庭使用。 燃气采暖炉 类型:以天然气、液化石油气、煤气、电为能源。 优点:可自行设定采暖时间,分户计量。家中无人时只需保留4度左右的低温运行(防冻作用),比传统暖气先进节能安全,可安装在墙体上、房间角落里。 缺点:存在安全、污(电采暖除外)等隐患,市区高层住宅应控制大面积使用,郊外低密度住宅使用比较适合。 空调采暖 类型:空调也是一些家庭冬季供热的选择。密闭性较好的小居室,最好选择空调。 优点:空调则能很快使小居室变热,可达到冷暖自如的境界。

缺点:一般选择空调供暖的家庭,需要给家中安装2—3台空调才能满足供暖需求。按每天运行10小时计算,3台空调同时开启耗电近40千瓦时,一个冬天下来取暖费用超过2300元。 各种供暖方式费用明细 设备费用 独立式燃气(或电)采暖炉:1000元/个 暖气片:90元-800元/片 电暖气:300元-400元/台 空调:1200元-7000元/台 地板采暖:2000元/平方米 中央空调:500元/平方米,机组价值约数万元 使用费用 燃煤锅炉供暖:19元/平米/采暖季 市热力集团供暖:24元/平米/采暖季 燃油(柴油)、燃气(天然气、煤气)、电锅炉供暖:30元/平米/采暖季

波纹补偿器相关计算公式

波纹补偿器相关计算公式 波纹补偿器习惯上也被称为称为膨胀节、伸缩节,其补偿能力源于波纹管的弹性变形,包括拉伸、压缩、弯曲及组合变形这几种状态。安装环境不同,波纹管补偿器发生的变化也不同。因此在选择波纹补偿器时,是需要依据相关公式进行计算的。 波纹管补偿器的相关计算公式: 1.热力管道的热伸长量通常按下式计算: Δx=α(t1-t2)L 其中:Δx ——管道的热伸长量,mm; α——钢管的线膨胀系数,mm/(m ℃); t1 ——管内介质温度,℃,管内介质指蒸汽、热水、过热水等; t2 ——管道安装时的温度,℃; L ——管道计算长度,m。 2.安装轴向型补偿器的管道轴向推力F,按下式计算: Fx=Fp+Fm+Fs 式中:Fp——内压力产生的推力; FS——波纹管补偿的弹性反力; Fm——管道活动支架的摩擦力。 计算固定支架推力时,应按管道的具体敷设方式,参考上述公式按支架两侧管道推力的合力计算。 3.管道应力验算 补偿器在内压作用下的失稳包括两种情况,即平面失稳和轴向柱状失稳。 (1)平面失稳:表现为一个或几个波纹的平面相对于波纹管轴线发生转动而倾斜,但其波平面的圆心基本在波纹管的轴线上。这是由于内压产生的子午向弯曲应力和周向薄膜应力的合力超过材料屈服强度,局部出现塑性变形所致。 (2)柱失稳:波纹管的波纹连续地横向偏移,使波纹管偏移后的实际轴线成弧形或S 形(在多波情况下呈S形)。这种情况多数是因为波纹数太多,波纹管有效长度L跟内径d 之比(L/d)太大造成的。为避免失稳情况发生,对管道应进行应力验算。 客户在购买波纹补偿器时,需要详细说明补偿器的安装地点及管道的相关信息,协助技术人员进行计算,以挑选出最合适的设备。亚太拥有具备充足经验的生产队伍,专业的技术人员,相信定能为客户提供最合适的产品。

采暖供热设备的估算方法

采暖供热设备的估算方法 作者:xhg-xu 阅读:16247次 上传时间:2005-12-12 推荐人:xhg-xu (已传论文10套) 简介:为解决供热设备选型,造价作出估算及验算负荷或在施工中需要作局部变更,或需编制供暖锅炉的耗煤计划,常因缺乏数据而不能进行工作,这些琐碎的工 供暖系统由锅炉、供热管道、散热器三部分组成。 建筑物的耗热量和散热器的确定以及供热管道管径和系统压力损失的计算是一项周密细致和复杂的设计过程。一般由设计部门暖通设计人员承担。但是对于我们咨询行业要为某业主在初建、扩建或可研阶段,对供热设备(散热器、管道、锅炉)的选型,造价作出估算及验算供热管道和锅炉的负荷或在施工中需要作局部变更,或需编制供暖锅炉的耗煤计划,常因缺乏数据而不能进行工作,况且这些零星琐碎的工 作也不便给设计部门增添麻烦。 为解决上述问题,本人根据从事暖通专业工作多年的经验,特撰写此文,仅供从事咨询工作的人员 参考。 一、建筑物的供热指标(q0) 供热指标是在当地室外采暖计算温度下,每平方米建筑面积维持在设计规定的室内温度下供暖,每 平方米所消耗的热量(W/m2)。 在没有设计文件不能详细计算建筑物耗热量,只知道总建筑面积的情况下,可用此指标估算供暖设 备,概略地确定系统的投资,q0值详见表-1。 各类型建筑物热指标及采暖系统所需散热器的片数表-1

说明:1).此表散热器是恒定在64.5℃温差情况下的数量。 2).此表所列散热器片数可根据q0的变更作相应修正。 二、散热器散热量及数量的估算 1. 以四柱640型散热器为准,采暖供回水温度95-70℃ 热水采暖时,一片散热器的Q值为: Q水=K×F×Δt=7.13×0.20×64.5=92(W/片) 式中:K=3.663Δt0.16 K=3.663×(-18)0.16=7.13W/m2·℃ 当采用低压蒸汽采暖时: Q汽= K×F×Δt =7.41×0.20×(100-18)=122(W/片) 式中:K=3.663Δt0.16 K=3.663×(100-18)0.16=7.41W/m2·℃ 根据热平衡原理,将建筑物热指标和所需散热器片数列表1(以四柱640型为准)。 2.各种散热器之间的换算 若需将四柱640型散热器改为其它类型的散热器其片数转换可按下式:K1×F1×Δt= K2×F2×Δt即K1×F1= K2×F2进行换算。 3.房间内散热器数量的调整 1).朝向修正:朝南房间减一片,朝北房间加一片;既面积、窗墙比相同的两个房间,南、北向相差 2片。 2).窗墙比修正:有门窗的房间比只有窗无外门面积、朝向均相同的房间多2片。 3).角隅房间(具有两面外墙的房间):按估算数附加100%。 散热器数量经过修正后,可根据适用、经济、美观的要求,选用所需散热器型号,并用互换公式换 算所需订购的散热器数量。 4).如要求相对精确,散热器片数的确定,可参见暖通设计手册或其它有关资料。

波纹补偿器型号大全-参数选用及公式计算

轴向型内压式波纹补偿器(HZN) 补偿器由一个波纹管和两个端接管构成,端接管或直接与管道焊接,或焊上法兰再与管道法兰连接。补偿器上的拉杆主要是运输过程中的刚性支承或作为产品预变形调整用,它不是承力件。该类补偿器结构简单,价格低,因而优先选用。 用途:轴向型内压式波纹补偿器(轴向型波纹补偿器)主要用于补偿轴向位移,也可以补偿横向位移或轴向与横向合成位移,具有补偿角位移的能力,但一般不应用它补偿角位移。 型号:DN32-DN8000,压力级别0.1Mpa-2.5Mpa 连接方式:1、法兰连接2、接管连接 产品轴向补偿量:18mm-400mm 一、型号示例 举例:0.6TNY500TF 表示:公称通径为Φ500,工作压力为0.6MPa,(6kg/cm2)波数为4个,带导流筒,碳钢法兰连接的内压式波纹补偿器。 二、使用说明: 轴向型波纹补偿器主要用于补偿轴向位移,也可以补偿横向位移或轴向与横向的合成位移,具有补偿角位移的能力,但一般不应用它来补偿角位移。 三、内压式波纹补偿器对支座作用力的计算:

内压推力:F=100·P·A轴向弹力:Fx=Kx·(f·X) 横向弹力:Fy=Ky·Y 弯矩:My=Fy·L 弯矩:Mθ=Kθ·θ 合成弯矩:M=My+Mθ 式中:Kx:轴向刚度N/mm X:轴向实际位移量mm Ky:横向刚度N/mm Y:横向实际位移量mm Kθ:角向刚度N·m/度θ :角向实际位移量度 P:工作压力MPa A:波纹管有效面积cm2(查样本) L:补偿器中点至支座的距离m 四、应用举例: 某碳钢管道,公称通径500mm,工作压力0.6MPa,介质温度300°C,环境最低温度-10°C,补偿器安装温度20°C,根据管道布局(如图),需安装一内压式波纹补偿器,用以补偿轴向位移X=32mm,横向位移Y=2.8mm,角向位移θ=1.8度,已知L=4m,补偿器疲劳破坏次数按15000次考虑,试计算支座A的受力。 解:(1)根据管道轴向位移X=32mm。 Y=2.8mm。 θ=1.8度。 由样本查得0.6TNY500×6F的轴向位移量X0=84mm, 横向位移量:Y0=14.4mm。角位移量:θ0=±8度。 轴向刚度:Kx=282N/mm。横向刚度:Ky=1528N/mm 。 角向刚度:Kθ=197N·m/度。用下面关系式来判断此补偿器是否满足题示要求: 将上述参数代入上式: (2)对补偿器进行预变形量△X为:

浅谈天然气的供暖方式

浅谈天然气的供暖方式 随着人民生活水平的提高,人们对能源的需求量越来越大。由于煤炭的污染非常严重,给城市环境带来不利影响,燃煤正在被燃气所取代。因此,燃气的用量和用气范围正在逐步的扩大。本文就天然气在供暖领域的应用做了一些分析。 目前人们广泛使用的燃气主要分为三种,即天然气、煤气和液化石油气。天然气是一种无色、无味、无毒且无腐蚀性的可燃气体。主要成分为甲烷,也包括一定量的乙烷、丙烷和重质碳氢化合物。还有少量的氮气、氧气、二氧化碳和硫化物。另外,在天然气管线中还发现有水分。甲烷的分子结构是由一个碳原子和四个氢原子组成,燃烧产物主要是二氧化碳和水。与其它化石燃料相比,天然气燃烧时仅排放少量的二氧化碳粉尘和极微量的一氧化碳、碳氢化合物、氮氧化物,因此,天然气是一种清洁的能源。我国天然气开发的快速进展,使得天然气在供暖领域得到广泛利用。 1 燃气锅炉 对于燃气锅炉,天然气燃烧产生的热量直接用于供暖,是最简单的一种供热方式。从规模一来看,这种供暖方式包括用于一家一户的家用燃气炉,一幢楼或一个小区的小型燃气锅炉以及用于大片面积供热的区域性燃气锅炉。 1.1 家用燃气炉,这是目前应用较为广泛的一种天然气供暖方式,通常设置于厨房或阳台,配有先进的电子点火控制、安全保护和温度调节等系统,操作简单,调节灵活,还能同时满足生活热水需求。但是,由于是分散燃烧,会影响社区的空气品质,同时也存在燃气泄漏、燃烧故障甚至发生爆炸等安全性问题。 1.2 小型燃气锅炉实际上是一种规模较小的燃气集中供热系统,在用户附近设置统一的燃气锅炉,向各用户房间提供供暖热水。这种供暖系统一般用于一幢或几幢高层建筑(商场、住宅、办公楼)。由于将用户热源集中为一个,便于管理,提高了安全性,对用户空气的污染问题也相应减轻。锅炉房可设也可不设,管网因楼宇面积排布而定。 1.3 区域燃气锅炉的规模更大,它需要通过热网向大面积的用户供热。由于热源更为集中,供热系统运行工况更加稳定,锅炉运行效率更高,同时大型锅炉更有条件采用先进的低氮燃烧技术,环境污染更小,在一些已有的“煤改气”区域供热系统中可根据具体情况慎重应用。但是,由于热网投资大,热水管网输送能耗和热损失高,这种燃气供暖方式不宜于在新建区域供热系统中推广。 2 燃气热电联产 对于纯热力发电系统,燃料一般只有少部分的能源转化为电能,发电效率只有30%左右,而大部分燃料的能量形成余热排到大气。热电联产系统则在发电的同时,利用了这部分余热用以供热,从而使得热电联产的能源利用效率可以达到80%以上。由于实现了能量的梯级利用,因而是比燃气锅炉先进的供暖形式。评价热电联产系统能源利用效率的指标主要有热电比和发电效率等。热电比是指热电联产系统或装置的供热量和发电量之比。 2.1 锅炉加供热汽轮机是我国最常见的热电联产形式。燃料在锅炉中燃烧后将热量传给蒸汽,由高温高压蒸汽带动汽轮发电机组发电,做功后的低品位的汽轮机抽汽A或背压排汽用于供热。这种系统适用于以煤为燃料,技术已非常成熟,主要设备也早已国产化。但由于占地大,负荷调节能力差,发电效率低,燃气热电联产系统一般只在煤改气的热电联产中得以应用,而在新建热电联产系统中很少采用。 2.2 燃气轮机热电联产系统,分为单循环和联合循环两种形式。单循环的工作原理是:空气经压气机与燃气在燃烧室燃烧后温度达1000℃以上、压力在1.0~1.6MPa的范围内进入燃气轮机推动叶轮,将燃料的热能转变为机械能,并拖动发电机发电。从燃气轮机排出的

热力管道补偿器用途

在供暖供热管网敷设聚氨酯保温管道中经常会使用到各种不同的补偿器,那么补偿器对保温管道有什么作用?我们就以城市小区管的聚氨酯保温管铺设管道为例,来说一下管道补偿器的作用: 补偿器主要就是为了补偿热能,减少热损耗,根据管道铺设的图纸标准来规定段或者接口处安装,补偿器主要分为直波纹补偿器和外压波纹补偿器两种,城市小区的聚氨酯保温管主要是二次网热水管道,一般都是在接口处安装补偿器,主要使用的波纹器是直波纹补偿器。 直波纹补偿器具有良好的抗压能力,能够自导向,并且可以达到与直埋管同寿命,不需要经常维修和更换,并且具有很好的抗弯性能,可以直接做为刚性管道中的一部分直接安装在管道上。 在热水管道铺设中,直波纹补偿器可以代替支架,并且直波纹补偿器价格比外

压波纹补偿器便宜很多。所以总体来说更加节省成本。 安装完毕后的补偿器一定要对管道进行吹扫和系统测压,但在进行系统测压的时候,必须保护好波纹补偿器,当补偿器没有预拉杆结构时,必须在波纹补偿器上做些附件来保护波纹补偿器,以免管道测压是拉坏补偿器。 总体来说聚氨酯保温管道补偿器就是为了防止在管道热升温时热伸长或温度应力而引起管道变形或者损坏,来补偿管道的热伸长,减少管壁的应力作用的阀件或支架结构上的作用力。使用补偿器可以大大延长聚氨酯保温管的使用寿命。制作方形补偿器必须选用质量好的无缝钢管揻制而成,整个补偿器最好用一根管子揻成,如果制作大规格的补偿器也可用两根弯管或三根弯管焊制,方形补偿器不宜用冲压弯头焊制而成。焊制方形补偿器的焊接点应放在外伸臂的中点处,因为此处的弯矩最小,严禁在补偿器的水平臂上焊接。焊制方形补偿器时,当DN ≤200mm时,焊缝与外伸臂垂直,当DN>200mm时,焊缝与轴线成45°角。

管道热补偿量计算

采暖补偿器计算 该帖被浏览了4176次 | 回复了27次1引言固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之处,望各位指正。 2设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 计算管道热伸长量 (1) △ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; ——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 补偿器形式敷设方式 管径DN(mm) 25 32 40 50 70 80 100 125 150 г 型 长边最大间距L2(m)15 18 20 24 24 30 30 30 30 短边最小间距L1(m)2 3 4 5 6 6 确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,

补偿器选择与计算

补偿器分析 本文讨论降压式Buck DC‐DC 补偿器的选择和参数计算。 1. Type II 补偿器 Type II 补偿器如图 1所示: U i (s) U o (s) 图 1 Type II 补偿器 其传递函数为: ()() () ()+= =- ? ?++ ?+?? 21 122121121.1o c i sR C U s G s C C U s sR C C sR C C (1) 在设计的时候,一般>>12C C ,公式(1)可以简化为: ()() +≈- +21 22111.1c sR C G s sR C sR C (2) 传递函数的零点为ω= 211z R C ;极点为原点和ω=22 1 p R C 。Type II 补偿器的波特如图 2所示,当频率在ωz – ωp 之间,幅度增益近似于常数2120log R R ?? ??? ,最大角度提升(Phase Boost)为90o 。

图 2 Type II 补偿器波特图 如果将穿越频率ωc 设定为对数坐标中的中点,即ωωω+=log log log 2 z p c ,可得: ω=c (3) 定义K 因子(K‐Factor)为: = K (4) 由(3)和(4),零极点ωz 、ωc 可写成: ωωωω?= ?? ?=? .c z p c K K (5) 当ωω=c 时,补偿器有的相位为: ()?ω--=--11 1 tan tan 90.o c c j K K (6) Type II 补偿器的最小相位为‐90o 。定义相位提升(phase boost)θBoost 为:

()θ?ω--=--=-11 190tan tan .o Boost c c j K K (7) 由于存在着这样的反三角函数关系: --+=11 1 tan tan 90.o K K (8) 由(7)和(8),可得: tan .452o Boost K θ?? =+ ??? (9) 相位裕量为?m ,开环传递函数的相位为()vd c j ?ω,那么Boost θ为: ()90.o Boost vd c m j θ?ω?=--+ (10) 2. Type III 补偿器 Type III 补偿器如图 3所示: U i U o (s) 图 3 Type III 补偿器 其传递函数为: ()() () ()()() ()()2 1 1 23122121331211.11o c i sR C s R R C U s G s C C U s sR C C sR sR C C C +++==- ? ?+++ ?+? ? (11) 在设计的时候,一般>>12C C 。公式(1)可以简化为:

阐述住宅建筑采暖方式分类及特点

阐述住宅建筑采暖方式分类及特点 摘要:本文作者介绍了目前常见的住宅建筑采暖方式及特点,通过各自的特点分析,力争做到采暖方式与建筑类型的最大程度吻合行和适应性。 关键词:采暖方式; 建筑类型; 特点分析 Abstract: in this paper the author introduces the common residential building heating mode and the characteristic, through the analysis of the characteristics of their respective, strive to accomplish heating means of building types and the full extent of the identical line and adaptability. Keywords: heating means; Building type; Characteristics analysis 中图分类号:TU832 文献标识码:A 文章编号: 前言:目前常见的采暖方式有三大类:a) 城市集中热力网供热、b) 居住区规模集中供热、c) 分户供热;笔者将从这三个方面进行分析阐述: 城市集中热力网供热 市政热力网采暖一般适用大型高层住宅社区,优点是安全、清洁、方便。而其缺点是不能按住户需要安排采暖季,采暖费用固定,长期以来我国北方地区大都采用集中供暖方式,也多以居室采暖面积而定。这种计量收费方式给供暖收费带来很大麻烦,不论用户是否居住,都得交采暖费;由于末端无计量方式和调节手段,导致30~40%的热量浪费。按照前苏联的大规模实验结果,供热末端增加调节手段,并采用按热量计量收费后,可节省热量30%以上。其次,长距离输送,管网初投资高,维护、管理费用也高,采用集中供热除建小区热网管线和换热站费用外,目前石家庄市要求每平米交纳50元热贴,作为城市热网和供热企业建设投资。集中供暖分户计量是目前国家非常提倡的一种供暖方式。采取集中供热、分户计量可避免以上采暖方式的诸多弊端。对于普通的社区,集中供热,分户计量应是以后采暖方式的一种发展方向。因为只要有众多企业能生产出美观质高的暖气片,这种采暖方式既安全,又经济而且还相当美观。城市集中供热中的热电联产方式,热电联产是利用燃料的高品位热能发电后,将其低品位热能供热的综合利用能源的技术。因此在条件允许时,应优先发展热电联产的采暖方式。大力发展热电联产集中供热方式。 小区锅炉供暖方式

快速设计热水采暖系统固定支架和补偿器 (1)

快速设计热水采暖系统固定支架和补偿器 摘要:对设计中经常遇到的热水(95/70℃)采暖系统的固定支架和管道补偿器的设计计算和设置问题进行了归纳总结,给出了具体设计方法和实例。 关键字:热水采暖固定支架补偿器 1 引言 固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之处,望各位指正。 2 设计计算 系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △ X——管道的热伸长量,mm; t ——热媒温度,℃, 1 t ——管道安装时的温度, ℃,一般按-5℃计算. 2 L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 95℃简化得(2 ) 按t 1= 2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~

采暖补偿器的计算

采暖补偿器的经验计算 1 固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结 合示例详述如下,望能起到抛砖引玉的作用。 2 设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完 成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道; 最大允许距离与管径关系见表1。“Z” 型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 补偿器形式敷设方式 管径DN(mm) 25 32 40 50 70 80 100 125 150 г型 长边最大间距L2(m)15 18 20 24 24 30 30 30 30 短边最小间距L1(m)2 2.5 3 3.5 4 5 5.5 6 6 2.3 确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器

管道热补偿量计算

采暖补偿器计算 该帖被浏览了4176次| 回复了27次 1引言固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之处,望各位指正。 2设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 2.2确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 补偿器形式敷设方式 管径DN(mm) 25 32 40 50 70 80 100 125 150 г型 长边最大间距L2(m)15 18 20 24 24 30 30 30 30 短边最小间距L1(m)2 2.5 3 3.5 4 5 5.5 6 6 2.3确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,

热力管道的补偿类型和方式

热力管道的补偿类型和方式 热力管道的补偿方式有两种:自然补偿和补偿器补偿。 1.自然补偿 自然补偿就是利用管道本身自然弯曲所具有的弹性,来吸收管道的热变形。管道弹性,是指管道在应力作用下产生弹性变形,几何形状发生改变,应力消失后,又能恢复原状的能力。实践证明,当弯管角度大于30°时,能用作自然补偿,管子弯曲角度小于30°时,不能用作自然补偿。自然补偿的管道长度一般为15~25m,弯曲应力бbw不应超过80MPa。 管道工程中常用的自然补偿有:L型补偿和Z型补偿。 2.补偿器补偿 热力管道自然补偿不能满足,应在管路上加设补偿器来补偿管道的热变形量。补偿器是设置在管道上吸收管道热胀冷缩和其他位移的元件。常用的补偿器有方形补偿器、波纹管补偿器、套筒补偿器和球形补偿器。 (1)方形补偿器。方形补偿器是采用专门加工成U型的连续弯管来吸收管道热变形的元件。这种补偿器是利用弯管的弹性来吸收管道的热变形,从其工作原理看,方形补偿器补偿属于管道弹性热补偿。 方形补偿器由水平臂、伸缩臂和自由臂构成。方形补偿器是由4个90°弯头组成,其优点是:制作简单,安装方便,热补偿量大工作安全可靠,一般不需要维修;缺点是:外形尺寸大,安装占用空间大,不太美观。 方形补偿器按其外形可分为Ⅰ型-标准式(c=2h),Ⅱ型-等边式(c=h),Ⅲ型—长臂式(c=0.5h),Ⅳ型-小顶式(c=0),其中Ⅱ型、Ⅲ型最为常用。制作方形补偿器必须选用质量好的无缝钢管揻制而成,整个补偿器最好用一根管子揻成,如果制作大规格的补偿器也可用两根弯管或三根弯管焊制,方形补偿器不宜用冲压弯头焊制而成。焊制方形补偿器的焊接点应放在外伸臂的中点处,因为此处的弯矩最小,严禁在补偿器的水平臂上焊接。焊制方形补偿器时,当DN ≤200mm时,焊缝与外伸臂垂直,当DN>200mm时,焊缝与轴线成45°角。(2)波纹管补偿器。波纹管补偿器又称波纹管膨胀节,由一个或几个波纹管及结构件组成,用来吸收由于热胀冷缩等原因引起的管道或设备尺寸变化的装置。波纹管补偿器具有结构紧凑、承压能力高、工作性能好,配管简单、耐腐蚀、维

补偿器的计算

补偿器的计算 解释:补偿管线因温度变化而伸长或缩短的配件,热力管线上所利用的主要有波形补偿器和波纹管两种。 一. 补偿器简介: 补偿器习惯上也叫膨胀节,或伸缩节。由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。 属于一种补偿元件。利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。也可用于降噪减振。在现代工业中用途广泛。 二.补偿器作用: 补偿器也称伸缩器、膨胀节、波纹补偿器。补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用: 1.补偿吸收管道轴向、横向、角向热变形。 2. 波纹补偿器伸缩量,方便阀门管道的安装与拆卸。 3.吸收设备振动,减少设备振动对管道的影响。 4.吸收地震、地陷对管道的变形量。 三.关于轴向型、横向型和角向型补偿器对管系及管架设计的要求 (一)轴向型补偿器 1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。主固定管架要考虑波纹管静压推力及变形弹性力的作用。推力计算公式如下: Fp=100*P*A Fp-补偿器轴向压力推(N), A-对应于波纹平均直径的有效面积(cm2), P-此管段管道最高压力(MPa)。 轴向弹性力的计算公式如下: Fx=f*Kx*X FX-补偿器轴向弹性力(N), KX-补偿器轴向刚度(N/mm); f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。 管道除上述部位外,可设置中间固定管架。中间固定管架可不考虑压力推力的作用。 2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。 3、固定管架和导向管架的分布推荐按下图配置。 补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算: LGmax-最大导向间距(m); E-管道材料弹性模量(N/cm2); i-tp 管道断面惯性矩(cm4); KX-补偿器轴向刚度(N/mm), X0-补偿额定位移量(mm)。 当补偿器压缩变形时,符号“+”,拉伸变形时,符合为“-”。当管道壁厚按标准壁厚设计时,LGmax 可按有关标准选取。

如何计算波纹补偿器的补偿量

如何计算波纹补偿器的补偿量? 计算公式:X=a·L·△T x 管道膨胀量a为线膨胀系数,取 0.0133mm/m L补偿管线(所需补偿管道固定支座间的距离)长度△T为温差(介质温度-安装时环境温度) 补偿器安装和使用要求: 1、补偿器在安装前应先检查其型号、规格及管道配置情况,必须符合设计要求。 2、对带内套筒的补偿器应注意使内套筒子的方向与介质流动方向一致,铰链型补偿器的铰链转动平面应与位移转动平面一致。 3、需要进行“冷紧”的补偿器, 预变形所用的辅助构件应在管路安装完毕后方可拆除。 4、严禁用波纹补偿器变形的方法来调整管道的安装超差,以免影响补偿器的正常功能、降低使用寿命及增加管系、设备、支承构件的载荷。 5、安装过程中,不允许焊渣飞溅到波壳表面,不允许波壳受到其它机械损伤。 6、管系安装完毕后,应尽快拆除波纹补偿器上用作安装运输的黄色辅助定位构件及紧固件,并按设计要求将限位装置调到规定位置, 使管系在环境条件下有充分的补偿能力。 7、补偿器所有活动元件不得被外部构件卡死或限制其活动范围,应保证各活动部位的正常动作。 8、水压试验时,应对装有补偿器管路端部的次固定管架进行加固,使管路不发生移动或转动。对用于气体介质的补偿器及其连接管路, 要注意充水时是否需要增设临时支架。水压试验用水清洗液的96氯离子含量不超过25PPM。 9、水压试验结束后,应尽快排波壳中的积水,并迅速将波壳内表面吹干。10、然弯补偿热伸缩,直线段过长则应设置补偿器。补偿器型式、规格、位置应符合设计要求,并按有、与补偿器波纹管接触的保温材料应不含氯。11、补偿器设置距离:热水供应管道应尽量利用自关规定进行预拉伸。不锈钢波纹补偿器采用的国家标准不锈钢波纹管采用GB/T12777-91, 并参照美国"EJMA"标准,优化设计,结构合理,性能稳定,强度大,弹性好,抗疲劳度高等优点。不锈钢波纹管连接方式分为法兰连接、焊接、丝扣连接、快速接头连接,小口径金属软管一般采用丝扣和快速接头连接,较大口径一般采用法兰连接和焊接接;材料采用OCr19Ni9奥氏体不锈钢,两端接管或法兰采用低碳钢或低合金钢。 不锈钢波纹补偿器一般选用U形波,由单波或按客户要求由多波制成,有较大的补偿量,耐压可高达4Mpa,使用温度:1960C一≤450度,结构紧凑,使用成本低,耐腐蚀,弹性好,钢度值低,允许疲劳度寿命1000次,解决了管道热胀冷缩,位移和机械高频振动与管道之间的柔性联接,广泛用于石油、热力、电力、煤气、化工等管路上安装。此标准中,不锈钢波纹补偿器又可按不同用途归类为:轴向型(ZP)、角向型、

家庭采暖六种方式比较

家庭采暖六种方式比较 目前,北京的开发商在楼书、广告和销售说辞上虽然把供暖设备说得“花样多”,科技创新多,但从大的方面看,主要分集中供暖和分户供暖两种。具体从供暖设备设施看,主要分为六种: 一是集中供热:这是比较传统的供暖方式,主要又分两种:市政热力管网或小区内锅炉集中供热。以这两种方式集中供暖的小区主要分布在城区市政热力管线分布的区域以及2002 年以前没有市政热力管线分布区域的小区,2003年以后,市政热力管线不能到达的区域开发的新楼盘,很多采用户式独立供暖,开发商多不再建小区供热锅炉集中供暖。 二是分散式采暖方式:即每户独立成一个供暖体系。常见的有3种形式: 1.小型户式燃油、燃气或电锅炉:如最早回龙观经济适用住房小区里采用的燃气壁挂炉。 2.电热膜及电热导体采暖方式:如双裕花园采用的电热膜供暖系统。 3.电暖气 三是变频空调,冬季供热、夏季制冷。 四是水源中央空调系统:又称地源热泵,利用地下20-30米处12℃~35℃左右的地下水资源或各类水源,夏季提供5℃~7℃的冷水给房间供冷;冬季提供45℃左右的热水给房间供暖,如锋尚国际公寓。 五是地热采暖:近几年一些地下有热水资源的楼盘采用了这种采暖方式。 六是户式中央空调系统:此系统主机为风冷式小型冷热水机组,房间内采用送风道或风机盘管。 从供暖系统的终端看,即具体到房子里,热能是以一种什么样的形式让房子暖和,主要有自然对流、辐射、热风三种方式。通常看到的暖气片便是通过自然对流供暖,辐射供暖包括电热膜、电缆以及地板采暖;热风主要是空调机。如有的小区虽然采用的是壁挂炉,但终端也采用地板采暖。 ■六种供暖方式各有所长 1、市政热力管网:市热力集团把市政热力通过管线输送到住户家中是最清洁最有保证的一种供暖方式,目前的收费情况是:市热力集团供应的民用供暖价格为采暖季每建筑平方米24元;供应旅游饭店、使馆、出租公寓的供暖价格仍为采暖季每建筑平方米30元。但由于目前北京很多住宅楼每套住宅内没有分户计量的阀门和热表,这种供暖方式的缺点也就暴

相关文档