文档库 最新最全的文档下载
当前位置:文档库 › 运筹学第四章整数规划

运筹学第四章整数规划

运筹学第四章整数规划

运筹学第四章整数规划

运筹学整数规划补例样本

运筹学难点辅导材料 整数规划补例 1、 对( IP) 整数规划问题12 12121212max 14951631..0,0,z x x x x x x s t x x x x =++≤?? -+≤?? ≥≥???为整数, 问用先解相应的线性规划然后凑 整的办法能否求到最优整数解? 再用分支定界法求解。 解 先不考虑整数约束, 得到线性规划问题( 一般称为松弛问题LP) 12 12121 2max 14951..6310,0 z x x x x s t x x x x =++≤?? -+≤??≥≥?用图解法求出最优解12310 ,23x x ==且296z =。 如用”舍入取整法”凑整可得到四个点, 即( 1, 3) 、 ( 2, 3) 、 ( 1, 4) 、 ( 2, 4) 。代入约束条件发现她们都不是可行解。可将可行域内的所有整数点一一列举( 完全枚举法) , 本例中( 2, 2) 、 ( 3, 1) 点为最大值4z =。 令() 0310,23T X ??= ??? 及最优值()0 296z =。可行域记为D, 显然()0X 不是整数解。 定界: 取()0296z z == , 再用视察法找一个整数可行解()0,0T X '=及0z '=, 取0z z '==, 即*2906 z ≤≤ 分支: ( 关键点, 在B 的最优解中任选一个不符合整数条件的变量j x , 其值为 j b , 构造两个约束条件1,j j j j x b x b ????≥+≤????, 这里用了取整函数呵! ) 任取最 优解中一个不为整数的变量值, 例如132x = , 根据312?? =???? , 构造两个约束条件,

运筹学第四章多目标规划

习题四 4.1 分别用图解法和单纯形法求解下述目标规划问题 (1) min z =p 1(+1d ++2d )+p 2-3d st. -x 1+ x 2+ d -1- d + 1=1 -0.5x 1+ x 2+ d - 2-d + 2=2 3x 1+3x 2+ d -3- d +3=50 x 1,x 2≥0;d -i ,d +i ≥0(i =1,2,3) (2) min z =p 1(2+1d +3+2d )+p 2-3d +p 3+4d st. x 1+ x 2+d -1-d + 1 =10 x 1 +d -2-d +2 =4 5x 1+3x 2+d -3-d +3 =56 x 1+ x 2+d -4-d +4 =12 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) 4.2 考虑下述目标规划问题 min z =p 1(d +1+d +2)+2p 2d -4+p 2d -3+p 3d -1 st. x 1 +d -1-d +1=20 x 2+d -2-d +2=35 -5x 1+3x 2+d - 3-d + 3=220 x 1-x 2+d -4-d +4=60 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) (1)求满意解; (2)当第二个约束右端项由35改为75时,求解的变化; (3)若增加一个新的目标约束:-4x 1+x 2+d -5-d +5=8,该目标要求尽量达 到目标值,并列为第一优先级考虑,求解的变化; (4)若增加一个新的变量x 3,其系数列向量为(0,1,1,-1)T ,则满意解如何变化? 4.3 一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。依据法律,该台每天允许广播12小时,其中商业节目用以赢利,每小时可收入250美元,新闻节目每小时需支出40美元,音乐节目每播一小时费用为17.50美元。法律规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目。问每天的广播节目该如何安排?优先级如下: P 1:满足法律规定要求; P 2:每天的纯收入最大。 试建立该问题的目标规划模型。

运筹学第四章

运筹学第四章习题答案 4.1若用以下表达式作为目标规划的目标函数,其逻辑是否正确?为什么? (1)max {- d -+d } (2)max {-d ++ d } (3)min {-d ++d } (4)min {-d -+ d } (1)合理,令f (x )+- d -+ d =b,当f (x )取最小值时,- d -+ d 取最大值合理。 (2)不合理,+ d 取最大值时,f (x )取最大值,- d 取最大值时,f (x )应取最小值 (3)合理,恰好达到目标值时,- d 和+ d 都要尽可能的小。 (4)合理,令f (x )+- d -+ d =b,当f (x )取最大值时,- d -+ d 取最小值合理。 4.2用图解法和单纯形法解下列目标规划问题 (1)min {P 13 +d ,P 2- 2d ,P 3(- 1d ++ 1d )} 24261121=-+++- d d x x 52221=-+++- d d x x 155331=-++-d d x 3,2,1,0,,,21=≥+-i d d x x i i (2)min{P 1(+++43d d ),P 2+1d ,P 3-2d ,P 4(--+4 35.1d d )} 401121=-+++-d d x x 1002221=-++--d d x x 30331=-++-d d x 15442=-++-d d x 4,3,2,1,0,,,21=≥+-i d d x x i i (1)图解法

0 A B C X 1 由图可知,满足域为线段EG,这就是目标规划方程的解,可求得:E,G 的坐标分别为(0,12),(3,3) 故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a (2)图解法 2 1 由图可知,满足域为线段AB A(25,15),B(30,10)故该问题的解可 表示为)1015,3025()10,30()15,25(212121a a a a a a ++=+ )1,0(212,1=+≥a a a a

运筹学课件第四章目标规划

第四章目标规划 一、学习目的与要求 1、掌握目标规划的图解法模型; 2、掌握目标规划的单纯形的求解模型; 3、掌握目标规划的灵敏度分析。 二、课时6学时 第一节目标规划问题及其数学模型 一、问题的提出 应用线性规划可以处理许多线性系统的最优化问题,但线性规划,整数规划和非线性规划都只有一个目标函数,而在实际问题中,常常需要考虑多个目标:如设计一个新产品的工艺过程,不仅希望获利大,而且希望产量高,消耗低,质量好,投入少等。而这些目标之间通常是矛盾的。所以这类问题多目标问题比单目标问题要复杂得多,我们把这一类问题称为目标规划问题。 目标规划与线性规划相比,有以下优点: 1.线性规则只讨论一个线性目标函数在一组线性约束条件下的极值问题。 实际问题中,往往要考虑多个目标的决策问题,这些目标可能互相矛盾,也可能没有统一的度量单位,很难比较。目标规划就能够兼顾地处理多种目标的关系,求得更切合实际的解。 2.线性规划是在满足所有约束条件的可行解中求得最优解。而在实际问题 中往往存在一些相互矛盾的约束条件,如何在这些相互矛盾的约束条件下,找到一个满意解就是目标规划所要讨论的问题。 3.线性规划问题中的约束条件是不分主次、同等对待的,是一律要满足的“硬约束”。而在实际问题中,多个目标和多个约束条件不一定是同等重要的,而是有轻重缓急和主次之分的,如何根据实际情况确定模型和求解,使其更合实际是目标规划的任务。 4.线性规划的最优解可以说是绝对意义下的最优,为求得这个最优解,往往要花去大量的人力、物力和才力。而在实际问题中,却并不一定需要去找这种最优解。目标规划所求的满意解是指尽可能地达到或接近一个或几个已给定的指标值,这种满意解更能够满足实际的需要。 因此可以认为,目标规划更能够确切描述和解决经济管理中的许多实际问题。目前目标规划的理论和方法已经在经济计划、生产管理、经营管理、市场分析、财务管理等方面得到广泛的应用。 二、目标规划的数学模型 例1 某工厂生产两种产品,受到原材料和设备工时的限制。在单件利润等有关数据已知的条件下,要求制定一个获利最大的生产计划,具体数据见表:

第六章---运筹学-整数规划案例

第六章整数规划 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。 1、 max z=3x1+2x2 . 2x1+3x2≤12 2x1+x2≤9 x1、x2≥0 解: 2、 min f=10x1+9x2 . 5x1+3x2≥45 x1≥8 x2≤10 x1、x2≥0

求解下列整数规划问题 1、 min f=4x1+3x2+2x3 . 2x1-5x2+3x3≤4 4x1+x2+3x3≥3 x2+x3≥1 x1、x2、x3=0或1 解:最优解(0,0,1),最优值:2 2、 min f=2x1+5x2+3x3+4x3 . -4x1+x2+x3+x4≥2 -2x1+4x2+2x2+4x2≥4 x1+x2-x2+x2≥3 x1、x2、x3、x3=0或1 解:此模型没有可行解。 3、max Z=2x1+3x2+5x3+6x4 . 5x1+3x2+3x3+x4≤30 2x1+5x2-x2+3x2≤20 -x1+3x2+5x2+3x2≤40 3x1-x2+3x2+5x2≤25 x1、x2、x3、x3=正整数 解:最优解(0,3,4,3),最优值:47 4、 min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+ 5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19 约束条件x1 + x2+x3≤30 x4+ x5+ x6-10 x16≤0 x7+ x8+ x9-20 x17≤0 x10+ x11+ x12-30 x18≤0 x13+ x14+ x15-40 x19≤0 x1 + x4+ x7+x10+ x13=30 x2 + x5+ x8+x11+ x14=20 x3 + x6+ x9+x12+ x15=20 x i为非负数(i=1,2…..8) x i为非负整数(i=9,10…..15) x i为为0-1变量(i=16,17…..19) 解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:860 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:

运筹学整数规划例题

练习4.9 连续投资问题 某公司现有资金10万元,拟在今后五年考虑用于下列项目的投资: 项目A:从第一年到第四年每年年初需要投资,并于次年收回本利115%,但要求第一年投资最低金额为4万元,第二.三.四年不限. 项目B:第三年初需要投资,到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为5万元. 项目C:第二年初需要投资,到第五年末能收回本利140%,但规定其投资金额或为2万元,或为4万元,或为6万元,或为8万元. 项目D:五年每年年初都可购买公债,于当年末归还,并获利6%,此项目投资金额不限. 试问该公司应图和确定这些项目的每年投资金额,使到第五年末拥有最大的资金收益. (1) x 为项目各年月初投入向量。 (2) ij x 为 i 种项目j 年的月初的投入。 (3) 向量c 中的元素 ij c 为i 年末j 种项目收回本例的百分比。 (4) 矩阵A 中元素 ij a 为约束条件中每个变量ij x 的系数。 (5) Z 为第5年末能拥有的资金本利最大总额。 因此目标函数为 4325max 1.15 1.28 1.40 1.06A B C D Z x x x x =+++ 束条件应是每年年初的投资额应等于该投资者年初所拥有的资金. 第1年年初该投资者拥有10万元资金,故有 11100000A D x x +=. 第2年年初该投资者手中拥有资金只有()116%D x +,故有 22211.06A C D D x x x x ++=. 第3年年初该投资者拥有资金为从D 项目收回的本金: 21.06D x ,及从项目A 中第1年投资收回的本金: 11.15A x ,故有 333121.15 1.06A B D A D x x x x x ++=+ 同理第4年、第5年有约束为 44231.15 1.06A D A D x x x x +=+, 5341.15 1.06D A D x x x =+

运筹学整数规划

实验报告 课程名称:___ 运筹学 ____ 项目名称:整数规划问题_ 姓名:__专业:、班级:1班学号:同组成员:_ __ 1注:1、实验准备部分包括实验环境准备和实验所需知识点准备。 2、若是单人单组实验,同组成员填无。

例4.5设某部队为了完成某项特殊任务,需要昼夜24小时不间断值班,但每天不同时段所需要的人数不同,具体情况如表4-4所示。假设值班人员分别在各时间段开时上班,并连续工作8h。现在的问题是该部队要完成这项任务至少需要配备多少名班人员? 解: 根据题意,假设用i x(i=1,2,3,4,5,6)分别表示第i个班次开始上班的人数, 每个人都要连续值班8h,于是根据问题的要求可归结为如下的整数规划模型:目标函数: i i x z 6 1 min = ∑ = 约束条件: ? ? ? ? ? ? ? ? ? ? ? = ≥) 且为整数(6 ... 1 ,0 x 30 >= x6 + x5 20 >= x5 + x4 50 >= x4 + x3 60 >= x3 + x2 70 >= x2 + x1 60 >= x6 + x1 i i model: sets: num/1,2,3,4,5,6/:b,x; endsets data: b=60,70,60,50,20,30; enddata [obj]min=@sum(num(i):x(i)); x(1)+x(6)>=60; x(1)+x(2)>=70; x(2)+x(3)>=60; x(3)+x(4)>=50; 2注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。

解: 目标函数: y3*2000-y2*2000-y1*5000-x3*200)-(300+x2*30)-(40+x1*280)-(400=z max 约束条件:???????y3 *300<=x3*2y2*300<=x2*0.5y1*300<=x1*32000<=x3*4+x2+x1*5 model : sets : num/1,2,3/:x,y; endsets [obj]max =(400-280)*x(1)+(40-30)*x(2)+(300-200)*x(3)-5000*y(1)-2000*y(2)-2000*y(3); 5*x(1)+x(2)+4*x(3)<=2000; 3*x(1)<=300*y(1); 0.5*x(2)<=300*y(2); 2*x(3)<=300*y(3); @for (num(i):x(i)>=0;@bin (y(i));); end

运筹学经典案例

运筹学经典案例 案例一:鲍德西((B AWDSEY)雷达站的研究 20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。欧洲上空战云密布。英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。 1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。 当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett 马戏团”,专门就改进空防系统进行研究。 这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。“Blackett马戏团”是世界上第一个运筹学小组。在他们就此项研究所写的秘密报告中,使用了 “Operational Research”一词,意指作战研究”或“运用研究”。就是我们所说的运筹学。Bawdseg雷达站的研究是运筹学的发祥与典范。项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

运筹学经典案例

案例一:鲍德西((B AWDSEY)雷达站的研究 20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。欧洲上空战云密布。英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。 1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。 当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的为首,组织了一个小组,代号为“Blachett马戏团”,专门就改进空防系统进行研究。 这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。“Blackett马戏团” 是世界上第一个运筹学小组。在他们就此项研究所写的秘密报告中,使用了 “Operational Research”一词,意指作战研究”或“运用研究”。就是我们所说的运筹学。Bawdseg雷达站的研究是运筹学的发祥与典范。项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

《管理运筹学》第三版案例题解

《管理运筹学》案例题解 案例1:北方化工厂月生产计划安排 解:设每月生产产品i (i=1,2,3,4,5)的数量为X i ,价格为P 1i ,Y j 为原材料j 的数量,价格为P 2j ,a ij 为产品i 中原材料j 所需的数量百分比,则: 5 10.6j i ij i Y X a ==∑ 总成本:TC=∑=15 1 2j j j P Y 总销售收入为:5 11 i i i TI X P ==∑ 目标函数为:MAX TP (总利润)=TI-TC 约束条件为: 10 30 24800215 1 ?? ?≤∑=j j Y X 1+X 3=0.7∑=5 1 i i X X 2≤0.05∑=5 1 i i X X 3+X 4≤X 1 Y 3≤4000 X i ≥0,i=1,2,3,4,5 应用计算工具求解得到: X 1=19639.94kg X 2=0kg X 3=7855.97kg X 4=11783.96kg X 5=0kg 最优解为:348286.39元

案例2:石华建设监理工程师配置问题 解:设X i 表示工地i 在标准施工期需要配备的监理工程师,Y j 表示工地j 在高峰施工期需要配备的监理工程师。 约束条件为: X 1≥5 X 2≥4 X 3≥4 X 4≥3 X 5≥3 X 6≥2 X 7≥2 Y 1+Y 2≥14 Y 2+Y 3≥13 Y 3+Y 4≥11 Y 4+Y 5≥10 Y 5+Y 6≥9 Y 6+Y 7≥7 Y 7+Y 1≥14 Y j ≥ X i (i=j ,i=1,2,…,7) 总成本Y 为: Y=∑=+7 1)12/353/7(i i i Y X 解得 X 1=5;X 2=4;X 3=4;X 4=3;X 5=3;X 6=2;X 7=2; 1Y =9;2Y =5;3Y =8;4Y =3;5Y =7;6Y =2;7Y =5; 总成本Y=167.

运筹学第4章整数规划习题.doc

第四章 整数规划 4.1 某工厂生产甲、乙两种设备,已知生产这两种设备需要消耗材料A 、材料B ,有关数据如下,问这两种设备各生产多少使工厂利润最大?(只建模不求解) 解:设生产甲、乙这两种设备的数量分别为x 1、x 2,由于是设备台数,则其变量都要求为整数,建立模型如下: 2123max x x z += ????? ? ?≥≤+≤+为整数 21212121,0,5 .45.01432x x x x x x x x 4.2 2197max x x z += ??? ??≥≤+≤+-且为整数 0,35 76 3.212121x x x x x x t s 割平面法求解。(下表为最优表) 线性规划的最优解为: 63max ,0,2/7,2/94321=====z x x x x 由最终表中得: 2 7 221227432=++ x x x ④ 将系数和常数项分解成整数和非负真分式之和,上式化为; 2 132********+=++x x x 移项后得: ①②③④ ①②③

即: 2 1221227212212274343-≤--→≥+x x x x 只要把增加的约束条件加到B 问题的最优单纯形表中。 由x 1行得: 7 32 7171541= -+ x x x 将系数和常数项分解成整数和非负真分数之和: 74476715541+=+-+x x x x 得到新的约束条件: 74 767154-≤--x x 7 47671654-=+--x x x 在的最优单纯形表中加上此约束,用对偶单纯形法求解: 则最优解为3,421 ==x x ,最优目标函数值为z *=55。 4.3 max z =4x 1+3x 2+2x 3

运筹学实例分析及lingo求解

运筹学实例分析及lingo 求解 一、线性规划 某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。各供货仓库到8个客户处的单位货物运输价见表 试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。 解:设 ij x 表示从第i 个仓库到第j 个客户的货物运量。ij c 表示从第i 个仓库到第 j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束 数学模型为: ∑∑===6 18 1)(min i j ij ij x c x f ????? ??????≥===≤∑∑==08,,2,1,6,2,1,,. .6 1 8 1ij j i ij i j ij x j d x i a x t s ΛΛ 编程如下: model : Sets : Wh/w1..w6/:ai; Vd/v1..v8/:dj;

links(wh,vd):c,x; endsets Data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; Enddata Min=@sum(links(i,j):c(i,j)*x(i,j)); @for(wh(i):@sum(vd(j):x(i,j))<=ai(i)); @for(vd(j):@sum(wh(i):x(i,j))=dj(j)); end Global optimal solution found. Objective value: Total solver iterations: 0 Variable Value Reduced Cost AI( W1) AI( W2) AI( W3) AI( W4) AI( W5) AI( W6) DJ( V1) DJ( V2) DJ( V3) DJ( V4) DJ( V5) DJ( V6) DJ( V7) DJ( V8) C( W1, V1) C( W1, V2) C( W1, V3) C( W1, V4) C( W1, V5) C( W1, V6) C( W1, V7)

运筹学试验:整数规划

《运筹学》上机实验报告三 (整数线性规划) 实验名称:利用Gomory割平面法编程求解整数规划问题;利用分枝定界法编程求解整数规划问题 实验目的:1. 学会软件lindo/lingo的安装及基本的操作;2. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo 对问题进行求解。 实验内容: 1.用lindo/lingo 计算(学会输入、查看、运行、结果分析) max z = 20x1 + 10x2 5x1 + 4x2 ≤ 24 2x1 + 5x2 ≤ 13 x1,x2 ≥ 0 x1,x2取整数 2.(指派问题) 现在有A 、B、C、D、E五种任务,要交给甲、乙、丙、丁、戊去完成,每人完成一种任务,每个人完成每种任务所需要的时间如下表。问应该如何安排个人完成哪项任务可使总的花费的时间最少?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明) A B C D E 任务 人 甲127979 乙89666 丙717121412 丁15146610 戊4107106 3.选址问题 某跨国公司准备在某国建三个加工厂,现有8个城市供选择,每个城市需要的投资分别为1200万美元、1400万美元、800万美元、900万美元、1000万美元、1050万美元、950万美元、150万美元,但投资总额

不能超过3400万美元,形成生产能力分别为100万台、120万台、80万台、85万台、95万台、100万台、90万台、130万台,由于需求的原因,要求:城市1和城市3最多选1个,城市3、城市4、城市5最多选两个,城市6和城市7最少选1个,问选择哪些城市建厂,才能使总的生产能力最大?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明) 整数变量定义 LinDo 一般整数变量:GIN 0-1整数变量: INT LinGo 一般整数变量: @GIN( variable_name); 0-1整数变量:@BIN( variable_name); 例如(1) Lindo运算程序 max 3 x1+5 x2+4 x3 subject to 2 x1+ 3 x2<=1500 2 x2+4 x3<=800 3 x1+2 x2 +5 x3<=2000 end gin x1 gin x3 (2) max z = 3x1 - 2x2 + 5x3 x1 + 2x2 - x3 ≤ 2 x1 + 4x2 + x3 ≤ 4 x1 + x2 ≤ 3 4x2 + x3 < 6 x1,x2,x3 = 0或1 lingo程序: max =3*x1 – 2*x2 + 5*x3; x1 + 2*x2 - x3 <= 2; x1 + 4*x2 + x3 <= 4;

运筹学实验报告四整数规划

2018-2019学年第一学期 《运筹学》 实验报告(四) 班级:交通运输171 学号: 1000000000 姓名: ***** 日期: 2018.11.22

实验一: 用Lingo 软件求解下列整数规划问题(要求附程序和结果) 12 121212max 2506221 0,1,2i z x x x x x x x x x i =++≤?? -+≤?? +≤??≥=?且取整数 12312323123123 123max 232 45 2244 ,,01 z x x x x x x x x x x x x x x x x x =+-++≤??+≤?? +-≤??+-≤?=??或 解:例题(左)解题程序及运行结果如下: sets : bliang/1,2/:x,a; yshu/1,2,3/:b; xshu(yshu,bliang):c; endsets data : a=2,1; b=5,0,21; c=1,1 -1,1 6,2; enddata max =@sum (bliang(i):a(i)*x(i)); @for (yshu(j):@sum (bliang(i):x(i)*c(j,i))<=b(j)); @for(bliang(i):@gin(x(i))); Global optimal solution found. Objective value: 7.000000 Objective bound: 7.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X( 1) 3.000000 -2.000000 X( 2) 1.000000 -1.000000 A( 1) 2.000000 0.000000

第六章运筹学整数规划案例教材

第六章整数规划 6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。 1、 max z=3x1+2x2 S.T. 2x1+3x2≤12 2x1+x2≤9 x1、x2≥0 解: 2、 min f=10x1+9x2 S.T. 5x1+3x2≥45 x1≥8 x2≤10 x1、x2≥0

6.2 求解下列整数规划问题 1、 min f=4x1+3x2+2x3 S.T. 2x1-5x2+3x3≤4 4x1+x2+3x3≥3 x2+x3≥1 x1、x2、x3=0或1 解:最优解(0,0,1),最优值:2 2、 min f=2x1+5x2+3x3+4x3 S.T. -4x1+x2+x3+x4≥2 -2x1+4x2+2x2+4x2≥4 x1+x2-x2+x2≥3 x1、x2、x3、x3=0或1 解:此模型没有可行解。 3、max Z=2x1+3x2+5x3+6x4 S.T. 5x1+3x2+3x3+x4≤30 2x1+5x2-x2+3x2≤20 -x1+3x2+5x2+3x2≤40 3x1-x2+3x2+5x2≤25 x1、x2、x3、x3=正整数 解:最优解(0,3,4,3),最优值:47 4、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+ 5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19 约束条件x1 + x2+x3≤30 x4+ x5+x6-10 x16≤0 x7+ x8+x9-20 x17≤0 x10+ x11+x12-30 x18≤0 x13+ x14+x15-40 x19≤0 x1 + x4+ x7+x10+ x13=30 x2 + x5+ x8+x11+ x14=20 x3 + x6+ x9+x12+ x15=20 x i为非负数(i=1,2…..8) x i为非负整数(i=9,10…..15) x i为为0-1变量(i=16,17…..19) 解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:860 6.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:

运筹学实用案例分析过程

案例2 解:设工地i在标准施工期需要配备的监理工程师为Xi, 工地j在高峰施工期需要配备的监理工程师为Yi. 7 总成本: minZ=∑ ( 7Xi/3 + 35Yj/12) i=1 x1≥5 X2≥4 X3≥4 X4≥3 X5≥3 X6≥2 X7≥2 Y1+Y2≥14 Y2+Y3≥13 Y3+Y4≥11 Y4+Y5≥10 Y5+Y6≥9 Y6+Y7≥7 Y7+Y1≥14 Yj≥Xi (i=j i,j=1,2,3,4,5,6,7) 结果如下:

解:穷举两种车可能的所有路线。 设x i为第i条路线的车的数量,那么: 求min f= 12(x1+…+x12) + 18(x13+…+x21) 因为50个点属于A,36个点属于B,20个点属于C,所以约束条件是以上所有xi乘上它对应的路线中去各个点的数量的总和分别大于等于实际这些点的数量,因为表达式过于冗长,这里省略。 因为派去的车应该是整数,所以这是整数规划问题,运用软件求解。 最后得出结果: x9=4 x12=3 x19=8 x21=2 其余都等于零。 所以结果是派7辆2吨车,10辆4吨车。 路线如表格,这里不赘述。

解:设xij表示在i地销售的j规格的东西。其中i=1到6对应福建广东广西四川山东和其他省区,j=1和2对应900-1600和350-800。 求max f=270x11+ 240x21+ 295x31+300x41+242x51 +260x61+63x12+60 x22 + 60x32 +64x42 +59x52 +57x62– 1450000 在下图软件操作中,用x1到x12代表以上的未知数。 约束条件如上 运用软件求解,结果为: 由于软件中没有添加– 1450000, 所以最大利润为:5731000元。

相关文档
相关文档 最新文档