文档库 最新最全的文档下载
当前位置:文档库 › 第三节 单摆

第三节 单摆

第三节 单摆
第三节 单摆

第三节 单摆

一、单摆:

在线的一端拴一个小球,另一端固定在悬点上,球的直径比线长短的多,这样的装置就叫做单摆(是一种理想化的模型)。

悬点:固定

线:细、软、长、无弹性 球:小、重

二、单摆的振动:

1、回复力:设摆球的质量为m ,摆长为L ,摆角为α,取离开平衡位置的位移X 的方向为正方向。 对摆球,受力如图所示,回复力为:

α-=sin mg F

当摆角很小时,L

X sin ≈α,所以:

KX X L

mg F -=-

=,

(其中L

mg K =)

2、简谐运动的条件: 在摆角很小(小于........5.0

)的情况下.....,单摆所受回复......力跟位移成正比而方向相反............,单摆做简谐振动.......

。 三、单摆的周期:

1、简谐振动的周期:

k

m 2T π

=

说明:

K :比例系数,m :振子质量。

周期与振幅无关(叫固有周期、固有频率); 2、单摆振动的周期:

g

L 2m

2k m 2T L

mg

π

=

说明:

1)此公式是荷兰物理学家惠更斯发现的; 2)T 与A 无关,与m 无关,叫等时性。伽利略发现

3)周期是2秒的单摆叫做秒摆。摆线长约1米。 四、单摆的应用:

1、计时器:

利用等时性制成,如摆钟等。由单摆周期公式可知,调节摆长即可调节摆钟的快慢。

2、测定重力加速度:

原理:由周期公式变形得:22

T

L 4g π=

,只要测

出单摆的摆长和振动周期,就可以测出当地的重力加速度。

五、例题:

如图所示,BOC 为一光滑圆弧形轨道,其半径为R (R 远大于BOC 弧)。若同时从圆心O '和轨道B 点无初速度分别释放一小球P 和Q ,则:

A 、Q 球先到达O 点;

B 、P 球先到达O 点;

C 、P 、Q 同时到达O 点;

D 、无法判断。

1.单摆振动的回复力是摆球所受的合外力吗?

单摆振动的回复力是重力在切线方向的分力,或

者说是摆球所受合外力在切线方向的分力.摆球所受的合外力在法线方向(摆线方向)的分力作为摆球做圆周运动的向心力.所以并不是合外力完全用来提供回复力的.“单摆振动的回复力就是摆球所受的合外力”这一说法是错误的.

2、将秒摆的周期变为1秒,下列哪些措施是可行? A 、将摆球的质量减少一半 B 、将摆球的质量减少到原来的1/4 C 、将振幅减少一半 D 、将摆长减少一半

E 、将摆长减少到原来的1/4

根据单摆的等时性规律,A 、B 、C 、D 均错误,选项E 正确。 注意:秒摆的周期是两秒。单摆的等时性指周期与振幅无关,另外,周期也与摆球质量无关。这个规律在解决问题过程中是非常重要的。

巩固练习:

1.一个单摆从甲地移至乙地振动变慢了,其原因及使周期不变的方法应为:

A . g 甲>g 乙 ,将摆长缩短 B. g 甲>g 乙,将摆长加长 C. g 甲

3.有甲乙两个单摆,在甲摆振动20次的时间内乙摆恰好完成10次全振动,则甲乙的摆长之比等于

_____

问题讨论

4.一带摆的时钟,在山下走得很准确,若把它拿到高山上,快慢程度的变化是变_______

5.关于单摆的运动,下列说法正确的是:

A.单摆运动过程中摆绳的拉力和摆球重力的合力为回复力

B.摆球通过平衡位置时所受的合力为零

C.摆球经过最大位移处时所受的合力为零

D.摆球摆动过程中,摆球所受的重力沿轨迹切线方向的分力为回复力

6.有一个单摆,周期为1秒,如把它的摆长缩短到

1/4,则它的周期变为 _____ ;如摆长增加3倍,则它的周期变为_______;如把它的振幅减小到1/2,则它的周期为_____ 。

7.一个单摆偏离平衡位置时,最大势能为0.002焦,摆球质量为0.1千克,摆线长为1米.则摆球经最低点时的速度为米/秒,此摆的周期为秒,当摆球质量增加到0.5千克,此摆的周期为秒。

8.若单摆的摆长不变,摆球质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的1/2,则单摆振动时:

A.频率不变,振幅不变

B.频率不变,振幅改变

C.频率改变,振幅改变

D.频率改变,振幅不变

9.振动的单摆小球通过平衡位置时,关于小球受到的回复力及合外力的说法正确的是:

A. 回复力为零,合外力不为零,方向指向悬点B.回复力不为零,方向沿轨迹的切线

C.合外力不为零,方向沿轨迹的切线

D.回复力为零,合外力也为零

10. 发生下述哪一种情况时,单摆周期会增大

A. 增大摆球质量 B.缩短摆长

C. 减小单摆振幅

D. 将单摆由山下移至山顶

11.在月球上周期相等的弹簧振子和单摆,把它们放到地球上后,弹簧振子的周期为T l,单摆的周期为T2,则T1和T2的关系为:

A、T1>T2

B、T1=T2

C、T1<T2

D、无法确定

12.有一单摆在地面上一定时间内振动了N次,将它移到某高山上,在相同时间内振动了(N-1)次,由此可粗略地推算出此山的高度约为地球半径的多少倍? 13.如图,在水平直杆上用长度分别是l1和l2的两条细线系住一个小球,已知两条细线相互垂直,它们与杆的夹角分别是α、β。现使小球绕杆作微小振动,其周期应为:

A

g

l

l

2

1

2

+

π

B

g

π

sin

21

C

g

π

sin

22 D

g

l

2

14.如图所示,一单摆摆长为l,在

其悬挂点O的正下方l/ 2 处的P点有

一个钉子,摆线在钉子的右侧。现将

摆球向其平衡位置左侧移动,移到摆

线与竖直成5°角时无初速释放,则它

振动的周期为多少?

g

l

g

l

T

2

π

π+

=

15.图中两单摆摆长相同,平衡时两

摆球刚好接触。现将摆球A在两摆线

所在平面内向左拉开一小角度后释

放,碰撞后,两摆球分开各自做简谐

运动,以m A、m B分别表示摆球A、

B的质量,则:

A.如果m A>m B,下一次碰撞将发生在平衡位置右侧B.如果m A

D.无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置左侧

16.如图所示,光滑弧形槽的半径R

远大于小球运动弧长,设有两个小球

(均可视为质点) 同时由静止释放,其

中甲球开始时离圆槽最低点O较远

些。则它们第一次相遇的地点是在:

A.O点B.O点偏左C.O点偏右

D.无法确定,因为两小球的质量关系未知

实验一信号与系统的傅立叶分析.

实验一 信号与系统的傅立叶分析 一. 实验目的 用傅立叶变换对信号和系统进行频域分析。 二.实验仪器 装有matlab 软件的计算机 三.实验内容及步骤 (1)已知系统用下面差分方程描述: )1()()(-+=n ay n x n y 试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。要求写出系统的传输函数,并打印w e H jw ~)(曲线。、 当a=0.95 B=1; A=[1,0.95]; subplot(1,3,1); zplane(B,A); xlabel('实部Re');ylabel('虚部Im'); title('y(n)=x(n)+0.95y(n-1)传输函数零、极点分布'); grid on ; [H,w]=freqz(B,A,'whole'); subplot(1,3,2); plot(w/pi,abs(H),'linewidth',2); grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|'); title('幅频响应特性'); axis([0,2,0,2.5]); subplot(1,3,3); plot(w/pi,angle(H),'linewidth',2); grid on; xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('相频响应特性'); axis([-0.1,2.1,-1.5,1.5]); a=0.5程序如上,图如下

(2)已知两系统分别用下面差分方程描述: )1()()(1-+=n x n x n y )1()()(2--=n x n x n y 试分别写出它们的传输函数,并分别打印w e H jw ~)(曲线。 当方程为)1()()(1-+=n x n x n y 的程序代码: B=[1,1];A=1; subplot(2,3,1);zplane(B,A); xlabel('实部Re'); ylabel('虚部Im'); title('y(n)=x(n)+x(n-1)传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(2,3,2); plot(w/pi,abs(H),'linewidth',2); grid on;

基于MATLAB的单摆运动概要

Matlab仿真技术作品报告 题目:MATLAB在单摆实验中的应用 系(院): 专业: 班级: 学号: 姓名: 指导教师: 学年学期:2012~2013 学年第 1 学期 2012年11月18日

设计任务书 摘要 借助MATLAB 计算软件, 研究无阻尼状态下单摆的大摆角运动, 给出了任意摆角下单摆运动周期的精确解。同时利用MATLAB 函数库中的ode45 函数, 求解出大摆角下的单摆的运动方程。并利用其仿真动画形象的展现出单摆的运动规律, 为单摆实验中大摆角问题的讲解提供了较好的教学辅助手段。 关键词单摆模型;周期;MATLAB;

目录 一、问题的提出 (2) 二、方法概述 (2) 2.1问题描述 (2) 2.2算法基础 (3) 2.2.1单摆运动周期 (3) 2.2.2单摆做简谐运动的条件 (4) 三、基于MAT LAB的问题求解 (5) 3.1单摆大摆角的周期精确解 (5) 3.2、单摆仿真(动画) (7) 3.3单摆仿真整个界面如下: (10) 四、结论 (12) 五、课程体会 (12) 参考文献 (13)

一、问题的提出 在工科物理教学中,物理实验极其重要,它担负着训练学生基本实验技能、验证学生所学知识、提高学生综合实力的重要职责。通过一系列的物理实验,学生可在一定程度上了解并掌握前人对一些典型物理量的经典测量方法和实验技术,并为以后的实验工作提供有价值的借鉴,进而培养学生的动手实践能力和综合创新能力。然而,物理实验的优劣很大程度受限于物理实验条件的制约。当前,受限于以下条件(很多情况下物理实验环境都是难以有效构造的),物理实验的效果并不理想: 1)一些实验设备比较复杂并且昂贵,难以普及应用; 2)有效实验环要求非常苛刻,是现实环境中难以模拟,甚至根本无法模拟; 3)除此以外,有些实验的实验环境即使可以有效构造,它的实验结果却仍然是难以直接、完整观察获取的,如力场、电场、磁场中的分布问题等。 鉴于以上原因,物理仿真实验已引起了大家的关注,出现了一些软件。但很多是基于Flash、Photoshop 、3D Studio MAX之类的图形图像软件制作。这些软件可以制作逼真的实验环境和生动的实验过程动画,还可以制作出实际实验所无法达到的效果。但这类软件本身是制作卡通动画的,对物理实验规律和过程很少涉及,很难做到真正的交互使用,及精确的计算分析同时开发也很困难。因此,基于这些软件的仿真在工科物理实验教学中应用很少。本文利用MATLAB 计算软件及其仿真功能对单摆实验过程进行模拟、仿真及后期分析,对物理实验教学改革提供一种新思路。 具体地,本文将描述一种新颖的单摆实验方法, 其主要的意义在于给学生以综合性实验技能训练。一个综合性实验, 它必须涉及多方面的知识和实验技能。本文描述的单摆实验方法即具备这样的特征。它的实验原理虽然简单, 但所涉及到的知识点极为丰富: 力学振动, 计算机编程等。学生通过这样的实验不仅可以得到综合性的实验技能训练, 而且可以在如何将现代技术改造传统实验、理论联系实际等方面得到很多启示。另外,本文引入计算机技术分析法, 对单摆实验进行了改造, 既实现了基础物理实验的现代化, 又为MATLAB课程实验提供了很好的应用落足点, 可以使学生得到多方面的实验技能训练。 二、方法概述 2.1问题描述 单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。单摆在摆角

高中物理优质课教案

高中物理优质课教案 11.4、单摆教案 单位: 姓名: 电话:

11.4、单摆教案 引入新课 在前面我们学习了弹簧振子,知道弹簧振子做简谐运动。那么:物体做简谐运动的条件是什么? 答:物体做机械振动,受到的回复力大小与位移大小成正比,方向与位移方向相反。 今天我们学习另一种机械振动——单摆的运动 1、 阅读课本第167页到168页第一段,思考:什么是单摆? 答:一根细线上端固定,下端系着一个小球,如果悬挂小球的细线的伸长和质量可以忽略,细线的长度又比小球的直径大得多,这样的装置就叫单摆。 物体做机械振动,必然受到回复力的作用,弹簧振子的回复力由弹簧弹力提供,单摆同样做机械振动,思考:单摆的回复力由谁来提供,如何表示? 梯度小问题:(1)平衡位置在哪儿? (2)回复力指向?(学生回答) (3)单摆受哪些力?(学生黑板展示) (4)回复力由谁来提供?(学生回答) 注意:数学上的近似必须让学生了解,同时通过此处也能让学生单摆做简谐运动是有条件 1)平衡位置 当摆球静止在平衡位置O 点时, 细线竖直下垂,摆球所受重力G 和悬线的拉力F 平衡, O 点就是摆球的平衡位置。 2)回复力 单摆的回复力F 回=G1=mg sinθ,单 摆的振动是不是简谐运动呢? 单摆受到的回复力F 回=mg sinθ,如图:虽然随着 单摆位移X 增大,sinθ也增大,但是回复力F 的大小 并不是和位移成正比,单摆的振动不是简谐运动。但是,在θ值较小的情况下(一般取θ≤10°),在误差允许的范围内可以近似的认为 sinθ=X/ L ,近似的有F= mg sinθ= ( mg /L )x = k x (k=mg/L ),又回复力的方向始终指向O 点,与位移方向图2

深入探析快速傅立叶变换(FFT)

深入探析快速傅立叶变换(FFT) 摘要: FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念。在大学的理工科课程中,在完成高等数学的课程后,数字信号处理一般会作为通信电子类专业的专业基础课程进行学习,原因是其中涉及了大量的高等数学的理论推导,同时又是各类应用技术的理论基础。 关于傅立叶变换的经典著作和文章非常多,但是看到满篇的复杂公式推导和罗列,我们还是很难从直观上去理解这一复杂的概念,我想对于普通的测试工程师来说,掌握FFT的概念首先应该搞清楚这样几个问题:(1)为什么需要FFT (2) 变换究竟是如何进行的(3) 变换前后信号有何种对应关系(4) 在使用测试工具(示波器或者其它软件平台)进行FFT的方法和需要注意的问题(5) 力科示 波器与泰克示波器的FFT计算方法的比较 在这篇文章中我尝试用更加浅显的讲解,尽量不使用公式推导来说一说FFT 的那些事儿。 一, 为什么需要FFT? 首先FFT(快速傅立叶变换)是离散傅立叶变换的快速算法,那么说到FFT,我们自然要先讲清楚傅立叶变换。先来看看傅立叶变换是从哪里来的? 傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时颇具争议性的命题:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其他审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的权威,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因为怕被推上断头台而一直在逃难。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它(棱角),逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有其他信号所不具备的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的,且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

高中物理选择性必修一第4节 单摆

第4节单摆 核 心 素 养 物理观念科学思维科学探究 1.知道单摆的概念,了解单 摆运动的特点。 2.知道单摆周期与摆长、重 力加速度的关系。 会利用单摆周 期公式测定重 力加速度。 通过实验探究单摆的周期 与摆长的关系。 知识点一单摆、单摆的回复力 1.单摆 (1)用细线悬挂着小球在竖直平面内摆动,如果细线的质量与小球相比可以忽略,球的直径与线长度相比也可以忽略,空气等对小球的阻力与它受到的重力及绳的拉力相比可以忽略,这样的装置就叫作单摆。 (2)单摆是实际摆的理想化模型。我们总要尽量选择质量大、体积小的球和尽量细的线。 2.单摆的回复力 (1)单摆的回复力是由重力沿圆弧切线方向的分力F=mg sin θ提供 的,如图所示。 (2)在最大偏角很小的条件下,sin θ≈ x l,其中x为摆球偏离平衡位置 O点的位移。 单摆的回复力F=- mg l x,令k= mg l,则F=-kx。 (3)在偏角很小的情况下,摆球所受的回复力与它偏离平衡位置的位移成正比,方向总是指向平衡位置,因此单摆做简谐运动。 [思考判断] (1)单摆运动的回复力是重力和摆线拉力的合力。(×) (2)单摆运动的回复力是重力沿圆弧切线方向的一个分力。(√) (3)单摆经过平衡位置时受到的合力为零。(×)

(4)单摆是一个理想化的模型。(√) 回复力和向心力都是按效果命名的,一定要清楚它们的来源。回复力是沿振动方向上的合力,而不是物体受到的合力。 在选项图所示的装置中,可视为单摆的是 提示 A 知识点二单摆的周期 [观图助学] 如图所示: (1)单摆振动的周期和振幅无关——单摆的等时性 把悬挂在同一高度的两个相同的单摆的摆球拉到不同高度同 时释放,使其做简谐运动。 现象:摆球完成一次全振动所用时间相同。 (2)单摆的周期与摆球质量无关 摆长相同,将质量不同的摆球拉到同一高度同时释放,使其做简谐运动。 现象:两摆球振动是同步的。 (3)单摆振动的周期和摆长有关 摆长不同,将质量相同的摆球拉到同一高度同时释放使其做简谐运动。 现象:摆长较长的摆球完成一次全振动所用时间较长。 1.探究单摆的振幅、质量、摆长对周期的影响

高中物理-单摆教案 (3)

高中物理-单摆教案 【教学目标】 一、知识与技能 1.知道单摆是一种理想化模型和做简谐运动的条件 2. 知道单摆做简谐运动时回复力的特点和表达式 3.知道单摆(偏角θ较小时)的周期与振幅、摆球质量、摆长和当地重力加速度g的关系。 二、过程与方法 1.知道测量单摆周期的方法,会用单摆测定重力加速度 2.通过探究过程体会猜想、设计实验、分析论证、评估等科学探究要素; 3.通过制定探究方案体会“控制变量”的研究方法。 三、情感、态度和价值观 1.通过实验,领悟实事求是的理念,并在探究活动中培养合作精神。 2.通过动手合作调动学生的学习主动性,培养他们的探究意识,激发他们的学习热情,体会研究的乐趣。 【重点、难点、疑点】 1.重点:单摆的振动规律和周期公式。 2.难点:单摆回复力的分析。 3.疑点:怎样确定单摆的振动周期与哪些因素有关,以及具体关系。 【教具准备】 摆球、铁架台、细线、支架、盛砂漏斗、硬纸板、砂、计算机、投影仪等 【教学过程】 一、复习引入新课 在前面我们学习了弹簧振子,知道弹簧振子做简谐运动。 那么:怎么判断物体的运动是否是简谐运动 答:有两种方法:方法一:位移时间图像为正弦 函数 方法二:物体在跟位移大小成正比、并且总是指 向平衡位置的回复力作用下的振动F =-kx 在生活中有很多种机械振动。比如建筑物挂钟的 振动、房顶吊灯的摆动、秋千的运动、座钟的钟 摆的摆动。这些运动都是摆动。我们对实际生活 中的摆进行理想化处理,忽略次要因素、突出主 要因素,这样所构建的模型称之为单摆。

二、新课教学 (一)单摆 问题:以上这些运动有什么共同点? 物理中常抽象出一种模型 1、单摆概念:细线一端固定在悬点,另一端系一个小球,如果 细线的质量与小球相比可以忽略;球的直径与线的长度相比也 可以忽略,这样的装置就叫做单摆。 ①摆线质量m 远小于摆球质量 M,即m << M ②摆球的直径 d 远小于单摆的摆长L,即 d <<L。③摆球所受空气阻力远小 于摆球重力及绳的拉力,可忽略不计。④摆线的伸长量很小, 可以忽略。 2、摆长:悬点到摆球重心的距离。摆长 L=L0+R (二)单摆的运动 问题1:运动的平衡位置在哪里 细线竖直下垂,摆球所受重力G和悬线的拉力F平衡,O点就是摆球的平衡位置。问题2:摆球的受力情况小球收到的力有重力、拉力 问题3:小球的运动情况分析以点O为平衡位置的振动 以悬点O’为圆心的圆周运动 问题4:力与运动的关系 回复力大小:向心力大小: O` O θ sin mg F= 回 θ cos mg N F- = 向

离散傅立叶变换及谱分析

数字信号处理实验 实验二、离散傅立叶变换及谱分析 学院:信息工程学院 班级:电子101班 姓名:*** 学号:******

一、实验目的 1.掌握离散傅里叶变换的计算机实现方法。 2.检验实序列傅里叶变换的性质。 3.掌握计算序列的循环卷积的方法。 4.学习用DFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT。 二、实验内容 1.实现序列的离散傅里叶变换并对结果进行分析。(自己选择序列,要求包括复序列,实序列,实偶序列,实奇序列,虚奇序列) 本例检验实序列的性质DFT[xec(n)]=Re[X(k)] DFT[xoc(n)]=Im[X(k)] (1)设 x(n)=10*(0.8).^n(0<=n<=10),将x(n)分解为共扼对称及共扼反对称部分 n=0:10; x=10*(0.8).^n; [xec,xoc]=circevod(x); subplot(2,1,1);stem(n,xec); title('Circular -even component') xlabel('n');ylabel('xec(n)');axis([-0.5,10.5,-1,11]) subplot(2,1,2);stem(n,xoc); title('Circular -odd component') xlabel('n');ylabel('xoc(n)');axis([-0.5,10.5,-4,4]) figure(2) X=dft(x,11); Xec=dft(xec,11); Xoc=dft(xoc,11); subplot(2,2,1);stem(n,real(X));axis([-0.5,10.5,-5,50]) title('Real{DFT[x(n)]}');xlabel('k'); subplot(2,2,2);stem(n,imag(X));axis([-0.5,10.5,-20,20]) title('Imag{DFT[x(n)]}');xlabel('k'); subplot(2,2,3);stem(n,Xec);axis([-0.5,10.5,-5,50]) title('DFT[xec(n)]');xlabel('k'); subplot(2,2,4);stem(n,imag(Xoc));axis([-0.5,10.5,-20,20]) title('DFT[xoc(n)]');xlabel('k'); 实验说明: 复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量,复数序列虚数部分的离散傅立叶变换是原来序列离散傅立叶变换的反对称分量,复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的实数部分,复序列反对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。

单摆复摆的区别

单摆和复摆最本质的区别应该是摆动所绕的轴不一样(单摆是绕点),从而导致了一系列的差异,详述如下: 单摆 simplependulum 质点振动系统的一种,是最简单的摆。绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关。但若把尺寸很小的质块悬于一端固定的长度为l 且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所成角度小于5°,放手后质块往复振动,可视为质点的振动,其周期T只和l和当地的重力加速度g有关,即T=2π√(L/g),而和质块的质量、形状和振幅的大小都无关系,其运动状态可用简谐振动公式表示,称为单摆或数学摆。如果振动的角度大于5°,则振动的周期将随振幅的增加而变大,就不成为单摆了。如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆(物理摆),周期就和摆球的尺寸有关了。伽利略第一个发现摆的振动的等时性,并用实验求得单摆的周期随长度的二次方根而变动。惠更斯制成了第一个摆钟。单摆不仅是准确测定时间的仪器 也可用来测量重力加速度的变化。惠更斯的同时代人天文学家J.里希尔曾将摆钟从巴黎带到南美洲法属圭亚那,发现每天慢2.5分钟,经过校准,回巴黎时又快2.5分钟。惠更斯就断定这是由于地球自转引起的重力减弱。I.牛顿则用单摆证明物体的重量总是和质量成正比的。直到20世纪中叶,摆依然是重力测量的主要仪器。 复摆 compoundpendulum 在重力作用下,能绕通过自身某固定水平轴摆动的刚体。又称物理摆。复摆的转轴与过刚体质心C并垂直于转轴的平面的交点O称为支点或悬挂点。摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用。设质量为m的刚体绕转轴的转动惯量为I,支点至质心的距离为s,则复摆微幅振动的周期T=2π√(I/mgs),式中g为重力加速度。它相当于摆长l=I/ms的单摆作微幅振动的周期。在OC的延长线上取O′点使OO′=l(l称等价摆长)则此点称为复摆的摆动中心。支点和摆动中心可互换位置而不改变复摆的周期。知道T和l,就可由周期公式求出重力加速度g。当复摆受到一个冲量作用时,会在支点上引起碰撞反力。若转轴是刚体对支点的惯量主轴,外冲量垂直于支点和质心的连线OC且作用于摆动中心O′上,则支点上的碰撞反力为零。因此,复摆的摆动中心又称撞击中心。机器中有些必须经受碰撞的转动件,如离合器、冲击摆锤等,为防止巨大瞬时力对轴承的危害,应使碰撞冲击力通过撞击中心。 https://www.wendangku.net/doc/279351430.html, 转动惯量 momentofinertia 刚体绕轴转动惯性的度量。其数值为I=(求和符号)Δmiri^2或I=(积分符号)ri^2dm,式中ri为组成刚体的质量微元Δmi(或dm)到转轴的垂直距离;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。

傅立叶的思想及其意义

【傅立叶生平简介】 夏尔·傅立叶(Charles Fourier,1772—1837) ,法国思想家弗朗斯瓦.沙利.马利.傅立叶是和圣西门同时代的法国著名的“空想”社会主义者。他的“空想”社会主义学说和圣西门主义产生的历史条件相同,但自成一个体系,被称作傅立叶主义。傅立叶的空想社会主义学说和圣西门、欧文的空想社会主义学说一起,为马克思的科学社会主义学说的诞生,提供了宝贵的思想资料,成为马克思主义的三个来源之一。马克思曾经称赞傅里叶是“19世纪最伟大的讽刺家”。 【他关于这个社会的主张】他不主张废除私有制,幻想通过宣传和教育来建立一种以“法郎吉”为其基层组织的社会主义社会。他已有关于消灭脑力劳动和体力劳动的对立以及城市和乡村的对立的思想萌芽。还首次提出妇女解放的程度是人民是否彻底解放的准绳。在教育上,主张对儿童从小实施劳动教育和科学教育。傅立叶还阐述了他的空想社会主义的理想社会是一种“和谐的”社会,这种社会由他称之为“法郎吉”的基层组织所组成。这是一种农业和工业联合在一起的生产、消费协作组织,劳动者以劳力、资本家以股份参加,成员都应该劳动。生产总收益除生产费外,按特定比例分配给出资本的股东、技术工作者和生产劳动者。为了自己的美好设想,傅立叶曾进行过一些尝试。他多次请统治者和资本家赞助他的计划,但

一直到他老死,始终没有一个资本家上门对他的计划感兴趣。虽然傅立叶的设想都失败了,但他关于未来社会的天才设想,却给科学社会主义的诞生提供了宝贵的思想材料。 【他心中的理想社会】傅立叶为自己的理想社会设计了一种叫做“法朗吉”的“和谐制度”,是一种工农结合的社会基层组织。”“法朗吉”通常由大约一千六百人组成。在“法朗吉”内,人人劳动,男女平等,免费教育,工农结合,没有城乡差别、脑力劳动和体力劳动的差别。他还为“法朗吉”绘制了一套建筑蓝图。建筑物叫“法伦斯泰尔”,中心区是食堂、商场、俱乐部、图书馆等。建筑中心的一侧是工厂区,另一侧是生活住宅区。“法朗吉”是招股建设的。收入按劳动、资本和才能分配。傅立叶幻想通过这种社会组织形式和分配方案来调和资本与劳动的矛盾,从而达到人人幸福的社会和谐。 【他对婚姻的认识】 傅立叶曾经正确地指出,资本主义文明制度的本质特征是侮辱女性,妇女是一种商品,婚姻不过是一种特殊的商业交易,资产阶级婚姻只是一种合法而持续的卖淫。他辛辣地嘲讽说:“正象文法中二个否定构成一个肯定,在婚姻交易中也是两个卖淫构成一桩德行。”傅立认为:“侮辱女性既是文明的本质特征,也是野蛮的本质特征,区别只在于野蛮以简单的形式所犯下的罪恶,文明都赋之以复杂的、暧昧的、两面性的、伪善的存在形式……对于使妇女陷于奴隶状态这件事,男人自己比任何人都更应该受到惩罚。”

新人教版高中物理选修3-4第十一章机械振动第4节单摆学案

https://www.wendangku.net/doc/279351430.html, ——教学信息分享网 第4节 单摆 1.理解单摆模型和单摆做简谐运动的条件,知道单摆振动时回复力的来源。 2.了解影响单摆周期的因素,掌握单摆的周期公式。 一、单摆的回复力 1.单摆:由小球和细线组成,细线的质量与小球相比□ 01可以忽略,球的直径和线的长度相比□ 02可以忽略,与小球受到的重力及绳的拉力相比,空气等对它的阻力可以忽略,这样的装置叫做单摆。单摆是实际摆的□ 03理想化模型。 2.单摆的回复力 (1)回复力的来源:摆球的重力沿圆弧□ 04切线方向的分力。 (2)回复力的特点:在偏角很小时,摆球所受的回复力与它偏离平衡位置的位移大小成□ 05正比,方向总指向□06平衡位置,若单摆摆长为l 、摆球质量为m ,则回复力F =□07-mg l x ,因此单摆做□ 08简谐运动。 二、单摆的周期 1.定性探究影响单摆周期的因素 (1)探究方法:控制变量法。 (2)实验结论:单摆振动的周期与□ 01摆球质量无关,振幅较小时周期与□02振幅无关,但与摆长有关,摆长越长,周期□ 03越大。 2.定量探究单摆的周期与摆长的关系 (1)周期的测量:用停表测出单摆N (30或50)次全振动的时间t ,利用T =□04t N 计算它的周期。 (2)摆长的测量:用□05刻度尺测出细线长度l 0,用□06停表测出小球直径D ,利用l =□07l 0+D 2 求出摆长。 (3)数据处理:改变□08摆长,测量不同□09摆长及对应周期,作出T -l 、T -l 2或T -l 图象, 得出结论。 3.周期公式 (1)提出:周期公式是荷兰物理学家惠更斯首先提出的。 (2)公式:□10T =2π l g ,即周期 T 与摆长 l 的二次方根成□11正比,与(单摆所在处的)重力加速度g 的二次方根成□ 12反比。 判一判 (1)一根细线一端固定,另一端拴一小球就构成一个单摆。( )

探究单摆的物理原理教案

探究单摆的物理原理教案 【教学目标】 (一)知识与技能 1、知道什么是单摆,了解单摆的构成。 2、掌握单摆振动的特点,知道单摆回复力的成因,理解摆角很小时单摆的振动是简谐运动。 3、知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算。 4、知道用单摆可测定重力加速度。 (二)过程与方法 1、知道单摆是一种理想化的系统,学会用理想化的方法建立物理模型。 2、通过单摆做简谐运动条件的教学,体会用近似处理方法来解决物理问题。 3、通过研究单摆的周期,掌握用控制变量的方法来研究物理问题。 (三)情感、态度与价值观 1、单摆在小角度情况下做简谐运动,它既有简谐运动的共性,又有其特殊性,理解共性和个性的关系; 2、当单摆的摆角大小变化时,单摆的振动也将不同,理解量变和质变的变化规律。 3、培养抓住主要因素,忽略次要因素的辨证唯物主义思想。 【教学重点】 1、知道单摆回复力的来源及单摆满足简谐运动的条件; 2、通过定性分析、实验、数据分析得出单摆周期公式。 【教学难点】 1、单摆振动回复力的分析; 2、与单摆振动周期有关的因素。 【教学方法】 分析推理与归纳总结、数学公式推导法、实验验证、讲授法与多媒体教学相结合。

【教学用具】 单摆、秒表、米尺、条形磁铁、装有墨水的注射器(演示振动图象用)、CAI 课件。 【教学过程】 (第一课时)单摆的回复力 (一)引入新课 教师:1862年,18岁的伽利略离开神学院进入比萨大学学习医学,他的心中充满着奇妙的幻想和对自然科学的无穷疑问,一次他在比萨大学忘掉了向上帝祈祷,双眼注视着天花板上悬垂下来摇摆不定的挂灯,右手按着左手的脉搏,口中默默地数着数字,在一般人熟视无睹的现象中,他却第一个明白了挂灯每摆动一次的时间是相等的,于是制作了单摆的模型,潜心研究了单摆的运动规律,给人类奉献了最初的能准确计时的仪器。 在第一节中我们以弹簧振子为模型研究了简谐运动,日常生活中常见到摆钟、摆锤等的振动,这种振动有什么特点呢本节课我们来学习简谐运动的另一典型实例——单摆。 (二)进行新课 1.单摆 (1)什么是单摆 秋千和钟摆等摆动的物体最终都会停下来,是因为有空气阻力存在,我们能不能由秋千和钟摆摆动的共性,忽略空气阻力,抽象出一个简单的物理模型呢 (出示各种摆的模型,帮助学生正确认识什么是单摆) ①第一种摆的悬绳是橡皮筋,伸缩不可忽略,不是单摆; ②第二种摆的悬绳质量不可忽略,不是单摆; ③第三种摆的悬绳长度不是远大于球的直径,不是单摆; ④第四种摆的上端没有固定,也不是单摆; ⑤第五种摆是单摆。 定义:如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆。 绳绕在杆上

傅立叶的基本理论

只要是理工科毕业的朋友,都学过傅立叶级数与傅立叶变换,但真正要与实际应用联系起来,用它来阐述应用中的各类问题,我们总会感觉概念模糊,似懂非懂,不知从何说起。是的,作者和你一样,常常有这样的体会。现在,让我与你一起重新学习傅立叶的基本理论和应用,最后还给出一份FFT(快速傅立叶变换)的源码(基于C)。希望对你有所帮助。Let’s go! 1.历史回顾 谈傅立叶变换,不能不说三角函数。三角函数起源于18世纪,主要是与简谐振动的研究有关。当时的科学家傅立叶对三角函数作了深入研究,并用三角级数解决了很多热传导的问题。三角函数的展开式如下: f(t) = (1/2a0) + (a1·cos(x)+b1·sin(x)) + (a2·cos(2x)+b2·sin(2x)) + … 其中,系数a和b表示不同频率阶数下的幅度。 成立条件: n 周期性条件,也就是说f(x)描述的波形必须每隔一段时间周期T就会重复出现; n Dirichlet条件,周期T内,有限的最大最小值,有限的不连续点; 任何区间内绝对可积; 研究目的: 把一个基于时间变量t的函数展开成傅立叶级数的目的是分解为不同的频率分量,以便进行各种滤波算法。这些基本的组成部分是正弦函数SIN(nt)和余弦函数COS(nt)。 应用领域: l 信号分析,包括滤波、数据压缩、电力系统的监控等; l 研究偏微分方程,比如求解热力学方程的解时,把f(t)展开为三角级数最为关键。 l 概率与统计,量子力学等学科。 2.傅立叶变换 H(w) = ∫h(t)·e^jwt·dt, (区间:-∽~+∽,w = 2πf) 讨论:这里为什么会选择复指数的形式而没有用正弦余弦表示?

高中物理第十一章机械振动第4节单摆教学案人教版4

第4节单_摆 一、单摆 组成 要求 细线 摆线看成是不可伸长,且没有质量的细线 小球 摆球看成是没有大小只有质量的质点 单摆是理想化模型:忽略在摆动过程中所受到的阻力,实验中尽量选择质量大、体积小的小球和尽量细不可伸长的线。 二、单摆的回复力 1.回复力的提供:摆球的重力沿圆弧切线方向的分力。 2.回复力的特点:在偏角很小时,单摆所受的回复力与它偏离平衡位置的位移成正比,方向总指向平衡位置,即F =-mg l x 。 3.单摆的运动规律:单摆在偏角很小时做简谐运动,其振动图像遵循正弦函数规律。 三、单摆的周期 1.定性探究单摆的振幅、质量、摆长对周期的影响 (1)探究方法:控制变量法。 (2)实验结论 1.在摆角小于5°的情况下,单摆的自由振动是简谐运动。 2.单摆是理想化模型:忽略在摆动过程中所受到的阻力,摆线看成是不可伸长,且没有质量的细线。 3.单摆的回复力是由摆球的重力沿运动方向的分力提供,与摆球偏离平衡位置的位移成正比,方向总是指向平衡位置。 4.荷兰物理学家惠更斯首先提出单摆的周期公式 T =2π l g ,利用周期公式可以测定当地的重力加速度。

①单摆振动的周期与摆球的质量无关。 ②振幅较小时,周期与振幅无关。 ③摆长越长,周期越长;摆长越短,周期越短。 2.定量探究单摆的周期与摆长的关系 (1)周期的测量:用停表测出单摆N (30~50)次全振动的时间t ,利用T =t N 计算它的周期。 (2)摆长的测量:用刻度尺测出细线长度l 0,用游标卡尺测出小球直径D ,利用l =l 0 +D 2 求出摆长。 (3)数据处理:改变摆长,测量不同摆长及对应周期,作出T -l 、T -l 2 或T -l 图像,得出结论。 3.周期公式 (1)公式的提出:周期公式是荷兰物理学家惠更斯首先提出的。 (2)公式:T =2πl g ,即T 与摆长l 的二次方根成正比,与重力加速度g 的二次方根成反比。 4.周期公式的应用 由单摆周期公式可得g =4π2 l T 2,只要测出单摆的摆长l 和周期T 就可算出当地的重力加 速度。 1.自主思考——判一判 (1)制作单摆的细线弹性越大越好。(×) (2)制作单摆的细线越短越好。(×) (3)制作单摆的摆球越大越好。(×) (4)单摆的周期与摆球的质量有关,质量越大,周期越小。(×) (5)单摆的回复力等于摆球所受合力。(×) 2.合作探究——议一议 (1)由于单摆的回复力是由摆球的重力沿切线方向的分力提供的,那么是否摆球的质量越大,回复力越大,单摆摆动得越快,周期越小? 提示:不是。摆球摆动的加速度除了与回复力有关外,还与摆球的质量有关,即a ∝F m ,

单摆模型

单摆模型 模型特点:单摆模型指符合单摆规律的模型,需满足以下三个条件: (1)圆弧运动; (2)小角度往复运动; (3)回复力满足F =-kx . 典例 如图1所示,ACB 为光滑弧形槽,弧形槽半径为R ,C 为弧形槽最低点,R ?AB .甲球从弧形槽的球心处自由下落,乙球从A 点由静止释放,问: 图1 (1)两球第1次到达C 点的时间之比; (2)若在圆弧的最低点C 的正上方h 处由静止释放小球甲,让其自由下落,同时将乙球从圆弧左侧由静止释放,欲使甲、乙两球在圆弧最低点C 处相遇,则甲球下落的高度h 是多少? 答案 (1)22π (2)(2n +1)2π2R 8 (n =0,1,2…) 解析 (1)甲球做自由落体运动 R =12gt 21,所以t 1= 2R g 乙球沿圆弧做简谐运动(由于AC ?R ,可认为摆角θ<5°).此运动与一个摆长为R 的单摆运动模型相同,故此等效摆长为R ,因此乙球第1次到达C 处的时间为 t 2=14T =14×2πR g =π2R g , 所以t 1∶t 2=22π . (2)甲球从离弧形槽最低点h 高处自由下落,到达C 点的时间为t 甲= 2h g 由于乙球运动的周期性,所以乙球到达C 点的时间为 t 乙=T 4+n T 2=π2R g (2n +1) (n =0,1,2,…) 由于甲、乙在C 点相遇,故t 甲=t 乙

联立解得h =(2n +1)2π2R 8 (n =0,1,2…). 1.解决该类问题的思路:首先确认符合单摆模型的条件,即小球沿光滑圆弧运动,小球受重力、轨道支持力(此支持力类似单摆中的摆线拉力);然后寻找等效摆长l 及等效加速度g ;最后利用公式T =2πl g 或简谐运动规律分析求解问题. 2.易错提醒:单摆模型做简谐运动时具有往复性,解题时要审清题意,防止漏解或多解.

高中物理单摆模型

高中物理单摆模型 物理模型是实际物体的抽象和概括, 它反映了客观事物的主要因素与特征, 是连接理论和应用的桥梁. 我们把研究客观事物主要因素与特征进行抽象的方法称之为模型方法, 是物理学研究的重要方法之一. 中学物理习题都是依据一定的物理模型进行构思、设计而成的, 因此, 在解答物理习题时, 为使研究复杂物理问题方便起见, 往往通过抽象思维或形象思维, 构建起描述物理问题的模型, 使用物理模型方法, 寻找事物间的联系, 迅速巧妙地解决物理问题. 单摆就是实际摆的一种理想化物理模型,在处理问题时可以起到柳暗花明的功效,主要有以下应用。 【单摆模型简述】 在一条不可伸长的、忽略质量的细线下端栓一可视为质点的小球, 当不必考虑空气阻力的影响, 在摆角很小的情况下可看作简谐运动, 其振动周期公式可导出为 .2g l T π = 【视角一】合理联想, 挖掘相关物理量. 例1. 试用秒表、小石块、细线估算电线杆的直径. 分析与解: 要估算电线杆的直径, 题目中没有给刻度尺, 因此, 用什么来替代刻度尺是问题的关键. 秒表、小石块似乎对测量电线杆的直径没有直接关系;若是联想到小石块可以与细线组成单摆, 秒表可用来测量时间,本题便不难解决了。 用等于n 个电线杆圆周长的细线与小石块组成单摆,用秒表测出单摆m (30~50)次全振动所用时间t ,则单摆振动的周期 , 422 2ππg T l g l T =?=电线杆的圆周长 n l L =,电线杆的直径, πL d =有.43 2 2 πnm g l d = 【视角二】迁移与虚拟,活化模型方法. 例2. 一倾角α很小(α<2°)的斜劈固定在水平地面, 高为h [如图1(a)].光滑小球从斜劈的顶点A 由静止开始下滑, 到达底端B 所用时间为t 1. 如果过A 、B 两点将斜劈剜成一个光滑圆弧面, 使圆弧面在B 点恰与底面相切, 该小球从A 由静止开始下滑到B 所用的时间为t 2. 求t 1与t 2的比值. 分析与解: 当小球在斜劈上做匀加 = αsin h .2sin 1sin 2 11 21 g h t t g ?=??αα 将斜劈剜成光滑圆弧面后. 虚拟并迁移单摆模型, 因2α <4°,小球在圆弧面运动时 受重力与指向圆心的弹力作 用, 这与单摆振动时的受力 ——重力与指向悬点的拉力 类似. 如图1(b)所示. 则小球 B (b) (a) 图1

人教版高中物理选修3-4第十一章第四节单摆课时作业.docx

高中物理学习材料 (鼎尚**整理制作) 一、选择题 1.(2013·威海高二检测)单摆在振动过程中,当摆球的重力势能增大时,摆球的( ) A .位移一定减小 B .回复力一定减小 C .速度一定减小 D .加速度一定减小 解析:选C.单摆在振动过程中,当摆球的重力势能增大时,摆球的位移变大,回复力变大,加速度变大,加速度方向与速度方向相反,速度减小,C 正确. 2.在一个单摆装置中,摆动物体是个装满水的空心小球,球的正下方有一小孔,当摆开始以小角度摆动时,让水从球中连续流出,直到流完为止,由此摆球的周期将 ( ) A .逐渐增大 B .逐渐减小 C .先增大后减小 D .先减小后增大 解析:选C.小球重心先降低后升高,即摆长先增大后减小. 3.如图所示是半径很大的光滑凹球面的一部分,有一个小球第一次自A 点由静止开始滑下,到达最低点O 时的速度为v 1,用时为t 1;第二次自B 点由静止开始滑下,到达最低点O 时的速度为v 2,用时为t 2,下列关系正确的是( ) A .t 1=t 2,v 1>v 2 B .t 1>t 2,v 1v 2 D .t 1>t 2,v 1>v 2 解析:选 A.小球从A 、B 点释放后均做简谐运动,t 1=T A 4=π2R g ,t 2=T B 4=π2R g ,R 为球面半径,故t 1=t 2.A 点离开平衡位置远些,高度差大,故从A 点滚下到达平衡位置O 时速度大,即v 1>v 2,A 正确. 4.如图所示,三根细线于O 点处打结,A 、B 端固定在同一水平面上相距为L 的两点上,使△AOB 成直角三角形,∠BAO =30°,已知OC 线长是L ,下端C 点系着一个小球(直径可忽略).下列说法中正确的是( ) A .让小球在纸面内摆动,周期T =2πL g B .让小球在垂直纸面方向摆动,其周期T =2π 3L 2g C .让小球在纸面内摆动,周期T =2π 3L 2g

MATLAB在物理中的应用(单摆).doc

<>课程论文 MATLAB在单摆实验中的应用 姓名蔡小强 学号:2010110102 专业:物理学 班级:10物理学 学院:物电学院 完成日期:2011/12/11

MATLAB在单摆实验中的应用 【摘要】借助MATLAB 计算软件, 研究无阻尼状态下单摆的大摆角运动, 给出了任意摆角下单摆运动周期的精确解。同时利用MATLAB 函数库中的ode45 函数, 求解出大摆角下的单摆的运动方程。并利用其仿真动画形象的展现出单摆的运动规律, 为单摆实验中大摆角问题的讲解提供了较好的教学辅助手段。 【关键字】单摆模型;周期;MATLAB 一、问题的提出 在工科物理教学中,物理实验极其重要,它担负着训练学生基本实验技能、验证学生所学知识、提高学生综合实力的重要职责。通过一系列的物理实验,学生可在一定程度上了解并掌握前人对一些典型物理量的经典测量方法和实验技术,并为以后的实验工作提供有价值的借鉴,进而培养学生的动手实践能力和综合创新能力。然而,物理实验的优劣很大程度受限于物理实验条件的制约。当前,受限于以下条件(很多情况下物理实验环境都是难以有效构造的),物理实验的效果并不理想:1)一些实验设备比较复杂并且昂贵,难以普及应用;2)有效实验环要求非常苛刻,是现实环境中难以模拟,甚至根本无法模拟;3)除此以外,有些实验的实验环境即使可以有效构造,它的实验结果却仍然是难以直接、完整观察获取的,如力场、电场、磁场中的分布问题等。鉴于以上原因,物理仿真实验已引起了大家的关注,出现了一些软件。但很多是基于Flash、Photoshop 、3D Studio MAX之类的图形图像软件制作。这些软件可以制作逼真的实验环境和生动的实验过程动画,还可以制作出实际实验所无法达到的效果。但这类软件本身是制作卡通动画的,对物理实验规律和过程很少涉及,很难做到真正的交互使用,及精确的计算分析同时开发也很困难。因此,基于这些软件的仿真在工科物理实验教学中应用很少。本文利用MATLAB 计算软件及其仿真功能对单摆实验过程进行模拟、仿真及后期分析,对物理实验教学改革提供一种新思路。 具体地,本文将描述一种新颖的单摆实验方法, 其主要的意义在于给学生以综合性实验技能训练。一个综合性实验, 它必须涉及多方面的知识和实验技能。本文描述的单摆实验方法即具备这样的特征。它的实验原理虽然简单, 但所涉及到的知识点极为丰富: 力学振动, 计算机编程等。学生通过这样的实验不仅可以得到综合性的实验技能训练, 而且可以在如何将现代技术改造传统实验、理论联系实际等方面得到很多启示。另外,本文引入计算机技术分析法, 对单摆实验进行了改造, 既实现了基础物理实验的现代化, 又为MATLAB课程实验提供了很好的应用落足点, 可以使学生得到多方面的实验技能训练。 二、方法概述 2.1问题描述 单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。单摆在摆角比较小时,其运动规律近似为准简谐振动。但是当摆角比较大时, 即单摆在大摆角情况下运动时,这种近似已不再成立,其运动方程满足非线性微分方程。因此,对摆角大小的限制成为该实验中必须满足的条件。不同的实验条件下,最大摆角的取值不同,其中包括, ,,,甚至等。这就为在实验过程中对摆角的统一取值造成困难,给实验带来较大的误差。同时,学生对单摆在大摆角情况下运动时其运动周期及运动规律的理解也存在困难。利用先进的计算机仿真

相关文档
相关文档 最新文档