文档库 最新最全的文档下载
当前位置:文档库 › 粗大误差

粗大误差

粗大误差
粗大误差

粗大误差四种判别准则的比较

粗大误差四种判别准则的比较 粗大误差是指在测量过程中,偶尔产生的某些不应有的反常因素造成的测量数值超出正常测量误差范围的小概率误差。含有粗大误差的数据会干扰对实验结果的分析,甚至歪曲实验结果。若不按统计的原理剔除异常值,而把一些包含较大正常误差但不属于异常值的数据舍弃或保留一些包含较小粗大误差的异常值,就会错估了仪器的精确等级。因此,系统检验测量数据是否含有粗大误差是保证原始数据的可靠及其有关计算的准确的前提。排除异常数据有四种较常用的准则,分别是拉伊达准则、格拉布斯准则、肖维勒准则和狄克逊准则。每种判别准则都有其处理方法,导致用不同准则对异常值判别的结果有时会不一致。目前异常值的剔除还没有统一的准则,本文综合判别粗大误差四种方法的特点,系统归纳各种准则的应用,以便更好地发现和判别含有粗大误差的数据。 1.四种判别粗大误差准则的特点 1.1拉伊达准则 拉伊达准则[4]是以三倍测量列的标准偏差为极限取舍标准,其给定的置信概率为99.73%,该准则适用于测量次数n>10或预先经大量重复测量已统计出其标准误差σ的情况。Xi为服从正态分布的等精度测量值,可先求得它们的算术平均值X、残差vi和标准偏差σ。 若|Xi- X|>3σ,则可疑值Xi含有粗大误差,应舍弃; 若|Xi- X|≤3σ,则可疑值Xi为正常值,应保留。 把可疑值舍弃后再重新算出除去这个值的其他测量值的平均值和标准偏差,然后继续使用判别依据判断,依此类推。 1.2格拉布斯准则 格拉布斯准则适用于测量次数较少的情况(n<100),通常取置信概率为95%,对样本中仅混入一个异常值的情况判别效率最高。其判别方法如下: 先将呈正态分布的等精度多次测量的样本按从小到大排列,统计临界系数G(a,n)的值为G0, 然后分别计算出G1、Gn:G1=( X-X1)/σ,Gn=(Xn- X)/σ (1) 若G1≥Gn且G1>G0,则X1应予以剔除; 若Gn≥G1且Gn>G0,则Xn应予以剔除; 若G1Zcσ}的前提下的(其中m是绝对值大于Ecσ的误差出现次数,P是置信概率)。设等精度且呈正态分布的测量值为Xi,若其残差vi ≥Zcσ则Xi可视为含有粗大误差,此时把读数Xi应舍弃。把可疑值舍弃后再重新计算和继续使用判别依据判断,依此类推。 1.4狄克逊准则 狄克逊准则是一种用极差比双侧检验来判别粗大误差的准则。它从测量数据的最值入手,一般取显著性水平a为0.01.此准则的特点是把测量数据划分为四个组,每个组都有相应的极端异常值统计量R1、R2的计算方法,再根据测量次数n和所对应的统计临界系数D(a,n)按照以下方法来判别: 若R1>R2,R1>D(a,n),则判别X1为异常值,应舍弃; 若R2>R1,R2>D(a,n),则应舍弃Xn;

粗大误差处理方法

粗大误差处理方法 在一组条件完全相同的重复试验中,个别的测量值可能会出现异常。如测量值过大或过小,这些过大或过小的测量数据是不正常的,或称为可疑的。对于这些可疑数据应该用数理统计的方法判别其真伪,并决定取舍。常用的方法有拉依达法、肖维纳特(Chavenet)法。格拉布斯(Grubbs)法等。 一、拉依达法 当试验次数较多时,可简单地用3倍标准偏差(3S)作为确定可疑数据取舍的标准。当某一测量数据(xi)与其测量结果的算术平均值(x-‘)之差大于3倍标准偏差时,用公式表示为: ︳xi -x-‘︳>3S 则该测量数据应舍弃。 这是美国混凝土标准中所采用的方法,由于该方法是以3倍标准偏差作为判别标准,所以亦称3倍标准偏差法,简称3S法。 取3S的理由是:根据随机变量的正态分布规律,在多次试验中,测量值落在x-‘一3S与x-‘十3S之间的概率为99.73%,出现在此范围之外的概率仅为0.27%,也就是在近400次试验中才能遇到一次,这种事件为小概率事件,出现的可能性很小,几乎是不可能。因而在实际试验中,一旦出现,就认为该测量数据是不可靠的,应将其舍弃。 另外,当测量值与平均值之差大于2倍标准偏差(即︳xi -x-‘︳>2S)时,则该测量值应保留,但需存疑。如发现生产(施工)、试验过程屯有可疑的变异时,该测量值则应予舍弃。 拉依达法简单方便,不需查表,但要求较宽,当试验检测次数较多或要求不高时可以应用,当试验检测次数较少时(如n<10)在一组测量值中即使混有异常值,也无法舍弃。 二、肖维纳特法 进行n次试验,其测量值服从正态分布,以概率1/(2n)设定一判别范围(一knS,knS),当偏差(测量值xi与其算术平均值x-‘之差)超出该范围时,就意味着该测量值xi 是可疑的,应予舍弃。判别范围由下式确定: 肖维纳特法可疑数据舍弃的标准为: ︳xi一x-‘︳/S≥kn

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

实验大数据误差分析报告与大数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

矢量网络分析仪的误差分析和处理

矢量网络分析仪的误差分析和处理 一、矢量网络分析仪的误差来源 矢量网络分析仪的测量的误差主要有漂移误差、随机误差、系统误差这三大种类。 1、漂移误差 漂移误差是由于进行校准之后仪器或测试系统性能发生变化所引起,主要由测试装置内部互连电缆的热膨胀特性以及微波变频器的变换稳定性引起,且可以通过重新校准来消除。校准维持精确的时间范围取决于在测试环境下测试系统所经受到的漂移速率。通常,提供稳定的环境温度便能将漂移减至最小。 2、随机误差 随机误差是不可预测的且不能通过误差予以消除,然而,有若干可以将其对测量精度的影响减至最小的方法,以下是随机误差的三个主要来源: (1)仪器噪声误差 噪声是分析仪元件中产生的不希望的电扰动。这些扰动包括:接收机的宽带本底噪声引起的低电平噪声;测试装置内部本振源的本底噪声和相位噪声引起的高电平噪声或迹线数据抖动。 可以通过采取以下一种或多种措施来减小噪声误差:提高馈至被测装置的源功率;减小中频带宽;应用多次测量扫描平均。

(2)开关重复性误差 分析仪中使用了用来转换源衰减器设置的机械射频开关。有时,机械射频开关动作时,触点的闭合不同于其上次动作的闭合。在分析仪内部出现这种情况时,便会严重影响测量的精度。 在关键性测量期间,避免转换衰减器设置,可以减小开关重复性误差的影响。 (3)连接器重复性误差 连接器的磨损会改变电性能。可以通过实施良好的连接器维护方法来减小连接器的重复性误差。 3、系统误差 系统误差是由分析仪和测试装置中的不完善性所引起。系统误差是重复误差(因而可预测),且假定不随时间变化,可以在校准过程中加以确定,且可以在测量期间用数学方法减小。系统误差决不能完全消除,由于校准过程的局限性而总是存在某些残余误差,残余(测量校准后的)系统误差来自下列因素:校准标准的不完善性、连接器界面、互连电缆、仪表。 反射测量产生下列三项系统误差:方向性、源匹配、频率响应反射跟踪。 传输测量产生下列三项系统误差:隔离、负载匹配、频率响应传输跟踪。 下面分别介绍这六项系统误差,其中提到的通道A为反射接收机,通道B为传输接收机,通道R为参考接收机。 (1)方向性误差 所有网络分析仪都利用定向耦合器或电桥来进行反射测量。对理想的耦合器,只有来自被测件(DUT)的反射信号出现在通道A上。实际上,有少量入射信号经耦合器的正向路径泄漏并进入通道A(如

数据处理与误差分析报告

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

对粗大误差和随机误差处理

用matlab 对一组随机数据的随机误差的处理 当今社会,人们对测量和仪器的精确性要求越来越高,传统的测量精确度远远不能满足当今科技以及人们生活方面的要求,所以需要一种能够快速分析误差的方法出现。matlab 可以大大减少人工运算的成本,成本低,可行性高,而且具有普遍性,故采用matlab 来进行误差处理。 等精度测量粗大误差处理 粗大误差的判别准则 (1)莱以特准则(3σ准则) 具体方法:求出平均值和σ,将残差的绝对值与3σ进行比较,大于3σ的测量值都是坏值。这种方法称为 3σ法则(正态分布)。 适合测量点数较大的情况,计算所有的点。逐一剔除异常值 (2)罗曼诺夫斯基准则 具体方法:首先剔除一个可疑的测得值,然后按照t 分布检验被剔除的测量值是否含有粗大误差。如果是,剔除后,再判断其它的测试结果点。 适合条件:测量次数较少的情况,是逐一剔除的。 等精度测量随机误差处理 (1) 算数平均值 1 1==∑n i n i x x 大多数情况下,真值未知,用=-i i v x x 来代替误差: σ==σ=s δ=-i i x x n :测量次数 (2)测量列算数平均值标准差 /σσ=x (3)算数平均值的极限误差: ,δδσ= =t t lim δσ=±x t t 为置信系数,通过查表可得。 |()d x x |K n -2,a σ -≥1,1=-1n i i i d x x n =≠∑

结果表示: lim δ=±X x t x (4 (5 软件流程设计 等精度测量计算流程 开始 读取数据文件

matlab程序 clc; clear; data=load('test.txt'); % v_2=0; %定义残差的平方 average_data=0; %定义数据的平均值 average_data=mean(data);%计算平均值 if(length(data)<10) %判断数据的长度,用罗曼诺夫斯基准则剔除粗大误差 while(1) for i=1:length(data) %计算残差和残差的平方和 v(i)=data(i)-average_data; v_2=v_2+v(i)^2; end [max_v,I]=max(abs(v));` sum=0; for i=1:length(data)

误差及其表示方法

误差及其表示方法 误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负) 一. 误差的分类 1. 系统误差(systermaticerror )——可定误差(determinateerror) (1)方法误差:拟定的分析方法本身不十分完善所造成; 如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。 (2)仪器误差:主要是仪器本身不够准确或未经校准引起的; 如:量器(容量平、滴定管等)和仪表刻度不准。 (3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起; (4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。如滴定管读数总是偏高或偏低。 特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为可定误差。可以用对照试验、空白试验、校正仪器等办法加以校正。 2. 随机误差(randomerror)——不可定误差(indeterminateerror) 产生原因与系统误差不同,它是由于某些偶然的因素所引起的。 如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。 特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律) 但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理 系统误差——可检定和校正 偶然误差——可控制

只有校正了系统误差和控制了偶然误差,测定结果才可靠。 二. 准确度与精密度 (一)准确度与误差(accuracy and error) 准确度:测量值(x)与公认真值(m)之间的符合程度。 它说明测定结果的可靠性,用误差值来量度: 绝对误差 = 个别测得值 - 真实值 (1) 但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示: (2) (RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。 (二)精密度与偏差(precision and deviation) 精密度:是在受控条件下多次测定结果的相互符合程度,表达了测定结果的重复性和再现性。用偏差表示: 1. 偏差 绝对偏差:(3) 相对偏差:(4) 2. 平均偏差 当测定为无限多次,实际上〉30次时: 总体平均偏差(5) 总体——研究对象的全体(测定次数为无限次) 样本——从总体中随机抽出的一小部分 当测定次数仅为有限次,在定量分析的实际测定中,测定次数一般较小,<20

误差分析与数据处理

误差理论与数据处理 一.绪论 当你能对世界进行测量的时候,就可以把世界变成数据来了解。 1.研究误差的意义 分析误差产生原因,从而消除误差; 正确处理所得数据,从而接近真值; 选择合理的方法,设计合理的系统。 2.误差的基本概念 误差=测量值—真值 约定真值:对于给定用途具有适当不确定度的、赋予特定量的值。 绝对误差=|测量值—真值| 相对误差=绝对误差/|真值|=绝对误差/|测量值| 修正值:与误差大小近似相等,但方向相反。修正值本身还有误差。 引用误差=示值误差/测量范围上限 3.误差来源 测量装置误差:标准量具的误差、一起误差、附件误差 环境误差:温度、湿度、气压、振动、照明、加速度、电磁场等。 方法误差 人员误差 4.误差分类 系统误差:在相同条件下,多次测量同一量值时,该误差的绝对值和符号保持不变,或者在条件改变时,按某一确定规律变化的误差。(均值和真值之差)系统误差分类:已定系统误差、未定系统误差、不变系统误差、变化系统误差(线性、周期性、复杂规律) 随机误差:大小、方向均随机不定,不可预见,不可修正。(抑制、统计分布规律) 粗大误差:明显超出统计规律预期值的误差。(异常因素或疏忽) 5.精度 准确度:系统误差的大小(偏移程度)

精密度:随机误差的大小(分散程度) 精确度:测量结果与被测量真值之间的一致程度 精确度(精度)在数值上一般多用相对误差来表示,但不用百分数。如某一测量结果的相对误差为0.001%,则其精度为10-5。 重复性:指在相同条件下在短时间内对同一个量进行多次测量所得测量结果之间的一致程度,一般用测量结果的分散性来定量表示。 复现性:指在变化条件下,对同一个量进行多次测量所得测量结果之间的一致程度,一般用测量结果的分散性来定量表示。 稳定性:测量仪器保持其计量特性随时间恒定的能力。 示值误差:指测量仪器的示值与对应输入量的真值之差。由于真值不能确定,故在实际应用中常采用约定真值。 偏移:指系统误差 最大允许误差:给定的测量仪器,规范、规程等所允许的误差极限值。有时也称为允许误差限。 不确定度:与测量结果相关联的、用于合理表征被测量值分散性大小的参数。 6.有效数字 最末一位数字是不可靠的,而倒数第二位数字是可靠的。在进行重要的测量时,测量结果和测量误差可再多取一位数字作为参考。 二.误差基本性质与处理 1.随机误差产生原因 测量装置、环境因素、人为因素。 随机误差整体具有统计学规律,多数随机误差服从正态分布。(单峰、对称、有界、均值趋于零) 2.算术平均值 由于实际上都是有限次测量,因此,我们只能把算术平均值近似地作为被测量的真值。 一般情况下,被测量的真值为未知,这时可用算术平均值代替被测量的真值进行计算。此时的随机误差称为残余误差,简称残差 残余误差代数和为零这一性质,可用来校核算术平均值及其残余误差计算的

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

粗大误差处理

. 莱以特准则 load a.txt while(1) i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); d=3*bzc; [maxv,I]=max(abs(v(i))); if maxv>d fprintf('cdw is %f\n',a(I)); a(I)=[]; else break; end end cdw is 29.520000 cdw is 28.400000 罗曼诺夫斯基准则 load a.txt n=input('please input n:\n'); xzd=input('please input xzd:\n'); switch xzd case xzd==0.05 x=1; otherwise x=2; end b=a(n); a(n)=[]; while(1) c=mean(a); i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); k=[4.97 3.56 3.04 2.78 2.62 2.51 2.43 2.37 2.33 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.10 2.09 2.09 2.08;11.46 6.53 5.04 4.36 3.96 3.71 3.54 3.41 3.31 3.23 3.17 3.12 3.08 3.04 3.01 3.00 2.95 2.93 2.91 2.90 2.88 2.86 2.85 2.84 2.83 2.82 2.81]; g=k(x,n-2); f=g*bzc; e=abs(b-c); if e>f fprintf('cdw is %f\n',b); else fprintf('wcdw\n'); end break; end please input n: 4 please input xzd: 0.05 cdw is 29.520000

误差理论与数据处理考试题试题及答案

《误差理论与数据处理》考试题( 卷) 一、填空题(每空1分,共计25分) 1.误差的表示方法有 绝对误差 、 相对误差 、 引用误差 。 2.随机误差的大小,可用测量值的 标准差 来衡量,其值越小,测量值越 集中 ,测量 精密度 越高。 3.按有效数字舍入规则,将下列各数保留三位有效数字:— ;— ;— ;— ;547300— ×105 。 4.系统误差是在同一条件下,多次测量同一量值时,误差的 绝对值和符号 保持不变,或者在条件改 变时,误差 按一定规律变化 。系统误差产生的原因有(1)测量装置方面的因素、(2) 环境方面的因素 、(3) 测量方法的因素 、(4) 测量人员方面的因素 。 5.误差分配的步骤是: 按等作用原则分配误差 ; 按等可能性调整误差 ; 验算调整后的总误差 。 6.微小误差的取舍准则是 被舍去的误差必须小于或等于测量结果总标准差的1/3~1/10 。 7.测量的不确定度与自由度有密切关系,自由度愈大,不确定度愈 小 ,测量结果的可信赖程度愈 高 。 8.某一单次测量列的极限误差lim 0.06mm σ=±,若置信系数为3,则该次测量的标准差σ= 0.02mm 。 9.对某一几何量进行了两组不等精度测量,已知10.05x mm σ=,20.04x mm σ=,则测量结果中各组的权之比为 16:25 。 10.对某次测量来说,其算术平均值为,合成标准不确定度为,若要求不确定度保留两位有效数字, 则测量结果可表示为 (15) 。 二、是非题(每小题1分,共计10分) 1.标准量具不存在误差。 ( × ) 2.在测量结果中,小数点的位数越多测量精度越高。 ( × ) 3.测量结果的最佳估计值常用算术平均值表示。 ( √ ) 4.极限误差就是指在测量中,所有的测量列中的任一误差值都不会超过此极限误差。 ( × ) 5.系统误差可以通过增加测量次数而减小。 ( × ) 6.在测量次数很小的情况下,可以用3σ准则来进行粗大误差的判别。 ( × ) 7.随机误差的合成方法是方和根。 ( √ ) 8.测量不确定度是无符号的参数,用标准差或标准差的倍数,或置信区间的半宽表示。 ( √ ) 9.用不同的计算方法得到的标准不确定度A 类评定的自由度相同。 ( × ) 10.以标准差表示的不确定度称为展伸不确定度。 ( × ) 三、简答题(每题4分,共计20分) 1.误差计算: (1) 检定级(即引用误差为2.5%)、量程为100V 的电压表,发现在50V 刻度点的示值误差为3V 为最大误差,问该电压表是否合格。 解:由引用误差的定义,引用误差=示值误差/测量范围上限(量程),则 3100%3% 2.5%100V V ?=> 因此,该电压表不合格。 (2)用两种方法测量150L mm =,280L mm =,实际测得的值分别为50.004mm ,80.006mm 。试评定两种测量方法精度的高低。 解:第一种方法测量的相对误差: (50.00450) 100%0.008%50 -?= 第二种方法测量的相对误差:

“误差分析和数据处理”习题及解答

“误差分析和数据处理”习题及解答 1.指出下列情况属于偶然误差还是系统误差? (1)视差;(2)游标尺零点不准;(3)天平零点漂移;(4)水银温度计毛细管不均匀。 答:(1)偶然误差;(2)系统误差;(3)偶然误差;(4)系统误差。 2.将下列数据舍入到小数点后3位: 3.14159; 2.71729; 4.510150; 3.21650; 5.6235; 7.691499。 答:根据“四舍六入逢五尾留双”规则,上述数据依次舍为: 3.142; 2.717; 4.510; 3.216; 5.624; 7.691。 3.下述说法正确否?为什么? (1)用等臂天平称衡采取复称法是为了减少偶然误差,所以取左右两边所称得质量的平均值作为测量结果,即 ()1 2 m m m = +左右 (2)用米尺测一长度两次,分别为10.53 cm 及10.54 cm ,因此测量误差为0.01 cm 。 答:(1)错。等臂天平称衡时的复称法可抵消因天平不等臂而产生的系统误差。被测物(质量为m )放在左边,右边用砝码(质量为m r )使之平衡,ml 1 = m r l 2,即 2 r 1 l m m l = 当l 1 = l 2时,m = m r 。当l 1 ≠ l 2时,若我们仍以m r 作为m 的质量就会在测量结果中出现系统误差。为了抵消这一误差,可将被测物与砝码互换位置,再得到新的平衡,m l l 1 = ml 2,即 1 l 2 l m m l = 将上述两次称衡结果相乘而后再开方,得 m = 这时测量结果中不再包含因天平不等臂所引起的系统误差。 (2)错。有效数字末位本就有正负一个单位出入;测量次数太少;真值未知。 4.氟化钠晶体经过五次重复称量,其质量(以克计)如下表所示。试求此晶体的平均质量、平均误差和标准误差。

粗大误差C言程序

误差分析的C语言实现 学院:电子信息工程学院 专业班级:通信1004 学生姓名:童博 学号:10284043 2012 年12 月26 日

一、编程分析 1、误差的基本概念 所谓误差就是测量值与真实值之间的差,可以用下式表示 误差=测得值-真值 (1)绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。 绝对误差=测得值-真值 (2)相对误差 绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。 相对误差=绝对误差/真值≈绝对误差/测得值 (3)引用误差 所谓引用误差指的是一种简化和使用方便的仪器仪表表示值的相对误差,它以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得的比值称为引用误差。 引用误差=示值误差/测量范围上限 2、精度 反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。 精度可分 ⅰ准确度它反映测量结果中系统误差的影响程度 ⅱ精密度它反映测量结果中随机误差的影响程度 ⅲ精确度它反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可以用测量的不确定度来表示。 3、有效数字与数据运算 含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。 数字舍入规则如下:

①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。 ②若舍去部分的数值,小于保留部分的末位的半个单位,则末位不变。 ③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。即当末位为偶数时则末位不变,当末位为奇数时则末位加1。 (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...n i n i l l l l x n n =++= =∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1 n i i v ==∑0 1)残余误差代数和应符合: 当 1 n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零;

粗大误差处理

莱以特准则 load a.txt while(1) i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); d=3*bzc; [maxv,I]=max(abs(v(i))); if maxv>d fprintf('cdw is %f\n',a(I)); a(I)=[]; else break; end end cdw is 29.520000 cdw is 28.400000 罗曼诺夫斯基准则 load a.txt n=input('please input n:\n'); xzd=input('please input xzd:\n'); switch xzd case xzd==0.05 x=1; otherwise x=2; end b=a(n); a(n)=[]; while(1) c=mean(a); i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); k=[4.97 3.56 3.04 2.78 2.62 2.51 2.43 2.37 2.33 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.10 2.09 2.09 2.08;11.46 6.53 5.04 4.36 3.96 3.71 3.54 3.41 3.31 3.23 3.17 3.12 3.08 3.04 3.01 3.00 2.95 2.93 2.91 2.90 2.88 2.86 2.85 2.84 2.83 2.82 2.81]; g=k(x,n-2); f=g*bzc; e=abs(b-c); if e>f fprintf('cdw is %f\n',b); else fprintf('wcdw\n'); end break; end please input n: 4 please input xzd: 0.05 cdw is 29.520000

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

相关文档
相关文档 最新文档