文档库 最新最全的文档下载
当前位置:文档库 › 基于Mecanum轮机器人设计

基于Mecanum轮机器人设计

基于Mecanum轮机器人设计
基于Mecanum轮机器人设计

1 绪论

1.1 引言

移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作

和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以

期望的速度、方向和轨迹灵活自如地移动[1]。

移动机器人按照移动方式可分为轮式、履带式、腿足式等,其中轮式机器

人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移

动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一

般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以

利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方

向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥

挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对

自己的位置进行细微的调整[2]。由于全方位轮移动机构具有一般轮式移动机构

无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机

器人移动机构的发展趋势。

基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。

1.2 国内外相关领域的研究现状

1.2.1 国外全方位移动机器人的研究现状

国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两

组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推出的宠物机器狗Aibo具有喜、怒、哀、厌、惊和奇6种情感状态。它能爬行、坐立、伸展和打滚,而且摔倒后可以立即爬起来。本田公司1997年研制的Honda P3类人机器人代表双足步行机器人的最高水平。它重130公斤、高1.60米、宽0.6米,工作时间为25分钟,最大步行速度为2.0公里/小时。

国外研究的一些典型的全方位轮有麦克纳姆轮、正交轮、球轮、偏心方向轮等。下面就这些轮进行介绍。

麦克纳姆轮[3],如图 1.1 所示,它由轮辐和固定在外周的许多小滚子构成,轮子和滚子之间的夹角为 Y,通常夹角 Y 为 45°,每个轮子具有三个自由度,第一个是绕轮子轴心转动,第二个是绕滚子轴心转动,第三个是绕轮子和地面的接触点转动。轮子由电机驱动,其余两个自由度自由运动。由三个或三个以上的Mecanum 轮可以构成全方位移动机器人。

图1.1 麦克纳姆轮

198411lgf

图1.2 麦克纳姆轮应用

正交轮[4],由两个形状相同的球形轮子(削去球冠的球)架,固定在一个共

同的壳体上构成,如图 1.3 所示.每个球形轮子架有2个自由度,即绕轮子架

的电机驱动转动和绕轮子轴心的自由转动。两个轮子架的转动轴方向相同,由

一个电机驱动,两个轮子的轴线方向相互垂直,因而称为正交轮。中国科学院

沈阳自动化研究所所研制的全方位移动机器人采用了这种结构,如图1.4。

图1.3 正交轮图1.4 正交轮的应用球轮由一个滚动球体、一组支撑滚子和一组驱动滚子组成,其中支撑滚子固定在车底盘上,驱动滚子固定在一个可以绕球体中心转动的支架上,如图1.6 所示。每个球轮上的驱动滚子由一个电机驱动,使球轮绕驱动滚子所构成平面的法线转动,同时可以绕垂直的轴线自由转动[5]。

图1.5 球轮图1.6 球轮的应用

偏心万向轮[4],如图 1.7 所示,它采用轮盘上不连续滚子切换的运动方式,轮子在滚动和换向过程中同地面的接触点不变,因而在运动过程中不会使机器人振动,同时明显减少了机器人打滑现象的发生。

图1.7偏心万向轮图1.8 偏心万向轮的应用

1.2.2 国内全方位移动机器人的研究现状

我国在移动机器人方面的研究工作起步较晚,上世纪八十年代末,国家863计划自动化领域自动机器人主题确立立项,开始了这方面的研究。在国防科工委和国家863计划的资助下,由国防科大、清华大学等多所高校联合研制军用户外移动机器人7B.8,并于1995年 12月通过验收。7B.8的车体是由跃进客车改进而成,车上有二维彩色摄像机、三维激光雷达、超声传感器。其体系结构以水平式机构为主,采用传统的“感知-建模-规划-执行”算法,其直线跟踪速度达到20km/h。避障速度达到5-10km/h。

上海大学研制了一种全方位越障爬壁机器人,针对清洗壁面作业对机器人提出的特殊要求,研制了可越障轮式全方位移动机构—车轮组机构,该机构保证机器人可在保持姿态不变的前提下,沿壁面任意方向直线移动,或在原地任

意角度旋转,同时能跨越存在于机器人运行中的障碍,不需要复杂的辅助机构来实现平面上运动和越障运动之间转换。

哈尔滨工业大学的李瑞峰,孙笛生,刘广利等人研制的移动式作业型智能服务机器人,并对课题当中的一些关键技术,如新型全方位移动机构、七自由度机器人作业手臂和多传感器信息融合等技术,最后给出了移动机器人的系统控制方案。

哈尔滨工业大学的闫国荣,张海兵研究一种新型全方位轮式移动机构,这种全方位移动机构当中的轮子与麦克纳姆轮的区别在于:这种全方位轮使小滚子轴线与轮子轴线垂直,则轮子主动的滚动和从动的横向滑移之间将是真正相互独立的;轮子正常转动时,轮缘上的小滚子也将是纯滚动[8],如图1.9。

图1.9 全方位移动机构仿真图

1.3 主要研究内容

本课题从普遍应用出发,设计一种带有操作臂的全向运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本课题是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。

本文研究内容主要有:

了解和分析已有的机器人移动平台的工作原理和结构,以及分析操作手臂常用的结构和工作原理,对比它们的优劣点。在这些基础上提出可行性方案,并选择最佳方案来设计。根据选定的方案对带有机械臂的全方位移动机器人进行本体设计,包括全方位车轮旋转机构的设计、车轮转向机构的设计和机器人操作臂的设计。要求全方位移动机构转向、移动灵活,可以快速、有效的到达指定地点;机械臂操作范围广、运动灵活、结构简单紧凑且尺寸小,可以快速、准确的完成指定工作。设计完成后要分析全方位移动机构的性能,为后续的研究提供可靠的参考和依据。

2 全向移动机器人移动机构设计

2 全向移动机器人移动机构设计

2.1 引言

机器人机械本体的设计是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。带有机械臂的全方位移动机器人可以实现在平面内任意角度的移动,能够以一定姿态到达预定位置。根据这一总体思想,进行本机器人移动机构的本体设计。

2.2机械设计的基本要求

机械结构设计的要求,包括对机器整机的设计要求和对组成零件的设计要求两个方面,两者相互联系、相互影响。

a.对机器整机设计的基本要求

对机器使用功能方面的要求:实现预定的使用功能是机械设计的最基本的要求,好的使用性能指标是设计的主要目标。另外操作使用方便、工作安全可靠、体积小、重量轻、效率高、外形美观、噪声低等往往也是机械设计时所要求的。

对机器经济性的要求:机器的经济性体现在设计、制造和使用的全过程中,在设计机器时要全面综合的进行考虑。设计的经济性体现为合理的功能定位、实现使用要求的最简单的技术途径和最简单合理的结构。

b.对零件设计的基本要求

机械零件是组成机器的基本单元,对机器的设计要求最终都是通过零件的设计来实现,所以设计零件时应满足的要求是从设计机器的要求中引申出来的,即也应从保证满足机器的使用功能要求和经济性要求两方面考虑。

要求在预定的工作期限内正常可靠的工作,从而保证机器的各种功能的正常实现。这就要求零件在预定的寿命内不会产生各种可能的失效,即要求零件在强度、刚度、震动稳定性、耐磨性和温升等方面必须满足的条件,这些条件就是判定零件工作能力的准则。

要尽量降低零件的生产成本,这要求从零件的设计和制造等多方面加以考虑。设计时合理的选择材料和毛坯的形式、设计简单合理的零件结构、合理规定零件加工的公差等级以及认真考虑零件的加工工艺性和装配工艺性等。另外要尽量采用标准化、系列化和通用化的零部件。

任何一种机器都有动力机、传动装置和工作机组成。动力机是机器工作的能量来源,可以直接利用自然资源(也称为一次能源)或二次能源转换为机械能,如内燃机、气轮机、电动机、电动马达、水轮机等。工作机是机器的执行机构,用来实现机器的动力和运动能力,如机器人的末端执行器就是工作机。传动装置则是一种实现能量传递和兼有其它作用的装置。

2.3 全方位轮式移动机构的研制

在设计移动机器人本体时应遵循以下设计原则:

(1)总体结构应容易拆卸,便于平时的实验、调试和修理。

(2)应给机器人暂时未安装的传感器、功能元件等预留安装位置,以备将来功能改进与扩展。

对比绪论中各转向机构的优缺点,本文选用全方位轮式机构来设计。全方位轮式机器人的运动包括纵向、横向和自转三个自由度的运动[7]。车轮形移动机构的特征与其他移动机构相比车轮形移动机构有下列一些优点:能高速稳定的移动,能量利用率高,机构的控制简单,而且它可以能够借鉴日益完善的汽车技术和经验等。它的缺点是移动只限于平面。目前,需要机器人工作的场所,如果不考虑特殊环境和山地等自然环境,几乎都是人工建造的平地。所以在这个意义上车轮形移动机构的利用价值可以说是非常高的。图 2.1 是全方位轮式移动机构的示意图。

轮式移动机构预期设计要求实现零半径回转,可调速,便于控制。车轮的旋转和转向是独立控制的,全方位移动机器人采用前后轮成对驱动来控制转向,以及控制每轮旋转来实现全方位移动[8]。

图2.1 全方位轮式移动机构示意图

2.3.1 移动机器人车轮旋转机构设计

在车轮旋转机构设计过程中,主要考虑了以下模型,如2.2图所示。由图可以看出,模型 a 结构简单,但是车轮与地面接触面积小,可能产生打滑现象,且对电机轴形成一个弯矩,容易对电机轴造成破坏。模型 b 采用电机内嵌式结构,增大了车轮与地面接触面积,减小了打滑现象,但电机固定比较困难。

综合两种模型的优缺点,设计如图2.3,图2.4中所示结构[9],将电机内嵌在车轮内部,既增大车轮与地面的接触面积,又缩短了整个结构的轴向距离。为了保持轮子受力平衡使整个机构可以平稳运动,将轮子设计为两个一组来实现。

图2.2 旋转部分结构图

采用了一个深沟球轴承作为径向支承,一方面避免了车轮对电机产生弯矩;另一方面保证了车轮的刚度。轴承外圈与车轮内表面配合,由于内圈并不能与电机直接配合,设计了一个电机壳结构,作电机和轴承的连接。

图2.3 旋转部分示意图

图2.4 旋转部分机构图

车轮旋转部分的具体结构分为五个部分:

(1)两个轴承由弹性挡圈和电机壳轴肩轴向定位;通过电机壳外表面径向定位通过电机轴外表面径向定位。此外,此处选用深沟球轴承作为支撑.深沟球轴承主要承载径向载荷,同时也可以承载小的轴向载荷。选用它就可以达到设计的要求,而且深沟球轴承经济性好,方便购买。而作为径向支撑,它主要避免了车轮对电机产生弯矩。

(2)电机预装在电机壳上,依靠电机壳凸缘轴向定位;但径向定位不能利用电机定位止口定位,只能采用车轮调整电机轴的同心完成径向定位。

(3)车轮依靠轴承的外圈定位,然后再通过车轮自有联轴器与电机轴联接。这个过程也是调整电机轴同心,然后从车轮侧面的预留安装孔将电机紧固在电机壳上。

(4)整个车轮分为两部分组合而成。一个是带有轴径的车轮,另一个是不带轴径的轮子,两者相配合使用组成一组完整的车轮。而车轮轴径与车体支撑件以滚动摩擦的形式配合使用,并且作为两车轮的轴向定位件。车轮最终的固定是通过外侧的螺钉来顶紧挡板实现的。具体结构如图2.4所示。

(5)整个旋转部分结构设计完成,但它必须与转向机构连接起来才能实现全方位移动[10]。后一小节转向机构的设计中设计有转向轴,为了使转动部分和转向部分的转向轴连接以实现全方位运动,此处设计了类似于半圆的固定件。如图2.5所示。使用是采用两个配合来固定住旋转部分,通过四个螺栓的连接来实现和转向轴的连接,从而使转向机构和转动机构连为一体,最终实现全方位移动。

图2.5 固定件结构

至此,全方位移动机器人的车轮旋转机构设计完毕。

2.3.2 移动机器人转向机构设计

转向部分主要由转向轴、轴承、基座、转向电机以及转向连接件组成[11]。

转向机构设计的基本路线是从上而下。如图2.6,图2.7所示。

图2.6 转向部分示意图图2.7 转向部分结构图

(1)转向轴

转向轴分两部分,呈T型,一端采用阶梯轴的形式,便于与基座联接;另一端与车轮部分联接,设计成圆柱形以保证足够的强度和良好的工艺性。同时两部分轴互相配合,可以伸缩以便转向时车轮轴的位移变化。转向轴主要作用就是通过与转向电机的连接起到转向的作用,主要受的是径向力,而受到的轴向力很小。如图2.7所示,转向轴受到向上的轴向力时,轴向力通过轴肩传到下方轴承内圈,再传到套筒,然后传到上方轴承的内圈,再通过滚珠传递到轴承外圈,而轴向力进一步的传递到端盖和箱体,从而将轴向力转移到整个车体上,因为,箱体连接在车体上。转向轴受到向下的轴向力时,首先是靠弹性挡圈传递轴向力,再通过一系列传递最终将轴向力转移到车体上。所以说,转轴的工作是可靠的。

(2)转向轴与基座联接:

转向轴相对于基座来说只有一个自由度,形成的是转动副,转向轴在机器人移动过程中承受径向力和比较大的轴向力,适合这种要求的常用轴承有圆锥滚子轴承。轴承采用套筒隔开的两端支撑结构,这样设计可以保证转向轴在转向的过程中不发生摇摆,保证转向的精度并且可以减小对转向相关零部件的磨损。一对轴承用套筒隔开后,轴承内圈由轴肩和轴用弹性挡圈固定。两轴承外圈与基座座孔和轴承端盖连接。

(3)转向电机轴和转向轴的联接

两轴的连接一般选用联轴器。联轴器主要用来联接轴与轴(或联接轴与其它回转件)以传递运动和转矩,有时也用作安全装置。本文中没用选用标准的联轴器,因为标准的联轴器整体尺寸过大,占用空间大,且不利于安装,不符合设计要求。同时,由于所要连接的两轴径大小确定本文自行设计了一个联轴器。其结构如图2.8所示。

图2.8 联轴器

由于轴仅受到转矩的作用,而轴向力很小,所以两轴都采用平键来周向固定,以达到固定和连接两轴的目的。

(4)转向驱动电机与基座的联接

当转向轴与基座构成转动副以后,只需要用电机来驱动转向轴即可实现车轮的转向。将电机固定在基座上需要一个连接件,连接件设计过程中考虑了两种模型:整体式和剖分式,如图2.9和2.10所示。整体式装配时定心性好,但必须侧面开口,这样容易导致车轮转向精度不够,且不利于防尘,剖分式定心性稍差一点,可以组合成封闭结构,具有可靠的刚度,防尘,拆卸方便。因此,选用剖分式结构。

图2.9 整体式图2.10剖分式

(5)箱体的设计与固定

如图2.11所示为箱体结构的示意图。它通过左右两侧对称的呈L型的矩形臂用8个螺栓固定于车体前后两侧。由于箱体是通过螺钉和机座连接的,从而可以把它和机座以及转向电机视为一体。再者,箱体内部是放置轴承,并固定轴承的,所以设计了如图中所示的双臂。这种设计可以将转向机构的整体重量通过箱

图2.11 箱体示意图

体的两臂传到车体上,进而施于整个重量施轮子。那么转轴的受力将大大的减小。而且这样设计拆卸方便,利于维修。采用对称结构固定于空间内,有利于稳定整个转向机构,并提高整个全方位移动机构的性能。

至此,整个全方位移动机构机械本体设计完毕。

2.3.3 电机的选型与计算

a.电机性能的比较

在机器人的驱动器一般采用以下几种电机:直流电机、步进电机和舵机。几种电机有关参数进行如表 2.1 所示。

表2.1 几种电机比较

电机类型优点缺点

直流电机容易购买

型号多

功率大

接口简单

转速太快,需减速器

电流较大

较难与车轮装配

价格较贵

控制复杂(PWM)

步进电机

精确的速度控制

型号多样

适合室内机器人的速度

接口简单

价格便宜

功率与自重比小

电流通常较大

外形体积大

较难与车轮装配,负载能力低

功率小

舵机

内部带有齿轮减速器

型号多样

适合室内机器人的速度

接口简单

功率中等

价格便宜

负载能力低

速度调节的范围小

(1)舵机

1)什么是舵机:

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。

2)舵机的工作原理:

控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms ,宽度为1.5ms 的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就像我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。

(2)步进电机

步进电机作为一种新型的自动控制系统的执行机构,得到了越来越广泛的应用,进入了一些高、精、尖的控制领域。步进电机虽然有一些不足,如启动频率过高或负载过大时易出现丢步或堵转,停止时转速过高易出现过冲,且一般无过载能力,往往需要选取有较大转距的电机来克服惯性力矩。但步进电机点位控制性能好,没有积累误差,易于实现控制,能够在负载力矩适当的情况下,以较小的成本与复杂度实现电机的同步控制。

b.电机的选型与计算

对于本课题来说,移动机器人的移动速度最高为 0.5 米/秒,电机转数最高接近 100 转/分。如果用直流电机,由于受转速和力矩的影响,要配减速器。而如果用步进电机,控制位置精度比较高可以达到 1.8 度。而且不需要减速器避免造成结构冗繁。因此选择步进电机作为驱动电机。

下面对旋转步进电机型号进行选择,轮式移动机器人在移动的时候,需要克服两种阻力:摩擦力和重力[17]。对于平面内移动的机器人来讲则只需要克服摩擦力。带有机械臂的全方位移动机器人整体重量在 20Kg 左右,地面摩擦系数按金属与混凝土之间的取为 0.5,则机器人需要的总功率为:

(209.80.5)0.549P f v W =?=???=总

则平均每组车轮提供的功率为25 瓦。 对于单个车轮而言: v P M M r

ω=?=? (2-1) 车轮直径为 110mm ,则电机需要提供的转矩为:

2555137520.5

P r M P mN m v ω===?=? (2-2) 因此,选择了北京和利时公司的 57BYG250E-0152 型号电机。静转矩为 1.5 NM 。该电机在相近产品中具有在转速变高一定范围内能够保持平稳的力矩。其力矩随转速的关系如下图2.12所示。

图2.12 电机转矩图

下面选择转向电机,机器人对转向速度要求较低,对位置精度比较严格,选用步进电机可以满足设计要求。转向电机主要是使车轮实现零半径回转,克服地面摩擦力,要求的转速不高,因此主要计算电机静力矩。

在这里我们假设每个车轮与地面的接触按照理想状态即相切线接触,那么平均每个车轮的摩擦力为:

1209.80.524.54

f N =???= (2-3) 由于车轮是零半径回转,所以克服的摩擦力矩为:

02/22l f M x dx f l l

=?=?? (2-4) 式中l ——单个车轮的宽度

设计车轮与地面接触总宽度为60mm ,即30l mm =所以克服的力矩为 0.368 N m ?。实际上车轮不是与地面呈线接触,保证一定余量,选择电机型号为 57BYG250B-SASRM-0152,静力矩为 1.4 N m ?。

下面是所选电机的外形尺寸。

2.4移动机器人车体结构设计

设计移动机器人车体是应遵循以下几个原则:

(1)总体结构应容易拆卸,便于平时的试验、调试、和修理。

(2)在设计的移动平台应能够给机器人暂时没有安装的传感器、功能元件、电池等元件预留安装位置,以备将来功能改进和扩展。

车体是实现全方位移动机构和机械手臂连接的部分,也是安装其他元件的主体。它同样是保证机器人具有良好的环境适应能力的关键。

本文设计的车体采用的是合金铝框架式结构,如图2.13所示共分三层:第一层安装机械手臂以及摄像头,控制按钮等;第二层是车体内腔,空间较大可以安装电池、集线器、装配电路板等,同时可以在以后的具体设计中改变内部格局,以达到最佳的使用效果;第三层安装车轮旋转机构。本结构的空间分层设计使得机器人机构紧凑,易于维护,而且提高了机器人控制系统的抗干扰能力。

图2.13 车体结构示意图

2.5本章小结

机器人是一种高度集成的机电一体化产品。它不是机械装置和电子装置的简单组合,而是机械、电子、计算机等技术的有机融合。本文虽只设计机械本体部分,但设计过程要完全考虑各部分的因素。而移动机器人的移动机构,它是移动机器人系统能否完成指定任务的基础。

本文在设计过程中围绕平面内任意角度移动以及可对前方 280mm 内目标进行抓取的这一思路展开设计。设计了可避免对电机轴形成弯矩的车轮旋转结构,通过优化车轮的直径与电机的匹配,使其车轮能够在 0-0.5m/s 调速;设计了车轮旋转机构,可使车轮实现零半径转向。

3 机械手臂的设计

3 机械手臂的设计

3.1末端执行器的设计

机器人的关节结构分为转动关节和移动关节两种形式。本文中采用转动关节形式,这种结构简单,控制容易。参考人的手臂,本文机械手臂设计成两个摆动和一个回转关节。如图3.1所示。机器人的机械臂是由基座、手臂、手腕和末端执行器组成。

1.摆动关节

2.摆动关节

3.回转关节

4.末端执行器

图3.1 机械手臂的模型

3.1.1末端执行器设计要求

末端执行器结构形式多样,但总的设计都有以下几点基本要求:

(1)应具有适当的夹紧力和驱动力,手指握力(夹紧力)大小要适宜,力量过大则动力消耗多,结构庞大,不经济,甚至会损坏抓取物体;力量过小则夹持不住或产生松动、脱落等现象。在确定握力时,除考虑抓取物体重量外,还应考虑传送或操作过程中所产生的惯性力和震动,以保证夹持安全可靠。

(2)手指应具有一定的开闭范围,手应具有一定的开闭角度(手指从张开到闭合绕支点所转过的角度)或开闭范围(对平移型手指从张开到闭合的直线移动距离),以便于抓取或退出物体。

(3)应保证抓取物体在手指内的夹持精度,应保证每个被抓取的物体在手指内都有准确的相对位置

(4)要求结构紧凑、重量轻、效率高,在保证自身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以便于减轻手臂的负载。

3.1.2末端执行器的设计[12]

a.驱动方式的选择

机械中提供驱动的装置和方式很多,如电机驱动、液压驱动、气压驱动等,各种驱动方式有其自身的特点,在工业机器人中液压和气压驱动应用很广泛,有些机器人则同时采用多种驱动方式,这都视不同机器人的特点和要求所定。比较这些驱动方式的特点,丛中选择适合移动机械手的驱动方式。

电机驱动机械手可以避免电能变为压力能的中间环节,效率比液压和气压驱动要高。电机系统将电动机、测速机、编码器以及制动器组装在依次加工的课题里,使得整个电机系统体积小,可靠性和通用性也得到很大的提高。另外,电动机根据运行距离及电机的脉冲当量算出脉冲数,将数据输入计算机,可以达到非常高的位姿准确度。而液压和气压驱动系统组成机构烦琐,维护不方便,液压源和气压源装置体积大,对于移动机器人来说也是个无法实现的问题,对于移动机器人操作机械手臂所要求的位置精度,液压和气压驱动也很难满足。

综上所述,本文选择电机驱动为机械手的驱动方式。

b.传动方式的选择

传动装置是一种实现能量传递和兼有其它作用的装置,它的主要作用有:能量的分配与传递;运动形式的改变;运动速度的改变。机械传动是主要的传动装置,常用的有带传动、链传动、齿轮传动和蜗杆传动等

根据机械手结构的实际情况选择齿轮传动。齿轮传动是机械传动中应用最广泛的一类传动。它传动效率高,在正常的润滑条件下效率可达99%以上;传动比恒定,齿轮传动具有不变的瞬时传动比,所以可应用到高速传动中;结构紧凑,同等条件下其所占空间小;工作可靠、寿命长。

手指的设计将采用平移运动的方式来夹持物体,这里将采用左右螺旋轴和齿轮副一起作为传动机构来完成末端机构所要求达到的功能。采用这两种结构使整个末端执行器体积小、质量轻。

c.手指的设计

不同的手指数量可以完成的动作以及动作复杂程度都不同,可以根据机械手必须完成的动作来确定机械手所需的最少手指数[13]。一个手指能推、滚或滑动小物体,还可以用力操作开关等;两个手指除具有一个手指完成的功能外,它还能抓住物体并可精确的控制物体的位置和取向;三个手指除了能完成两个手指可完成的功能外,它还有在手中反复抓握物体的功能,如将物体抛入空中并在新的位置抓住物体;多个手指则具有更大的灵活性,如可以抓住和操作多个物体。对于本文的移动机器人,只需能够抓住物体,控制物体的位置和取向,那么两个手指就能满足此工作要求,所以在结构上将采用两指结构。从而两手指相对于末端执行器在左右螺旋轴的带动下做平移运动,达到开合作用。

工业机器人应用的双指机械式夹持器按其手爪的运动方式可分为回转型和平移型[14]。如图 3.2和3.3 是两种典型的机械夹持器结构。本文选择平移型夹持器的结构,它与前者相比具有结构简单、控制容易的优点。

1.支架

2.杆

3.圆柱销

4.杠杆 1.电动机 2.丝杠 3.导轨 4.钳爪杆

图3.2杠杆式回转型夹持器图3.2左右旋丝杠原理图经过以上的研究讨论从而设计末端执行器结构如图3.4所示。末端执行器机械结构采用超硬铝合金材料,在保证一定的刚度的同时又降低了整体的重量。手指伸出长度为 50mm,开合范围 4-44mm。它的内部结构是这样的,驱动电机经齿轮1传动齿轮2,驱动左右螺旋轴3使手指6、7进行开合运动。导向轴引导并固定手指的运动轨迹。

1.电机

2.齿轮

3.左右螺旋轴

4.导向轴

5.齿轮

6.夹持器右指

7.夹持器左指

图3.4 末端执行器结构图

手指形状如图2.12所示,前段平行处可以夹持形状规则(与手指接触面为平面)的物体,后段为菱形形状,可以夹持圆形和不规则形状的物体[15]。这种设计可以更好的使机器人完成工作。

3.1.3电机的选型与计算

本文设计要求夹持的物体重为 m=300g,设螺纹为 M8,其中径 r=3.6mm,螺距 P=1mm,当量摩擦系数 f=0.1,Q为轴向载荷,M为螺纹驱动力矩。手指材料

为铝合金,表3.1列出了铝合金与常用材料的磨擦系数,

表3.1 主要工程材料摩擦系数 摩擦副材料

静摩擦系数

铝合金 黄 铜 0.27 青 铜 0.22 钢 0.3 胶 木 0.34 钢 纸

0.32 树 脂

0.28 硬橡胶 0.25 石 板 0.26

从表3.1可以看出铝合金与不同材料的静摩擦系数趋近于0.3,所以取被抓物体和末端执行器手指之间的静摩擦系数0.3μ=,则:

(3-1)螺纹增力比

()

'1tan p Q i M r αρ==?+ (3-2) 式中 'ρ——当量摩擦角,'ρ= tan rc αf ;

α——螺纹升角,α= 1tan 2rc r

απ 带入数据,得1915.7p i =, 得

5.12p

Q M mN m i ==? (3-3) 选用齿轮传动比 n=1:1,忽略齿轮传动摩擦及轴承滚动摩擦力矩,根据上述计算,我们选择了北京和利时电机公司生产的 28BYG250C-SAFSM-L007 型步进电机,它的保持转矩为 90mN m ?,满足设计要求。

3.2机械手臂杆件的设计

本文采用铝合金材料设计成薄壁件,一方面保证机械臂的刚度,另一方面可减小机械臂的重量,减小对对基座关节电机的载荷,并且提高了机械臂的动态响应。

3.2.1腕部结构设计

手腕部件设置于手部和臂部之间,它的作用主要是在臂部运动的基础上进一0.39.89.80.3G Q N

μ?===

步改变或调整手部在空间的位置,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。

本文设计的手腕结构是回转结构,它可在空间内360 旋转,进而扩大机械手的工作范围。腕部采用伺服电机驱动,通过电机伸出轴和末端执行器连接,借助轴承来达到力矩的传递。通过轴承座将力传到壳体上,使电机轴只能传递力矩而不受其它力的作用。其结构如图3.5所示。

1.末端执行器

2.手腕连接件

3.轴承

4.轴承座

5.电机

6.壳体

7.杆件A

图3.5 腕部结构图

3.2.2臂部结构设计

手臂部分是机械手的主要部件。它的作用是支承腕部和手部,并带动它们做空间运动。臂部运动的目的是把手部送到空间运动范围内的任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。

臂部设计的基本要求:

(1)承载能力大、刚度好、自重轻

臂部通常即受弯曲(而且不是一个方向的弯曲),也受扭转,应选用抗弯和抗扭刚度较高的截面形状。所以臂部做成空心的,这可以减轻自重,也提高了刚性,其内部可以布置各种机构,这样就是结构紧凑、外型整齐。

(2)臂部运动速度要高,惯性要小

在一般情况下,手臂的移动要求匀速运动,但在手臂的启动和终止瞬间,运动是变化的,为了减少冲击,要求启动时间的加速度和终止前减速度不能太大,否则引起冲击和震动。

(3)臂动作应灵活。

(4)位置精度要高。

本文设计的手臂是摆动关节,杆件B是为装配舵机设计成如图3.6所示结构,此时舵机自身也参与了杆件的组成,这样既节约了材料和设计空间,又增加了机械臂的刚度。杆件C是为了支撑舵机轴而设计,它与舵机的配合形成了机械臂的摆动关节,关节处无轴承配合,而是通过舵机摇臂和舵机主体之间的相对主动来

实现关节驱动的。

1.杆件B 2.舵机 3.杆件C

图3.6 杆件B与舵机配合图

杆件A和杆件B通过螺栓连接即可形成一个完整的杆件,通过杆件A和B 的组合设计具有以下几个优点:

(1)使关节间距可调。通过调节A和B的长度,就可以调整机械臂中两关节的距离,使机械臂的长度可调。

(2)调节机械臂的重心位置:舵机的内部结构是未知的,因此其重心可能不在其几何中心,而调整两者之间的距离可以平衡掉重心位置造成的不良影响。

通过摆动关节和回转关节的组合就可以形成完整的机械手臂。

3.2.3 机械臂电机的选型与计算

人们往往关心的是机器人的末端位置和姿态,而舵机有非常好的位置可控性,带有精密的减速器,具有其他同等尺寸的电机无可比拟的输出力矩,因此我们选择舵机作为关节驱动器。机械臂的结构如图3.7所示,其中第1关节的舵机需要提供的力矩最大,因此我们对这一关节进行计算。

图3.7 机械手臂结构图

一种智能机器人系统设计和实现.

一种智能机器人系统设计和实现 我们从广泛意义上理解所谓的智能机器人,它给人的最深刻的印象是一个独特的进行自我控制的"活物".其实,这个自控"活物"的主要器官并没有像真正的人那样微妙而复杂。智能机器人具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这就是筋肉,或称自整步电动机,它们使手、脚、长鼻子、触角等动起来。我们称这种机器人为自控机器人,以便使它同前面谈到的机器人区分开来。它是控制论产生的结果,控制论主张这样的事实:生命和非生命有目的的行为在很多方面是一致的。正像一个智能机器人制造者所说的,机器人是一种系统的功能描述,这种系统过去只能从生命细胞生长的结果中得到,现在它们已经成了我们自己能够制造的东西了 嵌入式是一种专用的计算机系统,作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是是由单个程序实现整个控制逻辑。嵌入式技术近年来得到了飞速的发展,但是嵌入式产业涉及的领域非常广泛,彼此之间的特点也相当明显。例如很多行业:手机、PDA、车载导航、工控、军工、多媒体终端、网关、数字电视…… 1 智能机器人系统机械平台的搭建 智能机器人需要有一个无轨道型的移动机构,以适应诸如平地、台阶、墙壁、楼梯、坡道等不同的地理环境。它们的功能可以借助轮子、履带、支脚、吸盘、气垫等移动机构来完成。在运动过程中要对移动机构进行实时控制,这种控制不仅要包括有位置控制,而且还要有力度控制、位置与力度混合控制、伸缩率控制等。智能机器人的思考要素是三个要素中的关键,也是人们要赋予机器人必备的要素。思考要素包括有判断、逻辑分析、理解等方面的智力活动。这些智力活动实质上是一个信息处理过程,而计算机则是完成这个处理过程的主要手段。 机器人前部为一四杆机构,使前轮能够在一定范围内调节其高度,主要功能是在机器人前部遇障碍时,前向连杆机构随车轮上抬,而遇到下凹障碍时前车轮先下降着地,以减小震动,提高整机平稳性。在主体的左右两侧,分别配置了平行四边形侧向被动适应机构,该平行四边形机构与主体之间通过铰链与其相连接,是小车行进的主要动力来源。利用两侧平行四边形可任意角度变形的特点,实现自适应各种障碍路面的效果。改变平行四边形机构的角度,可使左右两侧车轮充分与地面接触,使机器人的6个轮子受力尽量均匀,加强机器人对不同路面的适应能力,更加平稳地越过障碍,并且更好地保证整车的平衡性。主体机构主要起到支撑与连接机器人各个部分的作用,同时,整个机器人

移动机器人控制软件的设计与实现

移动机器人控制软件的设计和实现
作者:李晓明 文章来源:https://www.wendangku.net/doc/289461598.html, 更新时间:2006-8-9 17:25:55 点击数: 2742
简介:现在做一个移动机器人是很容易的一件事,车体自己可以加工,或买现成的;避障可以用超声阵列;
导航可以用激光测距 LMS;定位可以用电子地图加 LMS 加陀螺仪;然而控制软件却只能自己编写。本文 或许可以给你一些启示。
相关链接 基于 VIA 平台的移动机器人
移动机器人的使用现在非常多,做一个移动机器人似乎也很容易,车体自己可以加工,也可以去 买现成的;避障可以用超声阵列;导航可以用激光测距 LMS;定位可以用电子地图加 LMS 加陀 螺仪;驱动可以用各种电机及配套驱动器或者自己做;通讯可以去买现成的无线通讯模块,可以 是数字的,也有模拟的;大范围定位可以用 GPS 模块,也是现成的;至于什么红外,蓝牙,甚 至计算机视觉都可以去市场上买,但是(然而)为什么做一个移动机器人还是这么难呢?尤其是 对一个新手而言。一个老外说过,硬件是现成的,软件算法杂志里有的是,很多可以在网上当, 但即使是一个博士生也要花费很长的时间完成一个实际可用的移动机器人。为什么?因为机器人 使用的困难在使用软件的设计上。前面那个老外也说过,现在什么都可以在网上当,唯独使用程 序不能。有过自己写移动机器人程序的人可能会理解这段话,当然也仅仅是可能,因为不排除有 很多机器人大拿一上来就可以写出很棒的移动机器人软件。
移动机器人的控制软件开发是和硬件紧密相关的,甚至和机器人的体系结构也密切相关,同样是 移动机器人,有的是用 PC 控制的,有的是用多个嵌入式系统实现的,有的则是多机器人协同工 作的,操作系统有人会用 DOS,有人会用 Windows,有人会用 Linux,有人会用 Embeded Operation System。硬件平台有的用 x86,有的用 ARM 芯片,有的会用 DSP,通讯里面会 有串口,TCP/IP 网络,无线以太网,红外,蓝牙等,甚至驱动机构也不一样,有的是用腿,有

轮式移动机器人课程设计

江苏师范大学连云港校区海洋港口学院 课程设计说明书 课程名称 专业班级 学号姓名 指导教师

年月日

摘要 轮式移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。其中全方位轮可以实现高精确定位、原地调整姿态和二维平面上任意连续轨迹的运动,具有一般的轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要愈义。 本文主要是介绍了技术较为成熟的麦克纳姆全方位轮的运动原理结构,分析了由四个麦克纳姆轮全方位轮组成的全向移动机构的运动协调原理。并将其运用到轮腿复合式的机器人身上,使机器人移动能力更强。设计的主要方面包括(1)移动方式的选择;(2)机器人结构的设计;(3)机器人移动原理的分析;(4)对移动机器人控制系统的简单设计。 关键词: 轮式移动机器人,轮腿复合式,四足

目录 摘要 (1) 1 移动机器人技术发展概况 (1) 1.1 机器人研究意义及应用领域 (1) 1.1.1 机器人的研究意义 (1) 1.1.2 机器人的应用领域 (2) 1.2 移动机器人的发展概况 (2) 1.2.1 移动机器人的国内发展概况 (3) 1.2.2 移动机器人的国外发展概况 (4) 2 轮式移动机器人的结构设计 (7) 2.1轮式移动机器人系统结构 (7) 2.1.1移动方式的选择 (7) 2.1.2机器人移动原理构想 (8) 2.1.3机器人轮子的选择 (9) 2.1.4机器人腿部结构的设计 (10) 2.2轮式移动机器人主要结构 (11) 3 轮式移动机器人的控制系统 (12) 3.1 控制系统硬件选型与配置 (12) 3.1.1 驱动电机的选型 (12)

有关机器人的基础知识

有关机器人的基础知识 综合知识2009-10-11 23:17:59 阅读703 评论0 字号:大中小订阅 第1章基础知识 1.1 引言 人们从一开始制作物品时,就有用各种方式制作机器人的想法,也许大家见到过有能工巧匠制作的能够模仿人类动作行为的机器,典型的例子是:在威尼斯的能准时敲响大钟的雕像和能重复运动的玩具。好莱坞的电影将这一愿望提升到了一个新的高度,他们制作的机器人其表演效果甚至超过真人。 尽管从原理上类人机器人是机器人,并具有与机器人相同的设计与控制原理,但本书主要研究工业用机械手型机器人。本书包含了一些研究机器人所必须的基础知识,提出了机器人力学(包括运动学和动力学)的分析方法,讨论了驱动器、传感器、视觉系统等用于机器人的基础部件。 机器人是当今工业的重要组成部分,他们能够精确地执行各种各样的人物和操作,并且无需人们工作时所需的安全措施和舒适的工作条件。然而,要使机器人很好的工作需要付出很大的努力和代价。在20世纪80年代中期从事机器人制造的公司现在大都已不复存在,只有一些生产工业机器人的公司(如Adept机器人公司,Staubli机器人公司,Fanuc机器人公司,北美公司等)尚在市场上保留一席之地。由于目前的机器人尚无法满足人们的较高期望,因此早期对机器人在工业中的使用预测一直未能实现。结果是,尽管有成千上万的机器人用于工业生产,但他们并没有在总体上替代操作工人,机器人只能用在适合使用他们的一些地方。相对于人类,机器人并非万能,他们某些工作能做,另外有些工作却不能做。如果按照期望的用途合理设计机器人,他们就会具有多种用途并经久不衰。 机器人学科覆盖许多不同领域。单独的机器人只有与其它装置,周边设备以及其他生产机械配合使用才能有效地发挥作用。他们通常集成为一个系统,该系统作为一个整体来完成任务或执行操作。本课也将讨论这些与机器人配合使用的外围设备及系统。 1.2 什么是机器人 图1.1 机器人与起重机的操作方法和设计方法非常类似。然而,起重机由操作人员来控制,而机器人由计算机控制。因此,通过简单修改计算机程序就可以使机器人实现不同的功能。(a)Kuhnezug车载起重机;(b)Fanuc S-500机器人在卡车上执行焊缝任务 如果将常规的机器人操作手与挂在多用车或牵引车上的起重机进行比较,可发现两者非常相似:它们都具有许多连杆,这些连杆通过关节依次连接,这些连杆由驱动器驱动(电机)。在上述两个系统中,操作机的“手”都能在空中运动,达到工作空间的任何位置,他们都能承载一定的负荷,并都用一个中央控制器控制驱动器。然而,它们一个称为机器人,另一个称为操作机(也就是起重机),两者最根本的不同是起重机是由人来控制驱动器,机器人操作手是由计算机编程控制。正是通过这一点可以区别一台设备到底是简单的操作机还是机器人。通常机器人设计成由计算机来控制,机器人的动作受计算机监控的控制器所控制,该控制器本身也运行某种类型的程序。程序改变,机器人的动作就会相应改变。我们希望一台设备能灵活地完成各种不同的工作而无需重新设计硬件装置。为此,机器人须设计成可以重复编程,通过改变程序来执行不同的任务(当然在能力限制范围以内)。简单的操作机(或者说起重机)除非一直由操作人员操作,否则无法做到这一点。 目前各国关于机器人的定义都各不相同。在美国标准中,只有易于再编程的装置才认为是机器人。因此,手动装置(比如一个多自由度的需要操作员来驱动的装置)或固定顺序机器人(例如有些装置由强制起停控制驱动器控制,其顺序是固定的并且很难更改)都不认为是机器人。

移动机器人的导航技术总结

移动机器人的关键技术分为以下三种: (1)导航技术 导航技术是移动机器人的一项核心技术之一[3,4]"它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动"目前,移动机器人主要的导航方式包括:磁导航,惯性导航,视觉导航等"其中,视觉导航15一7]通过摄像头对障碍物和路标信息拍摄,获取图像信息,然后对图像信息进行探测和识别实现导航"它具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向,而基于非结构化环境视觉导航是移动机器人导航的研究重点。 (2)多传感器信息融合技术多传感器信息融合技术是移动机器人的关键技术之一,其研究始于20世纪80年代18,9]"信息融合是指将多个传感器所提供的环境信息进行集成处理,形成对外部环境的统一表示"它融合了信息的互补性,信息的冗余性,信息的实时性和信息的低成本性"因而能比较完整地,精确地反映环境特征,从而做出正确的判断和决策,保证了机器人系统快速性,准确性和稳定性"目前移动机器人的多传感器融合技术的研究方法主要有:加权平均法,卡尔曼滤波,贝叶斯估计,D-S证据理论推理,产生规则,模糊逻辑,人工神经网络等"例如文献[10]介绍了名为Xavier的机器人,在机器人上装有多种传感器,如激光探测器!声纳、车轮编码器和彩色摄像机等,该机器人具有很高的自主导航能力。 (3)机器人控制器作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一"目前,国内外机器人小车的控制系统的核心处理器,己经由MCS-51、80C196等8位、16位微控制器为主,逐渐演变为DSP、高性能32位微控制器为核心构成"由于模块化系统具有良好的前景,开发具有开放式结构的模块化、标准化机器人控制器也成为当前机器人控制器的一个研究热点"近几年,日本!美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构!网络功能的机器人控制器"我国863计划智能机器人主题也已对这方面的研究立项 视觉导航技术分类 机器人视觉被认为是机器人重要的感觉能力,机器人视觉系统正如人的眼睛一样,是机器人感知局部环境的重要“器官”,同时依此感知的环境信息实现对机器人的导航。机器人视觉信息主要指二维彩色CCD摄像机信息,在有些系统中还包括三维激光雷达采集的信息。视觉信息能否正确、实时地处理直接关系到机器人行驶速度、路径跟踪以及对障碍物的避碰,对系统的实时性和鲁棒性具有决定性的作用。视觉信息处理技术是移动机器人研究中最为关键的技术之一。

智能机器人创新设计

智能机器人创新设计 This model paper was revised by the Standardization Office on December 10, 2020

智能机器人创新设计 第一阶段 智能机器人作品创新设计 智能机器人创新设计评选的目的是为了激发青少年的创新意识,鼓励机器人爱好者在机器人开发和使用中自主创新,以创新为主题,设计制作各种新颖的机器人项目,实现机器人的机械、电子、气动、软件以及传感器等方面的扩展应用,从而推动机器人应用的不断发展。 一.创新设计选题 智能机器人创新设计第一步是选题,选题应该遵循以下基本原则。 1.题目来源于生活,服务于生活 2.科学性、新颖性、展示性。 3.根据自身能力判断可行性。 二.创新设计途径 1.模仿:在已有成果的基础上,充分利用智能机器人技术,模仿其结构和控制原理。在过程中实践,在实践中应用。 2.改进:在参考原有功能和设计结构的基础上,进一步丰富和完善智能系统,使之功能更全面,更高效。 3.发明创造:历史上没有的。 三.评选原则 1.可行性原则:所设计的机器人应具备良好的可操作性和安全性。作品完成后还应充分考虑到其他人员在使用时是否能顺利启动,或者使其经过一定的努力也可以完成某一项功能或任务。鼓励设计者利用现有资源,整合费旧材料以最少的资本投入完成相关活动,显现出环保节能意识。 2.创新性原则:创新是技术活动的本质所在,在设计机器人作品时,师生应根据日常生活经验,展开丰富、科学的联想,并积极附注于实践。创造新方法、新成果、新价值。 3.智能性原则:机器人创新设计不同于一般的科技发明,其核心重在体现作品自身的智能化(如感知、规划、动作和协同等能力)。设计好的机器人创新作品可按照周围环境所提供的信息,利用各种传感器和动力装置进行信息的获取和输出,并能按照预设的程序指令决定自己的行动,要有一定的自主能力。这也正是机器人创新设计的魅力所在。

轮腿机器人开题报告

河北工业大学硕士学位论文开题报告论文题目六轮腿移动机器人的仿生机构研究 2013年12 月 2 日

1.课题的研究背景及意义 移动机器人是一种能够通过内、外传感器反馈信息感知环境及自身状态, 实现在有障碍物的环境中自主运动, 从而完成一定功能或任务的机器人系统[1]。目前已广泛运用于野外考察、地震救灾、环境检测、娱乐生活等诸多行业,在安全、军事、生活以及科学研究中扮演着越来越重要角色。其中轮式机器人结构简单,容易实现,具有移动速度快、转向性能好、行走效率高等特点。但同时适应地形和避障的能力差。足式机器人对地形的适应能力较好,可以跨越障碍物、台阶等,但运动间歇大,速度慢。随着移动机器人的不断开发和应用范围的扩展,未来会在更多复杂且未知的环境中工作。仅仅依靠轮式或者足式的移动机器人已无法完全适应工作环境的复杂性和多样性了。为了配合对移动机器人性能要求的逐渐提高,相继问世了许多混合式的移动机构,其中轮腿式移动机器人就融合了轮式移动机器人和腿式移动机器人的特点。既可以保证在平坦地面的移动效率又具有了良好的跨越障碍的能力[2]。 但当轮腿式移动机器人采用足式的方式行走时目前在技术上还存在许多困难,然而在自然界中存在的多足昆虫则可以通过它们长期进化得到的复杂且精妙的肢体结构和灵活的的运动方式,容易地通过了各种复杂的自然地形,甚至能在光滑的表面上倒立行走。因此,将多足昆虫的行为学研究成果,融入到移动机器人的结构设计与控制中,开发具有卓越移动能力的轮腿式仿生移动机器人,对于足式移动机器人和轮腿式移动机器人技术的研究与应用都具有重要的理论和现实意义[3]。 本文从仿生的角度出发,对轮腿机器人进行结构设计,使其可以在跨越障碍物、沟壑、楼梯等不规则地形保持机体平稳和运动的效率。主要的问题在于解决腿部结构,使其可以获得更好的稳定性和更低的能量消耗。结合轮式和足式的优点,根据不同的环境变换轮式运动和足式运动两种运动方式,达到良好的运动灵活性和较高的移动速度的统一,提供良好的应用平台。 为了能够保持机器人的稳定移动,这就要求机器人足数越多越好。当机器人在选择腿式不行和轮子转动时需要进行轮腿的转换,在转换的过程中,腿部需要

智能机器人设计报告

智能机器人设计报告 参赛者:庆东肖荣于腾飞 班级:级应用电子技术 指导老师:远明 日期:年月日 一、元器件清单: ,,,,,,,蜂鸣器,光敏电阻,光敏三极管,电阻、电容若干,超亮及普通发光管。二、主要功能: 本设计按要求制作了一个简易智能电动车,它能实现的功能是:从起跑线出发,沿引导线到达点。在此期间检测到铺设在白纸下的薄铁片,并实时存储、显示在“直道区”检测到的薄铁片数目。电动车到达点以后进入“弯道区”,沿圆弧引导线到达点继续行驶,在光源的引导下,利用轻触开关传来的电信号通过障碍区进入停车区并到达车库,完成上述任务后能够立即停车,全程行驶时间越少越好。 本寻迹小车是以有机玻璃为车架,单片机为控制核心,加以减速电机、光电传感器、光敏三极管、轻触开关和电源电路以及其他电路构成。系统由通过口控制小车的前进后退以及转向。寻迹由超亮发光二极管及光敏电阻完成,避障由轻触开关完成,寻光由光敏三极管完成。 并附加其他功能: .声控启动 .数码显示 .声光报警 三、主体设计 车体设计 左右两轮分别驱动,后万向轮转向的方案。为了防止小车重心的偏移,后万向轮起支撑作用。对于车架材料的选择,我们经过比较选择了有机玻璃。用有机玻璃做的车架比塑料车架更加牢固,比铁制小车更轻便,美观。而且裁减比较方便! 电机的固定采用的是铝薄片加螺丝固定,非常牢固,且比较美观。 轮子方案 在选定电机后,我们做了一个万向轮,万向轮的高度减去电机的半径就是驱动轮的半径。轮子用有机玻璃裁出来打磨光华的,上面在套上自行车里胎,以防止打滑。 万向轮 当小车前进时,左右两驱动轮与后万向轮形成了三点结构,这种结构使得小车在前进时比较平稳。

智能移动机器人的现状与发展论文 2

题目移动机器人的发展现状及趋势授课老师唐延柯 学生姓名 学号 专业电子信息工程 教学单位德州学院 完成时间 2013年11月16日

一、摘要 (2) 二、引言 (2) 三、智能机器人的构成 (3) 3.1硬件构成 (3) 3.2 软件构成 (3) 四、国内外在该领域的发展现状综述 (4) 五、智能移动机器人的应用及分类 (5) 5.1 智能机器人的应用 (5) 5.2 智能机器人分类 (7) 六、展望与讨论 (9) 6.1智能机器人的发展趋势展望 (9) 6.2 建议及设想 (10) 七、结论 (10) 八、参考文献 (11)

智能机器人的现状及其发展趋势 一、摘要 本文扼要地介绍了智能机器人技术的发展现状,以及世界各国智能机器人的发展水平,然后介绍了智能机器人的分类,从几个典型的方面介绍了智能机器人在各行各业的广泛应用,讨论了智能机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能机器人方面发展并提出期望。 关键词:智能机器人;发展现状;应用;趋势 The status and trends of intellectual robot Abstract:This paper briefly discusses the development, status of intellectual robot, development of intellectual robot in many countries. And then it presents the categories of intellectual robot, talks about the extensive applications in all works of life from several typical aspects and trends of intellectual robot. After that, it puts forward prospects for future technology, suggestion and a tentative idea of myself, and analyses the development of intellectual robot in China. Finally, it raises expectations of intellectual robot in China. Key words: intellectual robot; development status; application; trend 二、引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能机器人则是一个在感知- 思维- 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能力。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能[1]。 随着智能机器人的应用领域的扩大,人们期望智能机器人在更多领域为人类服务,代替人类完成更复杂的工作。然而,智能机器人所处的环境往往是未知

轮足复合式机器人直流减速电机的Proteus设计与仿真

轮足复合式机器人直流减速电机的Proteus设计与仿真 针对直流减速电机在工业中的广泛应用,提出了用AT89C51控制四路直流减速电机的方法。并利用Proteus优秀的仿真功能实现了硬件的连接及仿真。结果表明,Proteus仿真结果与硬件电路实现结果基本相同,并成功应用在“轮足复合式机器人”中。为“轮足复合式机器人”的进一步研究奠定了基础。 标签:轮足复合;直流减速电机;L298;Proteus 1 引言 机器人技术集机械、电子、计算机、仿生学、自动控制、多传感器及人工智能等多门学科于一体[1]。由于机器人动作的复杂性,在机器人的制作中,机器人的不同动作往往是由各种各样的电动机来完成。电动机种类繁多,其中,直流减速电机使用简单、价格便宜、动力较大[2],非常适合作为轮式机器人的驱动电机。本文采用传统的四轮机器人为研究对象,机器人底盘结构如图1: 为提高机器人对复杂环境的适应能力及动力提供系统,该机器人采用四轮驱动的方式完成启动、停止、转弯等动作。 2 轮足复合式机器人 轮组复合式机器人(图2)以煤矿灾后救援为背景,以提高在灾后恶劣地形条件下对环境信息的快速探测能力为目标。通过对煤矿井下恶劣环境的分析和模拟,设计出能够根据不同地形条件变换运动模式,实现快速移动和越障等的机器人。该机器人以四轮形式的小车底盘为底板,四角分布四足,以实现轮式运动、足式运动、轮足结合运动等。 3 方案设计 设计方案主要包括三个模块(图3):控制模块、驱动模块、执行模块。设计电路原理图如图4。 3.1 控制模块 该模块采用AT89C51作为主控器,实现对轮足复合式机器人核心控制器命令的接收、分析和执行。该模块采用AT89C51的P1、P2准双向I/O口作为控制端口,P3口作为与核心控制器进行数据交换的接口。 3.2 驱动模块 驱动模块采用L298N(图5),L298N是SGS公司的产品,内部包含四通道逻辑驱动电路。是一种两相和四相电机的专用驱动器,即内含二个H桥的高电

精品-智能机器人设计与制作word

智能机器人的设计与制作WORD版本可编辑

智能机器人的设计与制作 引言 近几年机器人已成为高技术领域内具有代表性的战略目标。机器人技术的出现和发展,不但使传统的工业生产面貌发生根本性变化,而且将对人类社会产生深远的影响。随着社会生产技术的飞速发展,机器人的应用领域不断扩展。从自动化生产线到海洋资源的探索,乃至太空作业等领域,机器人可谓是无处不在。目前机器已经走进人们的生活与工作,机器人已经在很多的领域代替着人类的劳动,发挥着越来越重要的作用,人们已经越来越离不开机器人帮助。机器人工程是一门复杂的学科,它集工程力学、机械制造、电子技术、技术科学、自动控制等为一体。目前对机器人的研究已经呈现出专业化和系统化,一些信息学、电子学方面的先进技术正越来越多地应用于机器人领域。目前机器人行业的发展与30 年前的电脑行业极为相似。今天在汽车装配线上忙碌的一线机器人,正是当年大型计算机的翻版。而机器人行业的利基产品也同样种类繁多,比如协助医生进行外科手术的机械臂、在伊拉克和阿富汗战场上负责排除路边炸弹的侦察机器人、以及负责清扫地板的家用机器人,还有不少参照人、狗、恐龙的样子制造机器人玩具。舞蹈机器人具有人类外观特征、可爱的外貌、又兼有技术含量,极受青少年的喜爱。我从前年开始机器人方面的研究,在这过程中尝试过很多次的失败,也感受到了无比的乐趣。 图1.1、机器人 1 绪论

机器人技术作为20 世纪人类最伟大的发明之一,自20 世纪60 年代初问世以来,经历40 余年的发展已取得长足的进步。未来的机器人是一种能够代替人类在非结构化环境下从事危险、复杂劳动的自动化机器,是集机械学、力学、电子学、生物学、控制论、计算机、人工智能和系统工程等多学科知识于一身的高新技术综合体。走向成熟的工业机器人,各种用途的特种机器人的多用化,昭示着机器人技术灿烂的明天。 1.1 国内外机器人技术发展的现状 为了使机器人能更好的应用于工业,各工业发达国家的大学、研究机构和大工业企业对机器人系统开发投入了大量的人力财力。在美国和加拿大,各主要大学都设有机器人研究室,麻省理工学院侧重于制造过程机器人系统的研究,卡耐基—梅隆机器人研究所侧重于挖掘机器人系统的研究,而斯坦福大学则着重于系统应用软件的开发。德国正研究开发“MOVE AND PLAY”机器人系统,使机器人操作就像人们操作录像机、开汽车一样。从六十年代开始日本政府实施一系列扶植政策,使日本机器人产业迅速发展起来,经过短短的十几年。到80 年代中期,已一跃而为“机器人王国”。其机器人的产量和安装的台数在国际上跃居首位。按照日本产业机器人工业会常务理事米本完二的说法:“日本机器人的发展经过了60 年代的摇篮期。70 年代的实用期。到80 年代进人普及提高期。” 并正式把1980 年定为产业机器人的普及元年”。开始在各个领域内广泛推广使用机器人。中国机器人的发展起步较晚,1972 年我国开始研制自己的工业机器人。"七五"期间,国家投入资金,对工业机器人及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷涂、点焊、弧焊和搬运机器人。1986 年国家高技术研究发展计划(863 计划)开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。20 世纪90 年代,我国的工业机器人又在实践中迈进一大步,先后研制出了点焊、装配、喷漆、切割、搬运等各种用途的工业机器人,并实施了一批机器人应用工程,形成了一批机器人产业化基地,为我国机器人产业的腾飞奠定了基础。 1.2 机器人技术的市场应用 机器人融入我们日常生活的步伐有多快?据国际机器人联盟调查,2004 年,全球个人机器人约有200 万台,到2008 年,还将有700 万台机器人投入运行。按照韩国信息通信部的计划,到2013 年,韩国每个家庭都能拥有一台机器人;而日本机器人协会预测,到2025 年,全球机器人产业的“蛋糕”将达到每年500 亿美元的规模(现在仅有50亿美元)。与20 世纪70 年代PC 行业的情况相仿,我们不可能准确预测出究竟哪些用途将推动这个新兴行业进入临界状态。不过看起来,机器人很可能在护理和陪伴老年人的工作上大展宏图,或许还可以帮助残疾人四处走走,并增强士兵、建筑工人和医护人员的体力与耐力。目前,我国从事机器人研发和应用工程的单位200 多家,拥有量为3500 台左右,其中国产占20%,其余都是从日本、美国、瑞典等40 多个国家引进的。2000 年已生产 各种类型工业机器人和系统300 台套,机器人销售额6.74 亿元,机器人产业对国民经济的年收益额为47 亿元,我国对工业机器人的需求量和品种将逐年大幅度增加。1.3 机器人技术的前景展望机器人是人类的得力助手,能友好相处的可靠朋友,将来我们会看到人和机器人会存在一个空间里边,成为一个互相的助手

智能移动机器人

智能移动机器人 近年来,随着机器人研究的不断发展,机器人技术开始源源不断地向人类活动的各个领域渗透,结合这些领域的应用特点,各种各样的具有不同功能的机器人被研制出来,并且在不同的应用领域都得到了广泛的应用。 本文主要设计一个配置机械手的智能移动机器人,可以调速、转弯、抓取物体。涉及到双目摄像头定位、激光测距、电机控制、压力传感器等技术。 一、系统总体结构图 机器人系统主要由机械系统、驱动控制系统、视觉系统、传感器系统、上位机系统、电源系统以及人机交互系统等组成。 系统总体结构图如下: 智能机器人平台采用了主从结构的分布式处理方式,由上位机系统来协调控制各个子模块系统。各个子系统都有自己的数据处理机制,数据处理都在本模块的DSP处理器中完成。上位机只是负责数据融合、任务分解、策略选择制定、协调控制各子模块等工作。当上位机需要某个模块的数据时,子模块向上位机提供该模块经过处理以后的数据。由于大量的数据处理都在各个子模块中完成,上位机得到的都是经过处理后的小量数据,大大减少了上位机的负担。采用这种方式既提高了上位机的效率,又增加了系统的稳定性,方便系统的维护。 二、机械手

该机械手的设计仿照人类手臂的构造,总共有五个自由度,包括抬手臂转动关节,肩转动关节,肘转动关节,腕转动关节,手爪旋转关节与手爪开闭关节。这种多自由度的设计使得机械手具有较大的灵活度,以适应抓取不同目标物体的要求。 三、控制系统 1、感知系统 感知系统也就是传感器系统,本智能机器人系统的传感器系统可以只包含两个传感器,一个是测障、测距用激光传感器,一个是抓物时压力感测的压力传感器。 红外测距传感器(简称PSD:Poison Sensitive Detector): 通常采用光学三角测量方法来确定机器人同物体之间的距离:传感器的红外发光管发出红外光,当红外光没有碰到障碍的时候,红外光保持前行;当红外光碰到障碍的时候,红外光反射回来,并进入探测器。这样,在反射点,发射器,探测器之间形成一个三角形,探测器通过镜面反射,将红外光射入一个线性CCD中,由CCD测量反射光的角度,并由角度的大小来计算障碍物的距离。本机器人系统配置4路PSD传感器,分别以接近于90度的角度间距安装于机器人的前、后、左、右四个方向上和机械臂抓手的手掌内。 图2 PSD传感器位置示意图 压力传感器: 测得与物体接触的压力值返回给DSP分析处理:是否继续抓紧动作。装在机械臂抓手的每个手指上。 传感器系统结构图

智能化机器人设计报告

上海应用技术学院Shanghai Institute of Technology 组长:王文博 组员:严格,熊祚强 指导教师:周文 项目工期:2014年6月10日——2015年6月15日

摘要:本项目研发智能家庭监督机器人是基于智能手机平台之下所应用的, 在借助于ug三维建模设计,机械设计以传动设计,及嵌入式硬件的插入,成功地实现了人远距离分身控制并监督家庭情况,能够随时随地掌握家庭环境的变化,为家庭安全的保障提供了基础,并且解决了目前市场家政机器人价格昂贵的现象。 前言: 随着物联网,智能家居以及智能手机的兴起,针对国内的市场环境, 本项目研发出的一系列四款智能家庭服务机器人,本项目研发的机器人管家是一种远程交互型机器人家政机器人采用低功耗WIFI技术连接互联网及手机终端通过强大智能手机及网络云服务器的数据计算处理能力对机器人进行智能化控制,从而降低了机器人的所需硬件成本,使得家政机器人能被国内消费者所接受。此机器人装配了红外,433射频的家电控制系统,实现了远程家电控制功能,并解决了目前智能家居家电设备接口协议不统一,传统家电难以兼容的问题。此外,机器人本身留有各种传感器接口,通过采用本项目研发的红外热式,温湿度,甲醛以及PM2.5传感器机器人能够实现远程家庭环境监控,家居安防的功能。能够解决目前家庭服务类机器人依赖进口,售价高昂的市场现状。 正文:(建模方面)

如上图所示,主观三视图,以及大致轮廓视图,外观视图上采取了全新的外观设计,底部以正六棱柱作为底座,并且采用抽壳技术,扩大内部空间,方便内部嵌入传动系统,机械设计等等,并且为以后的硬件电子设施提供了空间基础,上部采用圆弧拉伸,同样扩大内部空间,便于齿轮,马达等传动设施插入,放手机的补位,采用加盖模式,内部设有弹簧等设施,加紧设备。具体如下: 一:底轮 底轮采用一般的轮胎设计,圆弧效果便于运动,轮胎表面加拉伸效果,增加抓地,增大摩擦,内部增加五角星设计,省材料, 增加美观 二:转向轮: 由于底面为正六棱柱,两个轮子不能稳定行走,并且转向不方便,故在底面加上两个可以自由旋转的转向轮,转向轮 采用平常滑板上的轮子,这样的轮,自由性比较大,可以随 意转向,而传统的车轮,自由性较低,两者互相结合,既可 以自由转向,又可以稳抓底面。建模设计上主要采用了草图 拉伸方式。 三:滚轴:

智能式移动机器人设计说明书

智能移动式送料机器人机械系统设计 摘要:智能移动式送料机器人以电动机作为驱动系统,运用单片机传感器等技术达到其智能移动的目的,实现行走、刹车、伸缩、回转等多种动作的操作。因此它具有机械化、程序化、可控化、适应性、灵活性强的特点。 前言:工业机器人是一种典型的机电一体化产品在现代生产中应用日益广泛,作用越来越重要,机器人技术是综合了计算机、控制、机构学、传感技术等多学科而形成的高新技术是当代研究十分活跃,应用日益广泛的领域。

现在,国际上对机器人的概念已经逐渐趋近一致。一般说来,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”我国研制的排爆机器人不仅可以排除炸弹,利用它的侦察传感器还可监视犯罪分子的活动。监视人员可以在远处对犯罪分子昼夜进行观察,监听他们的谈话,不必暴露自己就可对情况了如指掌。 智能小车,又称轮式机器人,可以在人类无法

适应的恶劣和危险环境中代替人工作。它是一个集环境感知,规划决策,自动驾驶等功能于一体的智能系统。现如今已在诸多领域有广泛的应用。对于快要毕业的大学生来说也是一个实时、富有意义和挑战的设计课题。 正文: 设计方案: 一课题名称:智能移动式送料机器人设计 二机器人工作过程及设计要求 自主设计智能移动小车,设计一个取料 手爪装配到小车上,完成取料机器人的机械系统设计,并进行机器人运动规划和取料虚拟仿真,使机

器人完成如下动作:沿规定路径行驶——工件夹取——车体旋转——手爪张开,将工件从储存处送到运料车上。 三机器人设计的内容 一机械手的设计:

双足机器人设计

小型双足步行机器人的结构及其控制电路设计 两足步行是步行方式中自动化程度最高、最为复杂的动态系统。两足步行系统具有非常丰富的动力学特性,对步行的环境要求很低,既能在平地上行走,也能在非结构性的复杂地面上行走,对环境有很好的适应性。与其它足式机器人相比,双足机器人具有支撑面积小,支撑面的形状随时间变化较大,质心的相对位置高的特点。是其中最复杂,控制难度最大的动态系统。但由于双足机器人比其它足式机器人具有更高的灵活性,因此具有自身独特的优势,更适合在人类的生活或工作环境中与人类协同工作,而不需要专门为其对这些环境进行大规模改造。例如代替危险作业环境中(如核电站内)的工作人员,在不平整地面上搬运货物等等。此外将来社会环境的变化使得双足机器人在护理老人、康复医学以及一般家务处理等方面也有很大的潜力。 双足步行机器人自由度的确定 两足步行机器人的机构是所有部件的载体,也是设计两足步行机器人最基本的和首要的工作[1]。它必须能够实现机器人的前后左右以及爬斜坡和上楼梯等的基本功能,因此自由度的配置必须合理:首先分析一下步行机器人的运动过程(前向)和行走步骤:重心右移(先右腿支撑)、左腿抬起、左腿放下、重心移到双腿中间、重心左移、右腿抬起、右腿放下、重心移到双腿间,共分8个阶段。从机器人步行过程可以看出:机器人向前迈步时,髓关节与踝关节必须各自配置有一个俯仰自由度以配合实现支撑腿和上躯体的移动;要实现重心转移,髋关节和踝关节的偏转自由度是必不可少的;机器人要达到目标位置,有时必须进行转弯,所以需要有髋关节上的转体自由度。另外膝关节处配置一个俯仰自由度能够调整摆动腿的着地高度,使上下台阶成为可能,还能实现不同的步态。这样最终决定髋关节配置3个自由度,包括转体(roll)、俯仰(pitch)和偏转(yaw)自由度,膝关节配置一个俯仰自由度,踝关节配置有俯仰和偏转两个自由度。这样,每条腿配置6个自由度,两条腿共12个自由度。髋关节、膝关节和踝关节的俯仰自由度共同协调动作可完成机器人的在纵向平面(前进方向)内的直线行走功能;髋关节的转体自由度可实现机器人的转弯功能;髋关节和踝关节的偏转自由度协调动作可实现在横向平面内的重心转移功能。 机器人的转体(roll)、俯仰(pitch)和偏转(yaw)定义如图1所示[2]。

类人机器人设计与制造

国为研发机构 Guowei Research and Develop Institute

目录:Catalog 1.前言 (2) 2.骨架 (3) 3.弹性关节 (4) 4.弹性体液压肌肉 (5) 5.液压驱动装置 (6) 6.自动化驱动系统 (7) 7.液压管路系统 (9) 8.凸轮步行足 (9) 9.高仿真眼球 (10) 10.坐姿驱动器 (10) 11.弹性体液压肌肉的制备 (11) 12.无机人类的产业构成与布局 (12) 13.研发团队与研发对象 (13) 14.无机人类与社会变革 (14) 15.附录 (16)

前言:这是一部关于类人机器人设计与制造的书,内容包括骨架结构,弹性关节,弹性体液压肌肉,电动液压驱动系统和人工智能及控制系统等。与工业机器人不同的是;类人机器人主要加入人类生存环境,制造精度远低于工业机器人和机械臂。既然是类人性质的产物,它的形体,重量,行为动作等设计严格遵照仿真原则。此书的基本目的是促生无机人类的诞生,将自然人类从方方面面解放出来。 当今工业机器人的成熟技术派生出来的仿真机器人和机器狗已经达到相当的制造与控制水准。但始终不能脱离传统的机械设计理念和材料应用,原因不外乎基础学科教育内容一致性的制约。但制约并非绝对;日本和美国的性别仿真机器人开辟了新的方向,尽管其内核依然停留在机器狗的钢铁结构设计思路范畴。 《国为研发机构》主要宗旨是重点研发刚体和柔性或弹性体材料的结合应用。根据长期的调查研究发现此类设计与应用相对稀缺,主要原因是理想的柔性和弹性体材料在市场上的出现较晚,早期品种和性能远落后于当下。另外专业的教学研究几乎没有涉及。从机会方面讲;轻质的仿真机器人正逢时机。 本书内容将延续并推进新方向上的仿真机器人的设计和制造,作者力求努力提供新的创意,从而引出繁花似锦的不分地域的更多无机人类品种。

智能机器人的设计与制作

智能机器人的设计与制作 引言 近几年机器人已成为高技术领域内具有代表性的战略目标。机器人技术的出现和 进展,不但使传统的工业生产面貌发生全然性变化,而且将对人类社会产生深远的阻碍。随着社会生产技术的飞速进展,机器人的应用领域不断扩展。从自动化生产线到海洋资源的探究,乃至太空作业等领域,机器人可谓是无处不在。目前机器差不多走进人们的生活与工作,机器人差不多在专门多的领域代替着人类的劳动,发挥着越来越重要的作用,人们差不多越来越离不开机器人关心。机器人工程是一门复杂的学科,它集工程力学、机械制造、电子技术、技术科学、自动操纵等为一体。目前对机器人的研究差不多呈现出专业化和系统化,一些信息学、电子学方面的先进技术正越来越多地应用于机器人领域。目前机器人行业的进展与30 年前的电脑行业极为相似。今天在汽车装配线上忙碌的一线机器人,正是当年大型计算机的翻版。而机器人行业的利基产品也同样种类繁多,比如协助大夫进行外科手术的机械臂、在伊拉克和阿富汗战场上负责排除路边炸弹的侦察机器人、以及负责清扫地板的家用机器人,还有许多参照人、狗、恐龙的模样制

造机器人玩具。舞蹈机器人具有人类外观特征、可爱的外貌、又兼有技术含量,极受青青年的喜爱。我从前年开始机器人方面的研究,在这过程中尝试过专门多次的失败,也感受到了无比的乐趣。 图1.1、机器人 1 绪论 机器人技术作为20 世纪人类最伟大的发明之一,自20 世纪60 年代初问世以来, 经历40 余年的进展已取得长足的进步。以后的机器人是一种能够代替人类在非结构化环境下从事危险、复杂劳动的自动化机

器,是集机械学、力学、电子学、生物学、操纵论、计算机、人工智能和系统工程等多学科知识于一身的高新技术综合体。走向成熟的工业机器人,各种用途的特种机器人的多用化,昭示着机器人技术灿烂的改日。 1.1 国内外机器人技术进展的现状 为了使机器人能更好的应用于工业,各工业发达国家的大学、研究机构和大工业企业对机器人系统开发投入了大量的人力财力。在美国和加拿大,各要紧大学都设有机器人研究室,麻省理工学院侧重于制造过程机器人系统的研究,卡耐基—梅隆机器人研究所侧重于挖掘机器人系统的研究,而斯坦福大学则着重于系统应用软件的开发。德国正研究开发“MOVE AND PLAY”机器人系统,使机器人操作就像人们操作录像机、开汽车一样。从六十年代开始日本政府实施一系列扶植政策,使日本机器人产业迅速进展起来,通过短短的十几年。到80 年代中期,已一跃而为“机器人王国”。其机器人的产量和安装的台数在国际上跃居首位。按照日本产业机器人工业会常务理事米本完二的讲法:“日本机器人的进展通过了60 年代的摇篮期。70 年代的有用期。到80 年代进人普及提高期。” 并正式把1980 年定为产业机器人的普及元年”。开始在各个领

机器人移动平台设计中英文翻译

附录: 外文资料与中文翻译 外文资料: Robots First, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work 1

相关文档
相关文档 最新文档