文档库 最新最全的文档下载
当前位置:文档库 › 结构动力学习题

结构动力学习题

结构动力学习题
结构动力学习题

习题集

1.12重物w悬挂在简支梁跨中的一个弹簧上(图P1.12),梁长为L,弯曲刚度为EI,弹簧刚度为k,假定梁无质量,试求其固有频率。

1.19 将汽车粗略地理想化为一个集中质量支撑在一个弹簧-阻尼器系统上,如图P1.19所示。汽车以恒定不变的速度v通过路面,路面的平整度为路面位置的一个已知函数。试推导运动方程。

(从自重下的平衡位置处起算)

Problem Plus1 for Ch1 (please do it in English)

Derive the equations of motion for the following pendulum system. The rod length is L, and its mass density is uniform across its surface area. Assume b << L (so make small angle approximations). Mass density is ρbut total mass of rod is m. Note: the term “rod” does not imply a simple rod.

a. Derive the equation of motion of the system.

b. Simplify the equation of motion assuming the displacement angle,θ, is small

c. Determine the natural frequency of the rod system based on the simplified

equation of motion in part (b).

d. The same rod is taken and now rotated about a new pivot point (as shown

below). Find the natural frequency of the new rod system configuration. Again,

make small angle approximations to find the rod’s equation of motion.

e. Compare the natural frequency from part (c) and (d). The new pivot point is

termed the CENTER of PERCUSSION

Problem Plus2 for Ch1 (please do it in English)

Determine the equation of motion of the following system using the Principle of Virtual Work.

where

()4x c x a

=

Hint: Be careful with respect to the beam with a distributed mass shown on the left. You can

either consider the rotational inertia about the hinge on the left –OR- you can consider the

rotational inertia about the beam’s center of mass point. If you go with considering the rotation about the beam’s center of mass, you need to account for the inertia associated with translational movement of that center of mass. In fact, a third valid approach is to not even consider the beam as a rotational element. You could discretize the beam to infinitely small slices with thickness “dx” and find the vertical translational inertia (essentially sum them using integrals). You should convince yourself of the equivalency of both approaches of analysis of the inertial properties of the system shown.

2.6 一个仪器的包装可如图P2.6所示模拟。在图中,质量为m由总刚度为k的弹簧约束的仪器被置于一箱子内。m=10磅力/g,k=50磅力/英寸。箱子意外地从离地3英尺的高处掉下,假定接触没有弹跳,试确定箱子内部包装的最大位移和仪器的最大加速度。

2.20 一个由重物、弹簧和摩擦装置组成的单自由度体系如图P2.20所示。该装置的起滑力是重力的10%,体系的固有振动周期为0.25秒。如果给这个体系2英寸的初位移,然后释放,循环六个周期后位移幅值将为多少?多少周期后体系将静止?

3.5 一个重1200磅力的空调装置用螺栓固定于两个平行简支钢梁的跨中(图P3.5),梁的净跨为8英尺,每根梁横截面的面积二次矩为10英寸4。装置内的电动机以每分钟300转运转,在这个速度上产生一个60磅力的不平衡力。忽略梁的重量,并假设体系有1%的粘滞阻尼。对于钢材,E=30000千磅力/英寸2。试确定由不平衡力引起的梁中点稳态挠度幅值和稳态加速度幅值(用g 表示)。

3.11偏心质量激振器引起结构的稳态加速度幅值,测得一些激励频率下的数据为

试求结构的固有频率和阻尼比。

3.18* 一个加速度计的固有频率为f n = 25赫兹,阻尼比ζ=60%。如果输入加速度为:

0()sin(2)g g u t u ft π= ,写出仪器反应()u t 作为时间函数的方程。画出比值200/n g u u

ω 作为/n f f 函数的曲线。为了在非常低的激励频率下正确读出输人加速度,需要对加速度仪进行校准。确定能以±1%的精度测量加速度幅值时的频率范围,在上面提及的图中标识出这个频率范围。

3.23 证明:粘滞阻尼器的每周耗散能量可表示为

202222(/)[1(/)][2(/)]n D n n p E k πζωωωωζωω=

?+

3.26 固有周期为T n和阻尼比为ζ的单自由度体系受图P3.26所示的幅值为P0和周期为T0的周期力作用。

(a) 对扰动函数做Fourier级数展开。

(b) 确定无阻尼体系的稳态反应。T0取何值时解是不确定的?

(c) 对于T0/T n = 2,确定并画出Fourier级数中各项的反应。为了获得级数解的合理收敛,需要取多少项?

4.5 (a) 证明:处于静止的无阻尼体系受到突然施加的力p 0作用,该力随时间按指数衰减(图P4.5),其运动为

22o ()1sin cos ()1/at n n st n n u t a t t e u a ωωωω???=?+??+??

注意:a 与n ω的单位相同。

(b)* 对选择的值/n a ω=0.01、0.1和1.0,画出这个运动。

(c) 证明:稳态幅值为

o ()()st u t u = 稳态运动在什么时候达到?

4.13 固有周期为T n 的单自由度体系承受图P4.13所示的交变阶跃力作用。

注意:p (t )是周期性的,周期为T n 。

(a) 确定作为时间函数的位移,初始条件为(0)(0)0u u

== 。 (b)* 画出反应图。

(c) 证明:位移峰值由1/()(1)2n n st o u u n ?=?给出,式中的n 是p (t )中半个循环周期的数量。

6.11 (a)一个装满水的水箱支撑在一个80英尺高的悬臂型塔上,该结构理想化为一个重量w= 100千磅力、侧向刚度k = 4千磅力/英寸、阻尼比ζ= 5%的单自由度体系。支撑水箱的塔用图6.9.5中的设计谱(峰值地面加速度调整为0.5g)所刻画的地面运动设计。试确定侧向位移和基底剪力的设计值。

(b)若(a)部分中计算得到的位移似乎超过了设计值,设计者决定增加尺寸来提高塔的刚度。如果侧向刚度为8千磅力/英寸,确定修改后体系的位移和基底剪力的设计值,假设阻尼比仍为5%。评价提高刚度如何影响设计需求,并说明提高体系刚度的缺点是什么?

(c) 如果提高刚度后塔将要支撑的水箱重量为200千磅力,试确定其设计需求,假设其阻尼比仍为5%。评价增加的重量如何影响设计需求。

6.14出于结构分析的目的,将一座单层的钢筋混凝土建筑物理想化为在梁处支撑着重量为10千磅力恒载的无质量框架。框架宽24英尺,高12英尺,固结于基底的每根柱均为10平方英寸的方形截面。混凝土的杨氏模量为3×l03千磅力/英寸2,建筑物的阻尼比估计为5%。如果按照图6.9.5中的设计谱(峰值加速度调整为0.5g)进行设计,试确定下面两种情况下,柱的侧向位移和弯矩的设计值:

(a) 梁的横截面比柱大得多,使得梁可以假设为弯曲刚性。

(b) 梁的截面比柱小得多,使得梁的刚度可以被忽略。评论梁的刚度对设计值的影响。

6.15 将习题6.14中满足(a)情况(即刚性梁)的框架的柱基底改为铰接,在同样设计地震作用下,试确定柱的侧向位移和弯矩的设计值。评论基底刚性对设计位移和弯矩的影响。

8.7* (本题为选做题)

一个钢筋混凝土烟囱高600英尺,横截面为圆环形,底部的外径为50英尺,顶部为25英尺,沿整个高度壁厚均为2英尺6英寸(图P8.7)。采用壁厚与半径相比较小这一近似假设,根据混凝土的毛面积(忽略钢筋影响)计算质量和弯曲刚度特性。假设烟囱与基底固结,阻尼比估计为5%。混凝土的单位重量为150磅力/英尺2,弹性模量E c =3600千磅力/英寸2。假设形函数为

()1cos 2x

x L πψ=?

式中,L 是烟囱高度,x 是从基底测量的距离。地面运动由图6.9.5的设计谱定义,峰值加速度调节到0.25g ,试计算在地面运动作用下的以下量:

(a) 基底和中间高度的剪力和弯矩;

(b) 顶点挠度。

9.6 图9.6所示的具有集中质量的两层框架,承受侧向力作用,图中还给出了结构的一些特性;另外,所有柱和梁的弯曲刚度均为EI 。

(a) 标出代表弹性特性的自由度,并确定刚度矩阵。忽略所有单元的轴向变形。

(b) 标出代表惯性特性的自由度,并确定质量矩阵。假设构件是无质量的,忽略它们的转动惯性。

(c) 建立控制(b)中框架自由度的运动方程。

9.13 一个伞形结构,理想化为三个弯曲单元的集合,集中质量在节点处,如图P9.13所示。

(a) 标出代表弹性特性的自由度,并确定刚度矩阵。忽略所有构件的轴向变形。

(b) 标出代表惯性特性的自由度,并确定质量矩阵。

(c) 建立控制(b)中框架自由度的运动方程,激励为:

(i) 水平地面运动;

(ii) 竖向地面运动;

(iii) b-d方向的地面运动;

(iv) b-c方向的地面运动;

(v) 结构平面内的转动地面运动。

9.2 一个均匀简支梁,长度为L,弯曲刚度为EI,每单位长度质量m理想化为集中质量体系,如图P9.2所示,作用力也示于图中。

(a) 标出代表弹性特性的自由度,并确定刚度矩阵。忽略梁的轴向变形。

(b) 标出代表惯性特性的自由度,并确定质量矩阵。

(c) 建立梁的横向运动控制方程。

10.2* 对于习题9.2中定义的体系:

(a) 计算固有振动频率和振型,将频率用m、EI和L表示。画出振型图,并标出相应的固有频率。

(b) 验证振型满足正交特性。

(c) 将每个振型正则化,使振型质量M n具有单位值,画出这些正则化振型。将这些振型与(a)中得到的进行对比,并说明其差异。

10.3 计算习题9.2(和习题10.2)中的体系由如下三组初位移引起的自由振动反应:

(a)

1(0)1

u=,

2(0)0

u=;(b)

1(0)1

u=,

2(0)1

u=;(c)

1(0)1

u=,

2(0)1

u=?。说明三种情况下振型对反应的相对贡献。忽略体系的阻尼。

10.4 考虑体系的阻尼,重新计算习题10.3(a)。对于每个振型,阻尼比为ζ=5%。

11.1* 图P11.1给出了三层剪切型建筑物的特性,包括楼层重量、层间刚度、固有频率和振型。其中,w = 100 kips,k = 168 kips/in。

(a) 试求固有频率和振型。

(b) 推导Rayleigh阻尼矩阵,使第一阶和第三阶振型的阻尼比为5%。计算第二阶振型的阻尼比。

ζ=5%)11.3* 对于图P11.1中的体系,通过叠加第一阶和第三阶振型的阻尼矩阵(每个振型

n

确定阻尼矩阵。验证所得的阻尼矩阵没有给出第二阶振型的阻尼。

12.1 图P12.1给出了一个剪切型框架(即刚性梁)和它的各层质量及刚度,不计阻尼。此结构在顶层受到水平谐振力o ()sin p t p t ω=的作用。

(a) 采用两种方法推导结构的稳态位移方程:(i) 直接求解耦联方程;(ii) 振型分析。 (b) 验证两种方法给出同样的结果。

(c)* 对位移和频率坐标刻度进行适当的标准化后,将两个位移幅值u lo 和u 2o 作为激励频率函数的曲线画在同一张图上。

结构力学(二) ( 第2次 )

第2次作业 一、单项选择题(本大题共60分,共 20 小题,每小题 3 分) 1. 单自由度体系在简谐荷载作用下如果频率比大于1,则要减小振动幅值需采取措施(D ) D. 减少刚度,增加质量 2. 图示体系是(A ) A. 几何瞬变有多余约束 3. 图示体系的动力自由度为 ( B) B. 3 4. 位移法典型方程中的K ij的含义是(B) B. 基本结构附加约束j单独发成单位位移Δj=1时,在附加约束i处产生的约束力 5. 单位荷载作用在简支结间梁上,通过结点传递的主梁影响线,在各结点之间:(C) C. 均为直线 6. 若考虑剪力和轴力的影响.截面极限弯矩的数值将( B) B. 减小 7. 下面那一种体系可以用来作为结构(A ) A. 几何不变体系 8. 平面杆件结构在等效结点荷载作用下与原非结点荷载作用下产生相同的(A )。 A. 结点位移 9. 单自由度体系的自由振动主要计算 ( A ) A. 频率与周期 10. 在竖直向下荷载作用下,等截面连续梁的破坏机构是(A ) A. 各跨独立形成 11. 力法方程中的δij的意义是(A) A. 基本结构在X j=1单独作用下,沿X i方向的位移 12. 图示两结构及其受载状态,它们的内力符合。(B) B. 弯矩相同,轴力不同 13. 平面杆件结构一般情况下的单元刚度矩阵[K]6×6,就其性质而言,是:(B ) B. 对称、奇异矩阵 14. 己知某单元的定位向量为 [0 3 5 7 8]T,则单元刚度系数K24应叠加到结构刚度矩阵的元素(B) B. 15. 已知图示梁在P=5kN作用下的弯矩图,则当P=1的移动荷载位于C点时K截面的弯矩影响线纵标为:(B) B. -1m 16. 力法基本方程的建立表明基本体系与原结构具有相同的(C) C. 受力和变形形态 17. 图示两自由度体系中,弹簧刚度为C,梁的EI=常数,其刚度系数为:(B) B. K11=48EI/ (L*L*L)+C,K22=C,K12=K21=-C 18. 据影响线的定义,图示悬臂梁C截面的弯矩影响线在C点的纵标为:(A )

结构动力学习题2..

结构动力学习题参考答案

2.3一根刚梁AB ,用力在弹簧BC 上去激励它,其C 点的运动规定为Z (t ),如图P2. 3. 按B 点的垂直运动u 来确定系统的运动方程,假定运动是微小的。 解:以在重力作用下的平衡位置作为基准点,则方程建立时不考虑重力。根据 达朗贝尔原理,通过对A 点取矩建立平衡方程,刚体上作用有弹簧弹力1s f , 2s f , 以及阻尼力D f ,惯性力2M 。B 点的垂直位移是u ,则有几何关系知2/L 处的位移为2/u 。 根据位移图和受力图可得: 02 221=?-?+? +L f L f L f M s D s I 其中 . 22221.... 221) (21 23 1 31u c f u z k f u k u R f u m L L u m L M D s s I =-==?=== 代入○ 1式得: 0 )(L 4 1 41ML 3121...=--++L u z k u k u cL u 合并化简得: )(12)123(3M 4221. .. t Z k u k k u c u =+++ 2.5 系统如图P2.5 , 确定按下形式的运动方程:)(. ..t P ku u c u m u =++。其中u 为 E 点的垂直运动。假定薄刚杆AE 的质量为M,其转动很小。

解:根据牛顿定律,运动几何关系,对B 点取矩得 L u L m mL L u k L u c L L t f p 4 3 )4(1214343854)(.. 22.0? ??????+=??-?-?? 化简合并得: ) ()()(845 .,3,3,M 7)(8 45 337. ... .. t P ku u c u m t P L t f P K k C c m L t f P ku u c u M u u O O =++===== ++得令 2.13 一根均匀杆,图P2.13 其单位体积质量密度ρ,并具有顶部质量M ,应 用假定法L x x =()ψ来推导该系统轴向自由振动的运动方程。假定=AE 常数。 解: ) ()()(),(t u L x t u x t x u = =ψ 由虚功原理,有: 0W V W =+-惯非保守δδδ ① 其中非保守力为端部集中力)(t P ,惯性力包括顶部质量M 和均匀杆的所受的惯性力,计算如下:

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

最新结构力学2课后概念题答案(龙驭球)

1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程 数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和 动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等 效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用 相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广 义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。 综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似, 有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量

结构动力学_克拉夫(第二版)课后习题

例题E2-1 如图E2-1所示,一个单层建筑理想化为刚性大梁支承在无重的柱子上。为了计算此结构的动力特性,对这个体系进行了自由振动试验。试验中用液压千斤顶在体系的顶部(也即刚性大梁处)使其产生侧向位移,然后突然释放使结构产生振动。在千斤顶工作时观察到,为了使大梁产生0.20in[0.508cm]位移需要施加20 kips[9 072 kgf]。在产生初位移后突然释放,第一个往复摆动的最大位移仅为0.16 in[0. 406 cm],而位移循环的周期为1.4 s。 从这些数据可以确定以下一些动力特性:(1)大梁的有效重量;(2)无阻尼振动频率;(3)阻尼特性;(4)六周后的振幅。 2- 1图E2-1所示建筑物的重量W为200 kips,从位移为1.2 in(t=0时)处突然释放,使其产生自由振动。如果t=0. 64 s时往复摆动的最大位移为0.86 in,试求 (a)侧移刚度k;(b)阻尼比ξ;(c)阻尼系数c。

2-2 假设图2- la 所示结构的质量和刚度为:m= kips ·s 2/in ,k=40 kips/in 。如果体系在初始条件 in 7.0)0(=υ、in/s 6.5)0(=υ&时产生自由振动,试求t=1.0s 时的位移及速度。假设:(a) c=0(无阻 尼体系); (b) c=2.8 kips ·s/in 。 2-3 假设图2- 1a 所示结构的质量和刚度为:m=5 kips ·s 2/in ,k= 20 kips/in ,且不考虑阻尼。如果初始条件in 8.1)0(=υ,而t=1.2 s 时的位移仍然为1.8 in ,试求:(a) t=2.4 s 时的位移; (b)自由振动的振幅ρ。

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

全国自考结构力学(二)真题及答案 2

第1页 全国2010年4月高等教育自学考试 结构力学(二)试题及其答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.图示结构,K 截面弯矩值为(内侧受拉为正)( ) A .0 B .41F P l C . 2 1F P l D .F P l 2.三铰拱在图示荷载作用下,合理轴线为( ) A .二次抛物线 B .圆弧线 C .折线 D .悬链线 3.用矩阵位移法求解图示结构时,结构荷载矩阵中元素P 1=( ) A .55kN ·m B .15kN ·m C .-15kN ·m D .-55kN ·m 4.图示桁架中1杆的轴力等于( ) A .0 B .2P F C . 2 2F P D .F P 5.用位移法计算图示结构(EI =常数)时,基本未知量的个数最少为( ) A .9 B .8 C .7 D .6 6.在线弹性体系的四个互等定理中,最基本的是( ) A .位移互等定理 B .反力互等定理

第2页 C .位移反力互等定理 D .虚功互等定理 7.图示结构中,BD 杆B 端截面弯矩值为( ) A .0.3M B .0.4M C .0.5M D .0.6M 8.F P =1在图示梁AE 上移动,K 截面弯矩影响线上竖标等于零的部分为( ) A .DE 、AB 段 B .CD 、DE 段 C .AB 、BC 段 D .BC 、CD 段 9.图示结构,各杆EI 、EA 为常数,结构刚度矩阵元素K 33等于( ) A .l EI B . l EI 2 C .l EI 4 D .l EI 8 10.图示结构的自振频率=ω( ) A . 3 12ml EI B . 3 6ml EI C . 3 3ml EI D . 3 ml EI 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 11.图示桁架中1杆的轴力为__________。 12.支座位移引起的位移计算公式i i C R ·∑- =?中i R 为__________。 13.图示梁B 截面的转角为__________。 14.图示结构,A 支座反力F Ay 的影响线 方程为__________。 15.当远端为定向支座时,弯矩传递系数 为__________。 16.根据__________定理,结构刚度矩阵为对称矩阵。 17.图(b )为图(a )所示梁B 支座反力影响线,其竖标y C =__________。

结构动力学习题资料

结构动力学习题 2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。 题2.1图 2.2 建立题 2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。

题2.2图 2.3 试建立题 2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。 题2.3图 2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,

见题 2.4图。设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。弹簧k2的自由长度为b。 题2.4图 2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。

题2.5图 2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。

结构动力学习题解答(三四章)

第三章 多自由度系统 试求图3-10所示系统在平衡位置附近作微振动的振动方程。 图3-10 解:(1)系统自由度、广义坐标 图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程 根据牛顿第二定律,建立系统运动微分方程如下: ;)(;)()(;)(3 4233332625323122222121111x K x x K x m x K x K x x K x x K x m x x K x K x m ---=------=---=&&&&&& 整理如下 ; 0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K x m x K x K K K K x K x m x K x K K x m &&&&&& 写成矩阵形式 ;000)(0)(0) (0 0000321433365322221321321 ?? ????????=????????????????????+--+++--++????????????????????x x x K K K K K K K K K K K K x x x m m m &&&&&&(1) (3)系统特征方程 设)sin(,)sin(,)sin(332211?ω?ω?ω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程 ;000)(0)(0)(321234333 2 26532222121?? ????????=????????????????????-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2) (4)系统频率方程 系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即 ;0) (0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K 展开得系统频率方程

结构动力学习题解答.docx

第一章单自由度系统 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒 定理法。 1、牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:( 1)对系统进行受力分析, 得到系统所受的合力; ( 2)利用牛顿第二定律m x F ,得到系统的运动微分方程; ( 3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:( 1)对系统进行受力分析和动量距分析; ( 2)利用动量距定理J M ,得到系统的运动微分方程; (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:( 1)设系统的广义坐标为,写出系统对于坐标的动能T和势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程( L )L =0,得到系统的运动微分方程; dt (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:( 1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能 U 的表达式;进一步写出机械能守恒定理的表达式T+U=Const (2)将能量守恒定理T+U=Const对时间求导得零,即d(T U ) 0 ,进一步得到系 dt 统的运动微分方程; (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:( 1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值 A i、 A i 1。 (2)由对数衰减率定义ln( A i) ,进一步推导有 A i1 2 , 2 1

工程力学结构动力学复习题

工程力学结构动力学复习题

工程力学结构动力学复习题 一、简答题 1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段? 2、何谓结构的振动自由度?它与机动分析中的自由度有何异同? 3、何谓动力系数?简谐荷载下动力系数与哪些因素有关? 4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么? 5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们? 6、简述振型分解法是如何将耦联的运动方程解耦的. 7、时域法求解与频域法求解振动问题各有何特点? 8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样? 答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应 之比值。简谐荷载下的动力放大系数与频率比、

阻尼比有关。当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。原因是:当把动荷载换成作用于质量 的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。 9、振型正交性的物理意义是什么?振型正交性有何应用? 答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。 由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会 转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振 型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。 一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计 算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。 10、什么是阻尼、阻尼力,产生阻尼的原因一般

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

13结构动力学习题

1.1 不计轴向变形,图示体系的振动自由度为2。 1.2 不计轴向变形,图示体系的振动自由度为1。 1.3 不计轴向变形,图示体系的振动自由度为2。 1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。 1.5 单自由度体系,考虑阻尼时,频率变小。 1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。 1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。 1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。 1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。 1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。 二、单项选择题 2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是 A 质量的重力所引起的静位移 B 动荷载的幅值所引起的静位移 C 动荷载引起的动位移 D 质量的重力和动荷载复制所引起的静位移 2.2 无阻尼单自由度体系的自由振动方程:。则质点的振幅y max= 2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是 2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是

2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是 2.6 已知两个自由度体系的质量矩阵为,Y22等于 A -0.5 B 0. 5 C 1 D -0.25 2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为 2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是 2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是 A ω越大β也越大 B θ越大β也越大 C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大 2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是

结构力学(二)习题和答案

一、单项选择题(15分,共 5 题,每小题 3 分) 1. 图示结构,要使结点B产生单位转角,则在结点B需施加外力偶为 A. 13i B. 5i C. 10i D. 8i 2. 图示各结构中,除特殊注明者外,各杆件EI=常数。其中不能直接用力矩分配法计算的结构是:() A. B. C.

D. 3. 图示两个结构的关系是()。 A. 内力相同,变形也相同 B. 内力相同,变形不相同 C. 内力不相同,变形相同 D. 内力不相同,变形不相同 4. 图示刚架中杆长l,EI相同,A点的水平位移为:() l2/3EI(→) A. 2M B. M l2/3EI(→) C. 2M l2/3EI(←) D. M l2/3EI(←)

5. 图示结构M 的值为() CB A. 0.5 FL B. FL C. 1.5 FL D. 2 FL 二、判断题(30分,共 10 题,每小题 3 分) 1. 图示结构横梁无弯曲变形,故其上无弯矩() 2. 静定结构的支反力一定可以只凭平衡方程求解得到() 3. 在荷载作用下,超静定结构的内力与EI的绝对值大小有关。() 4. 力法方程的物理意义是表示变形条件。() 5. 计算超静定结构位移时,单位力只能加在原超静定结构上。() 6. 位移法仅适用于解超静定结构,不适用于解静定结构。() 7. 图示梁AB在所示荷载作用下的M图面积为:gl3/3 8. 单独使用力矩分配法,只能解算连续梁及无侧移刚架。() 9. 功的互等定理仅适用于线性弹性体系,不适用于非线性非弹性体系() 10. 对于某结构,在1、2截面分别作用P1与P2,当P1=1,P2=0,时,1点的挠度为a1,2点挠度为a2。当P1=0,P2=1,时,则1点的挠度为 (a1+a2)。() 三、填空题(30分,共 10 题,每小题 3 分) 1. 位移法方程中的系数是由______互等定理得到的结果。

结构力学2 试卷及答案D

专业年级结构力学(二) 试题考试类型:开卷试卷类型:D卷考试时量:120分钟 一、填空题:(15分,共3题) 1、图1示结构的原始刚度矩阵 是______________________________________________。(5分) 2、图2示等截面梁,截面的极限弯矩为2Mu,则结构的极限荷载Pu为_____________。(4分) 3、悬臂结构和简支结构的各振型所具有的共同特性:(1)第一主振型___________不动点,(2)第n主振型,具有个___________不动点,两不同振型之间具有___________性。(6分) 二、简答题:(15分,每题5分,共3题) 1、什么是塑性铰,其与普通铰的区别是什么? 2、第一类失稳的特征、第二类失稳的特征分别是什么? 题号一二三四总分统分人 得分 阅卷人 复查人 图1 图2

3、剪力分配法中,若荷载不是作用在柱顶,而是作用在竖柱上应如何处理? 三、计算题:(40分,每题20分,共2题) 1、用力矩分配法计算图3示结构,做出弯矩图。(20分) 图3

2、一简支梁(I28b ),惯性矩I =7480cm4,截面系数W =534cm 3,E =2.1×104kN/cm 2。 在跨度中点有电动机重量Q =35kN ,转速n =500r/min 。由于具有偏心,转动时产生离心力P =10kN ,P 的竖向分量为P sin θt 。忽略梁的质量,试求强迫振动的动力系数和最大挠度和最大正应力。(梁长l =4m )(简支梁跨中最大挠度为 )(20分) EI Pl 483max = ?

四、综合题:( 30分,共1题) 1、图4所示刚架各杆E 、I 、A 相同,且2 1000l I A ,试用矩阵位移法求其内力。(提示:为计算方便,可暂设E=I=l =q=1,待求出结点线位移、角位移、杆端轴力、剪力、弯矩后, 再分别乘上EI ql 4、EI ql 3、ql 、2 ql 即可。) 图4

结构动力学习题解答

第一章 单自由度系统 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学硕答案

结构动力学硕答案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

《结构动力学》试题(硕) 一、 名词解释:(每题3分,共15分) 约束 动力系数 广义力 虚功原理 达朗贝原理 二、简答:(每题5分,共20分) 1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关? 2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么? 3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是 什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m φφ=,0T m n k φφ= (式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。 利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。 由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。若体系为非线性,可采用逐步积分法进行反应分析。 4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在? 答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。 静力自由度是指确定体系在空间中的位置所需的独立参数的数目。前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。 三、 计算(每题13分,共65分) 1. 图1所示两质点动力体系,用D ’Alembert 原理求运动方程。 图1 2. 图2所示,一长为l ,弯曲刚度为EI 的悬臂梁自由端有一质量为m 的小 球,小球又被支承在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。 图2 3.图3所示,一重mg 的圆柱体,其半径为r ,在一半径为R 的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。 图3 4.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。 初始条件 y(0)={0.060.050.04}m y (0)= {0.0 0.30.0 }m/s 图4

结构动力学习题解答一二章

2 2 1 第一章单自由度系统 1、1总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有 :牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守 恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1)对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律 mx F ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根 ,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1)对系统进行受力分析与动量距分析 ; (2)利用动量距定理J M ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根 ,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为 ,写出系统对于坐标 的动能T 与势能U 的表达式;进一 步写求出拉格朗日函数的表达式 :L=T-U ; (2) 由格朗日方程 (丄) 丄=0,得到系统的运动微分方程; dt (3) 求解该方程所对应的特征方程的特征根 ,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能 T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2) 将能量守恒定理 T+U=Co nst 对时间求导得零,即吨 ? 0,进一步得到系统 dt 的运动微分方程; (3) 求解该方程所对应的特征方程的特征根 ,得到该系统的固有频率。 1、2叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个 :衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线 ,并测得周期与相邻波峰与波谷的

结构动力学习题解答(一二章)

结构动力学习题解答(一二章)

第一章单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1)对系统进行受力分析,得到系统所受的合力; (2)利用牛顿第二定律∑ x m&&,得到 =F 系统的运动微分方程; (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。解题步骤:(1)对系统进行受力分析和动量距分析; (2)利用动量距定理J∑ θ&&,得到系 =M 统的运动微分方程; (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1 +i A 。 (2)由对数衰减率定义 )ln(1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= , 因为ζ较小, 所以有 π δ ζ2= 。 方法二:共振法求单自由度系统的阻尼比。 (1)通过实验,绘出系统的幅频曲线, 如下图:

单自由度系统的幅频曲线 (2)分析以上幅频曲线图,得到: 4/22/max 2,1ζββ==; 于是 2 21)21(n ωζω-=; 进一步 222)21(n ωζω+=; 最后 ()n n ωωωωωζ2/2/12?=-=; 1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。 用正选弦激励求单自由度系统阻尼比的方法有两个:幅频(相频)曲线法和功率法。 方法一:幅频(相频)曲线法

结构力学(2)习题库

15 结构的动力计算判断题 体系的振动自由度等于集中质量数。() 图示体系具有1个振动自由度。() 图示体系具有2个振动自由度。() 图示体系具有3个振动自由度。()

图示体系具有2个振动自由度。() 图示体系具有2个振动自由度。() 结构的自振频率除与体系的质量分布状况、杆件刚度有关外,还与干扰力有关。()自由振动是指不受外界干扰力作用的振动。() 自由振动是由初位移和初速度引起的,缺一不可。()

有阻尼单自由度体系的阻尼比越大,自振频率越小。() 临界阻尼现象是指起振后振动次数很少且振幅很快衰减为零的振动。()惯性力并不是实际加在运动质量上的力。() 计算一个结构的自振周期时,考虑阻尼比不考虑所得的结果要大。()临界阻尼振动时质点缓慢地回到平衡位置且不过平衡点。() 阻尼力总是与质点加速的方向相反。()

在某些情形下建立振动微分方程式时,不考虑重力的影响是因为重力为恒力。() 图示结构的自振频率为ω,在干扰力P(t)=P sinθt作用下,不管频率θ怎样改变,动位移y(t)的方向总是和P(t)的方向相同。() 计算图示振动体系的最大动内力和动位移时可以采用同一个动力系数。() 不论干扰力是否直接作用在单自由度体系的质量m上,都可用同一个动力系数计算任一点的最大动位移。() 单自由度体系受迫振动的最大动位移的计算公式y max=μy j中,y j是质量m的重量所引起的静位移。

() 多自由度体系作自由振动,一般包括所有的振型,不可能出现仅含某一主振型的振动。()解得图(a)所示两个自由度体系的两个主振型为图(b)和图(c),此解答是正确的。() 图(a)与图(b)所示梁的自由振动频率ωA、ωB相比,ωA>ωB。() 填空题 动力荷载是指_____________________荷载。

相关文档
相关文档 最新文档