文档库 最新最全的文档下载
当前位置:文档库 › 公交车调度方案的优化模型

公交车调度方案的优化模型

公交车调度方案的优化模型
公交车调度方案的优化模型

第三篇公交车调度方案的优化模型

2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对

于完善城市交通环境、改进市民出行状况、提高公交公司的经济

和社会效益,都具有重要意义。下面考虑一条公交线路上公交车

的调度问题,其数据来自我国一座特大城市某条公交线路的客流

调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1

给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题

的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型*

摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。

关键词:公交调度;模糊优化法;层次分析;满意度

3.1 问题的重述

3.1.1 问题的基本背景

公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。

3.1.2 运营及调度要求

⑴公交线路上行方向共14站,下行方向共13站;

⑵公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%;

⑶乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。

3.1.3 要求的具体问题

⑴试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等;

⑵如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法;

⑶据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。

3.2 问题的分析

本问题的难点是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆数的次数,运用统计方法同样可以方便地给出它的最佳调度方案,显然这两种方案是对立的。于是我们将此题分成两个方面,分别考虑到:⑴公交公司的经济效益,记为公司的满意度;⑵乘客的等待时间和乘车的舒适度,记为乘客的满意度。

显然公交公司的满意度取决于每一趟车的满载率,且满载率越高,公交公司的满意度越高;乘客的满意度取决于乘客等待的时间和乘车的舒适度,而乘客等待时间取决于车辆的班次,班次越多等待时间越少,满意度越高;乘客的舒适度取决于是否超载,超载人数越少,乘客越满意。很明显可以知道公交公司的满意度与乘客的满意度相互矛盾,所以我们需要在这两个因素中找出一个合理的匹配关系,使得双方的满意度达到最好。

3.3 模型的假设

⑴道路:交通情况、路面状况良好,无交通堵塞和车辆损坏等意外情况;

⑵公交车:发车间隔取整分钟,行进中彼此赶不上且不超车,到达终点站后调头变为始发车;

⑶乘客:在每时段内到达车站的人数可看作是负指数分布,乘客乘车是按照排队的先后有序原则乘车,且不用在两辆车的间隔内等待太久;

⑷数据:“人数统计表”中的数据来源准确、可信、稳定、科学;

⑸票价:乘车票价为定值,不因乘车远近而改变。

3.4 定义与符号说明

序号符号意义

1

a上或下行第j时段第k站上车人数;

ijk

2

b上或下行第j时段第k站下车人数;

ijk

3

l上或下行第j时段最大客容量;

ij

4

k上或下行时第j时段平均载客量;

ij

5 C日所需总车次;

6

c上或下行第j时段的车次;

ij

7

s上或下行第j时段平均发车时差;

ij

8

p上或下行第j时段平均载客量;

ij

9

t上或下行的平均发车时间间隔;

ij

10

m上或下行时公交公司日平均满意度;

gi

11

m上或下行时乘客整体日平均满意度;

ci

12

m上或下行时公交公司各时段的满意度;

gij

13

m上或下行时乘客各时段的满意度;

ci

*本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

14 Q

日所需车辆数。

注:1=i (表示上行运动(14,,3,2,1 =k ),2=i 表示下行运动(13,,3,2,1 =k ),18,3,2,1 ,=j 。

3.5 模型的建立与求解

3.5.1 模型Ⅰ:相关量及车辆数的确定模型

对问题1为设计便于操作的公交车调度方案,根据表3-1给出的一个工作日两个运营方向各个站上下车的乘客数量统计,假设各时段车辆平均足够载完在相等时间内到达的乘客,乘客也只能乘坐该路车而没有太大的不满,我们要设计两个起点站的发车时刻表,计算需要的车辆数,首先可建立以下各模型来求相关量。

⑴相关量

①上下行各时间段内最大客容量:建立模型如下

{}{}

???

???

?

==-==-=∑∑==13

,2,12m ax 14

,2,11m ax 11 ,,n i b a

m i b a l n

k ijk

ijk

m

k ijk ijk

ij

运用模型和表3-1中的上下车乘客数,算出上下行各时间段内最大客容量如下:

图3-1 (1)上行各时间段内最大客容量 图3-1 (2)下行各时间段内最大客容量

②车次数:因为座位数为100的客车满载率在50%和120%之间,即12050≤≤ij k ,在满足客车满载率和载完各时段所有乘客前提下,由模型:

∑∑

===

2

1

181i j ij c C ,??????

???∈?+??????=+

+

Z l l Z l l c ij ij

ij ij ij 120

120

1201120(其中Z +是正整数)

可计算每个时段的详细车次数如下:

上行:6,25,42,23,13,10,12,10,9,8,8,18,24,8,4,4,3,4 下行:3,9,23,27,16,10,9,7,8,9,11,19,31,21,10,7,7,4

求和可得出全工作日可行的最少车次总数:462231231=+=C 。

③安排发车时间间隔:用每个时段60分钟除以车次数,即:ij ij c s /60=,经计算可得出该时段平均发车时间间隔依次如下:

上行:10,2.4,1.4,2.6,4.6,6,5,6,6.7,7.5,7.5,3.3,2.5,7.5,15,15,20,20;

下行:20,6.7,2.6,2.2,3.8,6,6.7,8.6,7.5,6.7,5.5,3.1,1.9,2.8,6,8.6,20。

由ij s 的值有分数出现,而现实中列车、客车等时刻表的最小单位为分钟,故间隔应取整数。当

ij s 取整数时,可直接安排等时间发车ij c 次。当某个ij s 取小数时,不妨设][ij s F 和][ij s C 是与ij s 相邻的两个连续整数且][][ij ij ij s C s s F ≤≤,由模型:

)18,,2,1;2,1(60][][ ==?????=+=?+?j i c n m s C n s F m ij

ij ij ij ij ij ij

可求出以][ij s F 为间隔的班次ij m 和以][ij s C 为间隔的班次ij n ,再分别以发车间隔;为][ij s F 和

][ij s C ,兼顾发车密度,将此时间段进行适当划分。

将上述各ij c 与ij s 值代入方程组,可相应地求出具体的发车间隔的次数ij ij n m ,,考虑到公交车调度方案的可操作性和公交公司的利益所在,在同时段线路上的车辆不宜过多,我们对结果进行了分析比较,将相邻时间段内发车间隔相等的班次尽量安排在一起,并且对高峰时期发车的先后顺序作了调整,得出了全天(一个工作日)内的公交车调度方案,见表3-5。

⑵日所需车辆数

由汽车平均速度20千米/小时和A0-A13的距离61.14千米、A13-A0的距离58.14千米,可求得车辆从起点站到终点站的时间约为44分钟;又由假设可知车辆到达终点站后立即调头往回开且不跑空车,由于早高峰乘客数最多,故此时车辆实际占用数也应是当日的上限,考虑到8:00之前从A13发出的车次每个时段都多于A0发出的车次,且最大逆差数为

3819163)(3

1

21=++=-∑=i j j

c c

即从A13多发出38辆车;8:00到9:00虽然从A0发来的车辆多于从A13发出的车辆,但从8:00到8:44仍要从A13发出的15辆车,由假设恰在8:44时对方开来的车辆到站并调头再结合动态车辆有8辆赶不上时差。故早高峰车辆实际占用为61辆,也即当天共需开动的车辆最少为61辆。

3.5.2 模型Ⅱ 最小车次数线性规划模型

问题明显可看作是一个排队随机服务系统,我们把汽车看作是“顾客”,将各个车站看作是“服务台”,则此公交系统可看作是一个顾客不消失的、单通道多级服务台串联的排队系统。因此,这里所遇到的,主要是排队问题。归纳起来,需要考虑三种活动:①首站发车活动:根据发车时刻表确定;②到达中途站活动:在中途站主要考虑和计算上下车人数、车上的总人数和上下车时间;③到达终点站调头活动:在终点站根据发车时刻表确定。

我们先考上行时乘客在站的逗留时间,即乘客在k A 1站的等待时间,它包括相邻两趟车到达k

A 1站的时间间隔jk q 1即发车间隔和乘客上下车的服务时间jk p 1。因为假设每个乘客上车时间和下车时间不计,即jk p 1=0。可以得出:

i jk c q /601=,jk jk p s 1=

故此问题可以转化为满足下列条件下的公交公司全天的总利益取最大的规划问题:①乘客等待时间在一般时间段不超过10分钟;②早高峰时间段不超过5分钟;③各个时间段内的最大满载率不超过120%;④各个时间段内的最小满载率不超过50%。

公交公司全天的总利益为全天所有车辆运行公里数最小,因为线路长度一定,只要考虑站车次即可得出目标函数:

∑==

18

1

1m in i j

c

z

???

???

???????∈≤??≥??>=≤≤≤≤+Z

c c M c m j j c j c t s j j j j j j

j 11111%120%100100%50%100100)4,1(1060

)42(560

..,

利用模I 中的数据,我们可以求出各个时间段内的发车次数和间隔,因为此解法是在满足乘客的情况下求的最小解,所以乘客等待时间的满意度为100%,但是从舒适度考虑,上下行分别有11和9人不满意,所以乘客总满意度为86.1%,公交公司满意度为(109+111)/240×100%=91.7%,按模型Ⅰ方法考虑,此时结果为最少车辆数50辆,最少运行474车次。 3.5.2 模型Ⅲ 满意度分析模型

⑴前期工作准备工作 ①满意度的层次分析

据问题分析,我们在设计两个起点站的发车时刻表时,应着重考虑到此时刻表带给公交公司和乘客两者的利益,即公交公司和乘客对应的日平均满意度gi m 与ci m ,各时段的满意度gij m 和cij m 。为此,我们采用层次分析法来讨论影响总体性能的两个相关因素。

在乘客源一定的情况下,影响gij m 的最主要因素是车上的载客量j k ,一般情况12050≤≤j k 。在多个站点位置固定的条件下,影响cij m 的最主要因素是乘客的等车时间ij t 与车上的平均载客量

ij p 。设citj m ,ciwj m 分别是各时段乘客因等车时间ij t 与ij p 的影响而产生的满意度,则cij m 即可表示为:cij m =A ),{ciwj citj m m ,其中A 是关于因素ij t ,ij p 的权重集。

考虑到,对于乘客,citj m ,ciwj m 对cij m 的影响是不相等的。上下车的乘客都在动态的变化着,但对车辆而言,车辆的满载率达120%时,最大超载的20%由于缺少座位,而注重舒适度的影响,而无暇过分顾及等待时间的影响;而100%的乘客因为有座,而无需过分考虑舒适,更多的是考虑等车时间的影响。

又设???

?

??=wi ti a a A ,其中,ti a 、wi a 分别是因素ij t 、ij p 的重要程度,用层次分析中成对比较法,可

知:

520

20120=-=wi ti a a ,同时,A 应满足归一性和非负性条件,即:,1=+wi ti a a 0,≥wi ti a a 。可

解得65=

ti a ,61

=wi a ,因此ciwj citj cwij

citj wi ti cij m m m m a a m 6165),(+=???

? ??= ②模糊优化设计

模糊优化设计问题的一般模型是

)

(m in x f c

x ≈

其中)(x f 是关于x 是n 维设计变量的目标函数;C 是包括各种约束的模糊约束集,即

},,,)(;1,,2,1,)(,|{~

~

~

1

1

~

p m v b x g m v b x g R x x c C l

v v u v v n p

e j p

e

=≥-=≤∈==== 其中u v b 和l

v b 分别是第v 约束的容许上下限。

在求模糊目标优化设计问题时,必须确定出目标函数:n R x x f ∈),(的模糊优化解集的上确界M 和下确界m ,即

)(m in ))1(()(sup 1

*x f x f x f M c x r x n

∈∈===;)(m in ))0(()(inf 0

*x f x f x f m c x r

x n ∈∈===

其中λ是模糊约束集~

j c 的模糊子集,即10≤≤λ。

⑵模型的正式建立与求解

①先考虑上行问题:(此时,1=i )

注意到模型Ⅰ,是最大限度的减少了车次,即增大车上的平均载客量,故此刻,公交公司的满意度达到最大。把等车的乘客看作是一个整体,因为车次最少,故乘客的平均等车时间和超载量达到最大,此刻乘客的满意度可能达最小。

取各个时段的平均载客量j k 的满意度j λ的平均数,为公交公司日载客量的平均满意度1g m 。 不妨设120→j k ,则 =s

g1j j 1

1m s =∑λ,而j j k 120=λ(e s ,,3,2,1 =)且18≤e

通过模型一表中数据的分析,可得日平均载客量115181

18

1

1==

∑=j j

ij p

p ,日平均发车时差

∑===

18

1

1235.718

1j j

ij s

s ,日平均载客量的标准差75.411=j σ,日平均发车时差的标准差147.52=ij σ。

根据σ3检验法,可发现模型一中1918=k 时,不满足,故可看作是奇异值不予以一起考虑。

可求得j λ的直方图见图3-2。

此刻,可求得公交公司的日平均满意度可达9476.017

1

17

1

1==

∑=j j

g m λ

我们可以把tj c m 1,wj c m 1满意度函数看作是常见的降半梯形分布

?????≥<<-≤=10

105510511t t t t m tj

c (3-1)

?

????≥<<-≤=1200

1201002012010011w w w w m wj

c

(3-2)

对于乘客,ct m ,cw m 对ci m 的影响是不相等的。用成对比较法,当在早高峰时,上下车的乘客都在动态的变化着。但对车辆而言,车辆的满载率达120%时,最大超载的20%由于缺少座位,而注重舒适度的影响,而无暇过分顾及等待时间的影响;而100%的乘客因为有座,而无需过分考虑舒适,更多的是考虑等车时间的影响,故

ct cw ct cw ci m m m m m 6

56112010012020+=+=

(3-3)

用图象表示为图3-3。

利用公式(3-1)—(3-3),可分别求得各个时段的ci m )16,,321

( ,,=i ,直方图如图3-4所示。

78382.017

117

1

==

∑=i ci

c m

m

当车辆平均满载率最大限度地接近于50%时,所需的车次最多,公交公司的满意度达到最小。相应的,起始站的平均发车时间间隔最短,即乘客的平均等待时间达到最小,故此时乘客的满意度达最大。

同理设50→j k ,第18位数据718=k 看作是特殊值。则4324.0171

17

1

1==

∑=j j

g m λ

,此刻,

0.117

117

1

11==

∑=j j

c c m

m 。可计算各时段车次与平均发车时间间隔:

j C 1:14, 51,100,54,30,23,27,24,20,17,17,42,54,17,9,8,8,5,6;

ij t :4.3,1.2,0.6,1.1,2,2.6,2.2,2.5,3,3.5,3.5,1.4,1.1,3.5,6.7,7.5,12,10。

因此,对于上行方向,公交公司的满意度一般在9476.04324.01≤≤g m 。乘客的满意度能满足17838.01≤≤c m 。根据(0.4324,1)和(0.9476,0.7838),我们可利用插值函数画出其曲线的大

致走向,如图3-5。

图3-5 用二次函数拟合曲线为函数)(1g m f :

2

111897.091114.07737.0g g c m m m -+= 9588.04324.01≤≤

g m 本题要求能最大限度地照顾到乘客和公交公司双方的利益,这就要求11g c m m R +=能尽可能取大,令 11g c m v m ?=。

通过对拟合曲线的分析,可知当平行线11g c m m R +=与)(1g m f 相切时,如图3-6。

此刻,v=1,即:11g c m m =。解得上行行驶时乘客和公交公司双方的匹配问题的最优满意度为:

11g c m m ==0.8805。可计算这种情形下,各时段车次与平均发车时间间隔:

j C 1: 6,25,42,23,13,10,12,10,10,10,10,18,24,10,6,6,4,3

ij t :10,2.4,1.4,2.6,4.6,6,5,6,6,6,6,3.3,2.5,6,12,15,15,20

②下行问题:此时,2=i

同理,可求得公交公司的满意度为:948.04309.02≤≤g m ,乘客的满意度能满足:18363.02≤≤c m ,根据(0.4309,1)和(0.948,0.8227),我们可利用插值函数画出其曲线的大致

走向,如图3-7。

图3-7

用二次函数拟合曲线为函数)(2g m f :

2

222897.091114.07737.0g g c m m m -+= 948.04309.02≤≤g m 。

同理,求得下行行驶时的模糊最优满意度为:8808.022==g c m m

故可求得公交公司和乘客的日最优满意度是(0.8807,0.8807),

运用逆向思维,根据日最优满意度,可找出最优的调度方案,此刻各时段车次j C 2与平均发车时间间隔j t 2为:

j C 2: 3, 9,23,27,16,10,12,10,10,9,11, 19,31,21,12,8,8,3

j t 2:20,6.7,2.6,2.2,3.8,6,5, 6,6,6.7,5.5,3.1,1.9,2.8,5,7.5,7.5,20

3.6 对问题3的建议

二十一世纪是信息时代,随着高新科技的迅猛发展,人们对信息和数据的采集也呈现为自动化和多媒体等现代化手段的运用。现代化手段具有快捷、准确、详细、客观等显著特征。建议采集运营数据的条件和方法如下:

就目前大城市公交车接待乘客的方式为“前门进中门出”特征。公交公司可运用在前后门安装两个具备多媒体功能的自动记录机,一方面,对上下车乘客数逐站作详细的记录,另一方面对加入报时间信息在内自动报站机作站名、方向和日期等作录音结合处理,给出准确的各项数据,返站后结合日期储存到公司总调度室,分别以日、月、季节等作统计分析。这对目前城市人员呈增长发展,新型的地铁、轻轨电车的出现、快客的发展等随机因素的干扰,乘客量和成本的变动规律的复杂性。这种现代化手段明显比以往的发收卡片的方法更具有接近时代的优越性,也加快捷地掌握规律,

按此种方案采集数据就必然会得到第一手资料,使模型设计更加符合实际。

3.7 模型进一步分析

3.7.1 稳定性分析

一个好的模型不能因初始数据的微小误差而导致结果的较大改变。我们对最大满载率及乘客在一般时期内的等待时间做随机的微小波动,分别对模型Ⅰ、模型Ⅱ和模型Ⅲ加以检验,从检验的结果可以得出三个模型的稳定性比较好,其中模型Ⅰ和模型Ⅱ结果波动范围接近且稍大于模型Ⅲ的波动范围,因此我们认为模型Ⅲ是相对来说最优化模型。

c ij:6,30,30,30,20,12,12,12,10,10,10,20,15,10,6,6,4,3;

t ij:10,2,2,2,3,5,5,5,6,6,6,3,4,6,10,10,15,20。

总次数514次,车辆为41次,满意度分别为(0.7828,0.9373) 。

3.7.2实时性分析

由于本题可以推广为一个实时控制问题,故需要一套响应极快的实时控制系统,把现实中出现的各种随机意外情况通过控制系统传输到公交车上,使得调度员和司机对各种情况作出及时的调整。从而提高公共交通的可靠性和安全性,改善公司服务水平和提高乘客的舒适度以及公交公司的经济、社会效益。

3.8 模型的评价与推广

3.8.1 优缺点

⑴普适性强:此模型Ⅲ对任意客流调查和运营资料都可以给出较优的调度方案。

⑵考虑全面:模型不仅解出较优的调度方案,且给出了该方案照顾到乘客和公交公司双方利益的灵敏度。

⑶稳定性好:该模型较稳定,不随某一控制量的微小变化而导致方案的较大改变。

⑷易操作:一方面公交公司的时刻表比较合理可行,另一方面驾驶员能容易记住自己的上班时间,以避免时间表混乱而引起误车现象。

⑸不足之处:用光滑曲线拟合的方法无法模拟真实的客流量曲线。

3.8.2模型推广

根据前面的模型所建立的运输系统可以很好的解决公交线上公交车的调度问题。然而,在建模过程中,简化了许多因素,因而与实际问题有偏差,因此,要想建立更好的调度方案,可以对一条实际运营的公共汽车线路的运行过程进行计算机模拟,将调查得到的实际数据输入计算机程序,便可以得出更优的调度方案。

参考文献

[1]车克健等.在公共交通管理中应用计算机模拟的初步探讨[J].系统工程理论与实践.1982.第2期:13-18.

[2]贺仲雄.模糊数学及其应用[M]. 天津:天津科技出版社.1983.1.

[3]张韵华.Mathematica符号计算系统实用教程[M].合肥:科技大学出版社.1998.9.

[4]白其峥.数学建模案例分析[M].北京:海洋出版社.2000.1.

[5]寿纪麟.数学建模——方法与范例[M].西安:西安交通大学出版社.1993.12.

[6]刘余善,谷宝贵主编.实用管理系统工程[M].杭州:浙江人民出版社.1983.7.

[7]胡运权.运筹学基础及其应用[M].哈尔滨:哈尔滨工业大学出版社.1997.4.

附表

论文特色

◆特色之一:摘要以总分方式处理,综述简洁,分述清楚,是篇短小精悍的好摘要。

◆特色之二:问题的重述将原始杂乱无章的问题梳理分成基本背景、运营及调度要求、具体问题三个方面,条理清晰,让人一目了然,同时也有利于把握问题的本质。

◆特色之三:问题的分析将公交调度问题理解为“兼顾公司和乘客双方满意度,寻找一个合理匹配”给出最优调度方案,处理地准确、科学、合理。

◆特色之四:分别对道路、公交车、乘客、数据、票价等五个要素进行假设,恰当特别。

◆特色之五:提出一定量的相关量模型,并将模型、结果、图表相结合,建模味很浓。

◆特色之六:将模糊数学、层次分析法、线性规划三种方法结合显示高超的建模技巧。

◆特色之七:对问题3的建议有超前性,在当年起到时尚、领先、典范的标杆作用。

◆特色之八:对模型还做出了稳定性和实时性分析,并做出了合理的评价和推广。

不足之处

缺少具体建模思路流程及算法流程图,没有做出误差分析及灵敏度分析。

优点:相关量及车辆、时间确定模型,从实际出发综合考虑;

将层次分析法与模糊综合评价方法相结合,对顾客满意度和公交公司的满意度综合评价,在当时建模经验相对不足的环境下是很难得可贵的;

不足之处:一般问题的模型没有归纳好。

优化调度的数学模型

1)目标函数 假设系统可运行的机组数为n,总负荷为d P,以电厂内所有机组的总煤耗量最小为目标,建立如下的数学模型: 其中:——机组序号; ——第i台机组的煤耗量; ——n 台机组的总煤耗; ——第i台机组的负荷; ——第i台机组的煤耗量与负荷的函数关系。 2)约束条件 约束条件包括功率平衡约束和机组出力约束。 (1)功率平衡约束: (2)机组出力约束: 其中:——n台机组的总负荷; ——第i台机组的负荷下限和负荷上限。

假设系统可运行的机组数为,总负荷为,以调度周期为一昼夜来考虑,分为h个时段。 1)目标函数 机组优化组合的目标函数如下: 式中——机组序号; ——n 台机组的总煤耗; ——机组i运行状态的变量,仅取0、1 两个值,表示停机,表示运行。 ——第i台机组在t时刻的负荷; ——第i台机组在t时刻的煤耗量与负荷的函数关系; ——机组的启动耗量。 2)约束条件 考虑机组运行的实际情况,本文确定的机组约束条件包括功率平衡约束、机组出力约束、最小停机时间约束、最小运行时间约束以及功率响应速度约束。 (1)功率平衡约束: 式中——机组序号; ——第i台机组在t时刻的负荷;

——n台机组的总负荷。 (2)机组出力约束: 式中——机组的启停状态,0 表示停机,1 表示运行。 ——第i台机组的负荷下限和负荷上限。 (3)最小停机时间约束: 式中——机组i的最小停机时间。 (4)最小运行时间约束: 式中——机组i的最小运行时间。 (5)功率响应速度约束: 式中——机组i每分钟输出功率的允许最大下降速率和最大上升速率。 由于是在火电厂内部进行优化组合,可不考虑网损和系统的旋转热备用约束(这两项通常是电网调度中需要考虑的)。因此,机组优化组合从数学角度上讲就是在(5)~(9)的约束条件下求式(4)的最小值。 3)机组启停耗量能耗Si 的确定 通常情况下,对Si的处理采用如下的方法:机组的启动耗量包括汽机和锅炉两部分,由于汽机的热容量很小,其启动耗量一般可近似当

公交车调度问题的数学模型

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 赵惠平 2. 李敏 3. 赵俊海 指导教师或指导教师组负责人 (打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

对公交车调度问题的研究 摘要 公交车调度问题是现代城市交通中一个突出的问题。本文通过所给的一条公交线路上下行方向各时间段,各站点的客流量,根据一些合理假设,并在优先考虑将乘客拉完同时兼顾公交公司利益最大化的基础上,利用最优化思想建立线性规划模型。然后根据所给资料,利用数学软件编程检验。 通过对数据的分析,并且考虑到方案的可操作性,将一天划分为高峰时间段和一般时间段,。首先给该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表和车辆数。通过分析发现满足高峰时间段所需的车辆数便可满足一整天其他时间所需车辆数,所以对于车辆数,是通过对各路段个时间端上车人数净增量来确定的。算出时间段内每分钟车上的净增人数,根据每小时发车的时间间隔算出每小时的车辆数,进而得到了全天的车辆数。我们通过假设乘客均匀到站,并且乘客候车时间包括在车辆运行中,即认为公交车到站后乘客上车不费时间,建立线性规划模型进行求解。 最后我们对题目所给数据进行了处理,得出了车辆具体的运行方案,并用所建模型对结果作检验。并用Matlab编写了所需程序。 关键字:公交车调度线性规划净增量均匀到站

公交车调度的方案优化设计

公交公交车调度方案优化设计 摘要 本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。 在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。 主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。 在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。 1.问题的提出

水库优化调度

水库调度研究现状及发展趋势 摘要:实施梯级水电站群联合优化运行是统筹流域上下游各电站流量、水头间的关系,从而实现科学利用水能资源的重要手段,符合建设资源节约型、环境友好型社会的要求,是实现节能减排目标的重要途径,对贯彻落实科学发展观,促进流域又好又快发展具有重要意义。本文拟介绍水库调度研究现状及发展趋势,对工程实际具有重要的理论意义。 关键词:水库;优化调度;研究形状;发展趋势 随着水电发展的规划推进落实,大型流域梯级水库群将逐步形成,其联合调度运行必将获得巨大的电力补偿效益和水文补偿效益,同时在实际工程中也会不断涌现新的现象和问题。在新形势下综合考虑梯级上下游电站之间复杂的水力、电力联系,开展梯级水库群联合调度新的优化理论与方法应用研究,统筹协调梯级水库群上下游电站各部门的利益及用水需求,结合工程实际探索梯级水库群联合优化调度的多目标优化及决策方法,实现流域水能资源的高效利用、提高流域梯级水库群的联合运行管理水平乃至达到流域梯级整体综合效益的最大化,对缓解能源短缺、落实科学发展观、贯彻国家“节能 减排”战略以及履行减排承诺均具有重要的理论指导意义和工程实用价值[1]。 1 水库调度研究现状 水库调度研究,按其采用的基本理论性质划分,可分为常规调度(或传统方法)和优 化调度[2]。常规调度,一般指采用时历法和统计法进行水库调度;优化调度则是一种以 一定的最优准则为依据,以水库电站为中心建立目标函数,结合系统实际,考虑其应满足的各种约束条件,然后用最优化方法求解由目标函数和约束条件组成的系统方程组, 使目标函数取得极值的水库控制运用方式 [3]。 常规调度 常规调度主要是利用径流调节理论和水能计算方法来确定满足水库既定任务的蓄泄过程,制定调度图或调度规则,以指导水库运行。它以实测资料为依据,方法比较简单直观,可以汇入调度和决策人员的经验和判断能力等,所以是目前水库电站规划设计阶段以及中小水库运行调度中通常采用的方法。但常规方法只能从事先拟定的极其有限的方案中选择较好的方案,调度结果一般只是可行解,而不是最优解,且该方法难以处理多目标、多约束和复杂水利系统的调度问题。 优化调度 为了充分利用有限的水资源,国内外从上世纪50年代起兴起了水库优化调度研究。其核心有两点:一是根据某种准则建立优化调度模型,二是寻找求解模型的优化方法。 1946年美国学者Masse最早引入优化概念解决水库调度问题。1955年美国人Little[4]采

公交车调度的优化模型

公交车调度的优化模型 摘要 公共交通是城市交通的重要组成部分,做好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。本文就是通过对我国一座特大城市某条公交线路的一个工作日两个运行方向各站上下车的乘客数量统计进行分析,建立公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益前提下,给出了理想公交车调度方案。 对于问题一,模型I 中建立了最大客容量,发车车次数的数学模型,运用决策方法给出了各时间段最大客容量数,在满足客车载满率及载完各时段所有乘客情形下,得出每天最少车次数为460次,最少车辆数为54辆,并给出了整分发车时刻表(见表6、表7)。 对于问题二,模型II 进行了满意度分析。满意度包含公交公司的满意度A i 和乘客的满意度i B ,通过分析得到公交公司的满意度公式(7)和乘客的满意度公式(12),然后求出当公交车最大载客量为120时,公交公司和乘客的满意度为:上行方向:11A =0.9686,B 0.7165=,下行方向:2A2=0.9563,B 0.7138=。再算出当公交车最大载客量分别为100、50时对应的公交公司和乘客的满意度,最后通过二次拟合得出乘客和公交公司满意度对应的关系式为: 上行方向:21111.8709 2.10170.4361B A A =-++ 10.41020.9686A ≤≤ 下行方向:22222.2995 2.63450.2974B A A =-++ 20.41060.9563A ≤≤ 使双方满意度之和达到最大,同时双方满意度之差最小,得到上下行的最优满意度分别为()110.8599,0.8599A B ==,()220.8610,0.8610A B ==,此时公交车调度

车辆优化调度的研究

车辆优化调度的研究 某某 某某学校 摘要:本文基于许多车辆优化调度的理论研究成果,对温州远大物流有限公司进行调查研究和分析,并提出了一些自己的意见和方案。车辆优化调度,首先研究其发展的历史及现状,然后应用现有的设施和技术,针对目前车辆调度存在的问题,对车辆进行优化调度。 关键词:车辆调度;优化设计;运输成本 The Optimization Scheduling Research of Vehicles Abstract:Based on the research findings of many vehicles’ optimal dispatching as well as the investigation and analysis of Wenzhou Yuanda logistics company, this paper will put forward some suggestions and proposals. After studying the history and current situations of the vehicles’ optimal dispatching and applying the current facilities and technology, the paper will find the best way to optimize the vehicles’ dispatching. Key words:Vehicle Scheduling;Optimal Design;Transportation costs

公交车调度方案的优化模型

第三篇公交车调度方案的优化模型 2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 3.1 问题的重述 3.1.1 问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 3.1.2 运营及调度要求 ⑴公交线路上行方向共14站,下行方向共13站; ⑵公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; ⑶乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 3.1.3 要求的具体问题 ⑴试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等; ⑵如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法; ⑶据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。 3.2 问题的分析 本问题的难点是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆数的次数,运用统计方法同样可以方便地给出它的最佳调度方案,显然这两种方案是对立的。于是我们将此题分成两个方面,分别考虑到:⑴公交公司的经济效益,记为公司的满意度;⑵乘客的等待时间和乘车的舒适度,记为乘客的满意度。

关于公交车调度的数学模型

关于公交车调度的数学模型

公交车调度 关于公交车调度的数学模型 摘要:本文根据典型的一个工作日两个运行方向各站上下车的乘客数量统计,首先探讨了如何利用平滑法来确定一个有价值并且效率高的车辆运行时刻表,使其满足乘客的舒适性和公交公司低成本的服务;接着,又利用最优化的基本思想,对此问题进行了进一步的讨论,得到了最小配车辆的数量,然后针对满意度的评价水平问题,建立了几个良好刻画公司以及乘客满意度的满意度函数并求出了乘客与公交公司双方的满意度。最后,我们对新提出的模型进行了模型的评价和模型改进方向的讨论,并对如何采集公交车客运量的数据,提出了几个中肯的建议,完成了对关于公交车调度问题的较为详细而合理的讨论。 (一)问题重述 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司

配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 (二)定义与符号说明 1、T( I )------ 第I个时段 ( I=1、2……18 ) 2、A( J )------ 第J个公交车站 (J=1、2……15 ) 3、P( I )------ 在第I个时段内的配车量 4、L( I )------ 在第I个时段内的客流量 5、G( I )------ 在第I个时段内的满载率 6、S( I )------ 在第I个时段内的乘客候车时间期望值 7、V--------- 客车在该线路上运行的平均速度 8、ΔL(J)---第J-1个公交车站到第J个公交车站之间的距离

优化调度概述

1.概述 1.1 调度问题的提出 敏捷制造作为21世纪企业的先进制造模式,综合了JIT、并行工程、精良制造等多种先进制造模式的哲理,其目的是要以最低成本制造出顾客满意的产品,即是完全面向顾客的。在这种模式下如何进行组织管理,包括如何组织动态联盟、如何重构车间和单元、如何安排生产计划、如何进行调度都是我们面临的问题。其中车间作业调度与控制技术是实现生产高效率、高柔性和高可靠性的关键,有效实用的调度方法和优化技术的研究与应用已成为先进制造技术实践的基础。 调度问题主要集中在车间的计划与调度方面,许多学者作了大量研究,出了不少的研究成果。制造系统的生产调度是针对一项可分解的工作(如产品制造),探讨在在尽可能满足约束条件(如交货期、工艺路线、资源情况)的前提下,通过下达生产指令,安排其组成部分(操作)使用哪些资源、其加工时间及加工的先后顺序,以获得产品制造时间或成本的最优化。在理论研究中,生产调度问题常被称为排序问题或资源分配问题。 1.2 调度问题的分类 生产调度系统的分类方法很多,主要有以下几种: (1) 根据加工系统的复杂度,可分为单机、多台并行机、flow shop和job shop。 单机调度问题是所有的操作任务都在单台机器上完成,为此存在任务的优化排队问题,对于单机调度比较有代表性的请见文[9][10][l1];多台并行机的调度问题更复杂,因而优化问题更突出,文[8][11]][13]研究了多台并行机的调度;flow shop型问题假设所有作业都在同样的设备上加工,并有一致的加工操作和加工顺序,文[12][13][14]研究了flow shop问题;job shop是最一般的调度类型、并不限制作业的操作的加工设备,并允许一个作业加工具有不同的加工路径。对于job shop型问题的研究,文献很多,综述文章可参见Lawler等[15]。 (2) 根据性能指标,分为基于调度费用和调度性能的指标两大类。 (3) 根据生产环境的特点,可将调度问题分为确定性调度和随机性调度问题。 (4) 根据作业的加工特点,可将调度问题分为静态调度和动态调度。 静态调度是指所有待安排加工的工作均处于待加工状态,因而进行—次调度后、各作业的加工被确定、在以后的加工过程中就不再改变;动态调度是指作业依次进入待加工状态、各种作业不断进入系统接受加工、同时完成加工的作业又不断离开,还要考虑作业环境中不断出现的动态扰动、如作业的加工超时、设备的损坏等。因此动态调度要根据系统中作业、设备等的状况,不断地进行调度。实际调度的类型往往是job shop型,且是动态的。 1.3 生产调度的环境特征 一般的调度问题都是对于具体生产环境中复杂的、动态的、多目标的调度问题的一种抽象和

公交车调度方案的优化设计

公交车调度 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化设计 摘要 本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。 在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。 主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。 在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。

交巡警服务平台的设置与调度的优化模型

湖南工业大学 课程设计 资料袋 学院(系、部)2011~2012 学年第 2 学期 课程名称图论及其应用指导教师职称 学生姓名ake555 专业班级学号 题目交巡警服务平台的设置与调度的优化模型 成绩起止日期2013 年6月16 日~2013 年 6 月21 日 目录清单

课程设计任务书 2012—2013学年第2学期 学院专业班级 课程名称:图论及其应用 设计题目:交警服务平台和调度设计问题 完成期限:自2013 年 6 月16 日至2013 年 6 月21 日共 1 周

指导教师(签字):年月日系(教研室)主任(签字):年月日

图论及其应用课程设计说明书 2013年6 月21 日 目录

一、问题描述 (5) 二、模型假设 (6) 三、符号说明 (6) 四、模型建立与求解 (6) 五、模型评价 (15) 六、体会心得 (16) 七、参考文献 (16) 八、附件 (16) 交巡警服务平台的设置与调度的优化模型 一问题描述 随着人们社会经济的迅猛发展,人们生活的质量的提高,安全意识以深入人心,作为社会秩序的维护者警察对社会稳定起着巨大的作用

.警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配备基本相同。由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。 试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:问题一:附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。要求为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。 问题二:对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。实际中一个平台的警力最多封锁一个路口,通过求解给出该区交巡警服务平台警力合理的调度方案。 问题三:根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,通过分析计算需要增加平台的具体个数和位置。 问题四:针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。如果有明显不合理的地方,给出解决方案。 问题五:如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。 二模型假设 1.出警时道路恒畅通(无交通事故、交通堵塞等发生),警车行驶正常;2.在整个路途中,转弯处不需要花费时间; 3.假设逃犯驾车逃跑的车速与警车车速相当 三符号说明

车辆调度与优化

中文摘要 物流配送车辆调度问题就是指:在给定运输任务的条件下,如何派车、组织循环运输,使空驶里程最少,运输成本最低。目前我国大多数的物流企业运输资源分配不均、配送路线安排不合理、运力资源浪费严重,而缺乏完善的物流配送车辆调度优化方案就是造成此现象的重要因素之一。因此对物流配送车辆调度问题的研究具有重要的现实意义。 目前对单车场、封闭式物流配送车辆调度问题研究较多,而对多车场开放式物流配送车辆调度问题研究较少,但就是多车场开放式物流配送车辆调度问题有很强的应用背景。本文针对此问题,建立了一种灵活的多目标组合优化模型,设计了适合多车场开放式车辆路径问题的通用染色体编码方案,并对遗传算法中的交叉变异操作做了详细说明。此模型可以方便的增减优化目标值,并通过测试用例验证了本文设计的优化模型与遗传算法在解决多车场多目标开放式物流配送车辆调度问题中的可行性。 自动化立体仓库出库端车辆调度策略的设计就是物流配送车辆调度中的一个关键问题,好的调度策略可以大大缩短出库端的配货时间。为此本文引入动态优先级理论,并利用该理论对大型AS/RS 出库口车辆调度问题进行了深入研究与分析,提出了基于动态优先级的AS/RS 出库端车辆调度策略,并开发了相应的AS/RS 出库口发货资源监控系统,即AS/RS 出库口车辆调度系统,优化了AS/RS 出库端车辆调度策略,大大提高了物流配送当中的配货效率。 本文建立的多目标组合优化模型以及设计的遗传算法求解方案,可以有效的缩减物流配送中的送货时间;设计的AS/RS 出库端车辆调度优化策略及开发的AS/RS出库端车辆调度系统,可以有效缩减车辆在出库端的配货时间。本文对以上两种物流配送中的车辆调度问题进行研究,大大提高了物流配送效率、减少了物流配送成本。 关键词:物流配送;车辆调度;多目标组合优化;遗传算法 第一章绪论 1、1 课题背景 物流(Logistics):指在合适时间,将合适的物品以适当的数量准确地送到顾客手中,它就是供应链中最重要的组成部分。一般意义上就是指在生产与生活中所

人力资源调度的优化模型

人力资源调度的优化模型 摘要 本文主要研究人力资源调度的最优化问题。人力资源调度问题中所要处理的数据之间的关系是比较繁琐的,所以如何有效地设置决策变量,找出相互关系是我们建立模型的突破口。上述模型属于多元函数的条件极值问题的范围,然而许多实际问题归结出的这种形式的优化模型,起决策变量个数n和约束条件m一般比较大,并且最优解往往在可行域的边界上取到,这样就不能简单地用微分法求解,数学规划是解决这类问题的有效方法。 根据所给的“PE公司”技术人员结构及工资情况表、不同项目和各种人员的收费标准表格,为了在满足客户对专业技术人员结构要求的前提下,使“PE公司”每天的直接收益最大,我们首先对不同项目的不同技术人员的分配个数进行假设,从而得到了“PE公司”每天总收入I和每天总支出C,所以每天的直接收益C =,这就是公司每天直接收益的目标函数。在此基础上我们建立 I U- 了基于Matlab软件上的线性规划方法一和基于Lindo6.0软件上的整数线性规划方法二来求解这个模型。首先我们Matlab软件运行这个函数,得到求得的值恰好是整数,满足题意,在题目的约束条件下得到的最大公司效益是27150元,此时的人员分布如下表所示: 项目 A B C D 技术人员 高级工程师 1 5 2 1 工程师 6 3 6 2 助理工程师 2 5 2 1 技术员 1 3 1 0 因为对题中的数据稍做改动时得出的答案就会出现小数的现象,为了更好的解决该问题,我们又引入了一个很好地能处理整数的软件Lindo6.0,得到了各个有效的数据。并在模型扩展中运用已建立的程序对所得的结果进行灵敏度分析,即讨论在收费标准不变的情况下技术人员结构对公司收益的影响以及在技术人员结构不变的情况下收费标准对公司收益的影响,并且进一步分析在怎样的范围内最优解保持不变,并联系社会实际进行了一定的分析。最后在适当简化模型的同时,对模型进行了改进和推广,预示了高素质人才在现代社会中将发挥着越来越重要的作用。 关键词:人力资源调度;决策变量;可行域;灵敏度分析;博弈论

公交车调度问题

公交车调度问题 关于公交车的调度问题 摘要:本文主要是研究公交车调度的最优策略问题。我们建立了一个以公交车 的利益为目标函数的优化模型,同时保证等车时间超过10 分钟(或者超过 5 分 钟)的乘客人数在总的等车乘客数所占的比重小于一个事先给定的较小值。首先,利用最小二乘法拟合出各站上(下)车人数的非参数分布函数,求解时 先用一种简单方法估算出最小配车数43 辆。然后依此为参照值,利用Maple 优化工具得到一个整体最优解:最小配车数为48 辆,并给出了在公交车载客量不同条件下的最优车辆调度方案,使得公司的收益得到最大,并且乘客等车的时间不宜过长,最后对整个模型进行了推广和评价,指出了有效改进方向。 关键词:公交车调度;优化模型;最小二乘法 问题的重述:公共交通是城市交通的重要组成部分,作好公交车的调度对于完 善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14 站,下行方向共13 站,第3-4 页给出的是典型 的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均

速度为20 公里/小时。运营调度要求,乘客候车时间一般不要超过10 分钟,早 高峰时一般不要超过5分钟,车辆满载率不应超过120%, 一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型, 指出求解模型的方 法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 基本假设 1)该公交路线不存在堵塞现象,且公共汽车之间依次行进,不存在超车现象。 2)公共汽车满载后,乘客不能再上,只得等待下一辆车的到来。 3)上行、下行方向的头班车同时从起始站出发。 4)该公交路线上行方向共14站,下行方向共13站。 5)公交车均为同一型号,每辆标准载客100 名,车辆满载率不应超过120%, 一般也不要低于50% 。 6)客车在该路线上运行的平均速度为20 公里/小时,不考虑乘客上下车时间。 7)乘客侯车时间一般不超过10 分钟,早高峰时一般不超过 5 分钟。 8)一开始从 A 13出发的车辆,与一开始从A 0出发的车辆不发生交替,两循环 独立。 9)题目所给的数据具有一定的代表性,可以做为各种计算的依据。 符号说明 N a:从总站A13 始发出的公交车的总次数(上行方向) N b :从总站 A 0 始发出的公交车的总次数(下行方向) T1 :上行方向早高峰发车间隔时间 T 2 :上行方向平时发车间隔时间 T 3 :上行方向晚高峰发车间隔时间

【数学与应用数学】论文——公交车合理调度的优化模型

公交车合理调度的优化模型 摘要:公共交通是城市交通的中央组成部分,公交车的调度具有重要的现实意义.本模型利用统计资料的特 点,运行统计,最优化等数学方法以及Maple 软件,考虑到公交公司和乘客双方的利益相矛盾,给出了一个最优的调度时刻表,计算出了所需车辆至少要53辆.进而劳力到调度方案的可行性,通过计算机模拟搜索,给出了一个便于操作的优化方案,计算出所需车辆至少为44辆.校验该方案,公交公司的利益很大程度满足,原来每天每车次的平均载客量只降低了39人/车次,而乘客满意度也不会有很大降低. 关键词:公交车调度;载客率;发车时刻表;最优模型;优化方案 一、问题的提出 公共交通是城市交通的重要组成部分,作为公交车的调度具有重要的现实意义.某城市的公交公司统计了上行下行两个方向的某条公交线路上的客观情况.给出了一个典型工作日各时组两个运行方向每站上下车人数.该条公交线路上行方向共14站,总长14.58公里;下行方向共13站,总长14.61公里.公交公司配给该线路标准载客100人的同一型号的大客车,客车在该线路上运行的平均速度为20公里/小时.现在要根据这些资料,为该线路设计一个便于操作的全天(工作日)的公交调度方案,包括: 1.两个起点站的发车时间; 2.一共需要多少辆车; 3.该方案以这样的程度照顾到了乘客和公交公司双方的利益.其中,营运调度要求: (1).每一辆客车的满载率50%~120%. (2).乘客候车时间一般不超过10分钟,早高峰期不超过5分钟. 二、模型的假设 1、交通顺畅,公交车运行秩序良好,路上无阻塞情况,汽车也不会出现突然坏掉或燃料不足等情况. 2、每辆客车始终以20公里/小时的平均速度行驶,到各站的停留载客时间也涵盖在这个车速里,即不考虑每个乘客的上下时间. 3、汽车一到总站,乘客全部下车,从而保证了总站发车时空车. 4、不论乘车距离长短,上车票价都相同.(如:1元/人) 5、公交公司的利益只考虑汽车在路面上行驶的车辆次数与载客率. 6、全天(工作日)的公交车调度从5:00开始到23:00结束,分为18个单位时组,每个时组为 1小时,表示为i T ()18,,2,1 =i 7、乘客到各站点的人数,在各时组里均匀分布. 8、乘客利益只考虑等车时间的长短. 三、符号的约定 1i N 、2i N 分别表示上下行线第i T 时组内需要开出的乘客总次数,i=18,,2,1 1i n 、2i n 分别表示在上下行线第i T 时组内正在路上行驶的车辆数,i=18,,2,1 上T 、下T 分别表示在上下行线客车从始点到终点所需行驶时间. i d 、 ' i d 分别表示在上下行线个站点间距离()1413,,2,1或 =i

数学建模_电梯控制优化调度模型

太原工业学院数学建模竞赛 承诺书 我们仔细阅读了太原工业学院数学建模竞赛的竞赛规则与赛场纪律。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛的题目是(从A/B/C中选择一项填写):A [注]答卷评阅前由主办单位将论文第一页取下保存,同时在第一页和第二页建立“评阅 编号。 日期:2011 年5_月22 日

电梯调度方案问题 摘要 本文的目的是设计电梯控制的优化调度模型以解决师生等待时间长的问题。 前期准备阶段通过对教学主楼电梯的运行情况和学生使用电梯的情况进测量、调 查研究,得到建立模型的相关数据。通过对实际情况作合理假设,将问题归结为:(一)减少师生等待电梯、乘坐电梯以及爬行楼梯所需的时间; (二)使电梯的能量损耗尽可能小。综合以上两种因素建立出合理模型,制定出优化调度方案。 模型I对以上三项指标进行综合考虑,将等待电梯时间Ti 1,乘坐电梯时间Ti2,爬行楼梯时间T i 3按照一定比例量化,对目标函数T(C1, c 2,... c k)利用Visual C++面向对象程序设计语言进行枚举求解,穷尽各种情况,取得最优解。而模型U是对模型I的改进与完善,并将电梯能量损耗E k作为目标函数 s G,C2,llb k的一部分,求解出1号电梯在第8,10层停靠,2号电梯在第7, 9层停靠的结果。此结果基本上能够使师生的不满意度达到最小,同时保证电梯的能 耗相对较小。 我们认为,本文的模型假设简单但合乎情理,利用Visual C++面向对象程 序设计语言,对各种情况进行枚举,所得到的结果具有科学性。在模型讨论与分析阶段中,本文根据实际情况对电梯的优化调度方案进行理论剖析,并对极端情 况进行分解。从数据处理方面,本文给出了模型参数灵敏度分析,提高结果的可信度。如果要考虑更复杂的情况,该模型也可以对假设和其他各方面进行改进, 容易进行推广。因此这是一个比较理想的优化模型

货运车辆优化调度方法(DOC)

货运车辆优化调度方法 据统计,美国2000年的运输费用为5900亿美元,占当年GDP总值99600亿美元的5.92%,可见,减少运输费用是有效减少物流成本的重要方面。对于物流中心和第三方物流企业的货物配送,运输车辆的调度是工作的重点,正确合理的调度可以有效减少车辆的空驶率,实现合理路径运输,从而有效减少运输成本,节约运输时间,提高经济效益。 1 运输车辆调度规划问题分类 货运车辆优化调度问题可根据不同性质具体分为以下几类: 按照运输任务分为纯装问题、纯卸问题以及装卸混合问题。按照车辆载货状况分为满载问题和非满载问题,满载问题是指货运量多于一辆车的容量,完成所有任务需要多辆运输车辆。非满载问题是指车的容量大于货运量,一辆车即可满足货运要求。 按照车辆类型分为单车型问题和多车型问题;按照车辆是否返回车场划分为车辆开放问题和车辆封闭问题,车辆开放问题是指车辆不返回其出发地,车辆封闭问题是指车辆必须返回其发出车场。

按照优化的目标可分为单目标优化问题和多目标优化问题;按照有无休息时间要求可分为有休息时间的调度和无休息时间调度问题。 实际中的车辆优化调度问题可能是以上分类中的一种或几种的综合。 车辆优化调度问题是一个有约束的组合优化问题,属于NP难题(Nondeterministic Polynomial Problem)。随着问题输入规模的扩大,求解时间呈几何级数上升。 求解车辆优化调度的方法可以分为精确算法、启发算法和智能算法。精确算法主要有分支界定法等;启发式算法主要有构造算法、两阶段法等;智能算法分为神经网络方法、遗传算法和模拟退火算法等。 精确算法的计算量随着车辆优化问题规模的增大呈指数增长,如当卸货点的数目超过20个时,采用精确算法求解最短运输路径的时间在几个小时以上。精确算法不适合于求解大规模的车辆优化调度问题。 2 启发式算法 启发式方法是从尚未安排的车辆、运输任务或行驶路径中按照构造算法进行选择,直到所有任务和车辆均被调度为止。构造的每一步,根据某个判别函数,把当前的线路构形和另外的构形进行比较并加以改进,以最小代价把一个不在当前构形上的需求对象插入进构形,最后得到一个较好的可

相关文档
相关文档 最新文档