文档库 最新最全的文档下载
当前位置:文档库 › 受迫振动研究实验报告

受迫振动研究实验报告

受迫振动研究实验报告
受迫振动研究实验报告

受迫振动研究报告

1. 实验原理

1.1受迫振动

本实验中采用的是伯尔共振仪,其外形如图1所示:

图1

铜质圆形摆轮系统作受迫振动时它受到三种力的作用:蜗卷弹簧B提供的弹性力矩

,轴承、空气和电磁阻尼力矩,电动机偏心系统经卷簧的外夹持端提供的驱动力矩

根据转动定理,有

式中,J为摆轮的转动惯量,为驱动力矩的幅值,为驱动力矩的角频率,令

则式(1)可写为

式中为阻尼系数,为摆轮系统的固有频率。在小阻尼条件下,方程

(2)的通解为:

此解为两项之和,由于前一项会随着时间的推移而消失,这反映的是一种暂态行为,与驱动力无关。第二项表示与驱动力同频率且振幅为的振动。可见,虽然刚开始振

动比较复杂,但是在不长的时间之后,受迫振动会到达一种稳定的状态,称为一种简谐振动。公式为:

振幅和初相位(为受迫振动的角位移与驱动力矩之间的相位差)既与振动系统

的性质与阻尼情况有关,也与驱动力的频率和力矩的幅度有关,而与振动的初始条件无关(初始条件只是影响达到稳定状态所用的时间)。与由下述两项决定:

1.2共振

由极值条件可以得出,当驱动力的角频率为时,受迫振动的振幅达到最大值,产生共振:

共振的角频率

振幅:

相位差

由上式可以看出,阻尼系数越小,共振的角频率越接近于系统的固有频率,共

振振幅也越大,振动的角位移的相位滞后于驱动力矩的相位越接近于.

下面两幅图给出了不同阻尼系数的条件下受迫振动系统的振幅的频率相应(幅频特

性)曲线和相位差的频率响应(相频特性)曲线。

受迫振动的幅频特性受迫振动的相频特性

1.3阻尼系数的测量

(1)由振动系统作阻尼振动时的振幅比值求阻尼系数

摆轮如果只受到蜗卷弹簧提供的弹性力矩,轴承、空气和电磁阻尼力矩,

阻尼较小()时,振动系统作阻尼振动,对应的振动方程和方程的解为:

可见,阻尼振动的振幅随时间按指数律衰减,对相隔n个周期的两振幅之比取对数,则有:

实际的测量之中,可以以此来算出值。其中,n为阻尼振动的周期数,为计时开

始时振动振幅,为的n次振动时振幅,T为阻尼振动时周期。

(2)由受迫振动系统的幅频特性曲线求阻尼系数(只适合于时的情况)

由幅频特性可以看出,弱阻尼情况下,共振峰附近

,由(4)和(6)可得:

当时,由上式可得:。

在幅频特性曲线上可以直接读出处对应的两个横坐标和,从而可得:

2. 实验仪器

伯尔共振仪,如图:

3. 实验数据及其处理

3.1

周期(s)振幅周期(s)振幅周期(s)振幅

1.569159 1.572122 1.57582

1.569158 1.572120 1.57578

1.570153 1.572116 1.57576

1.570147 1.573114 1.57575

1.570146 1.573111 1.57574

1.570145 1.573110 1.57669

1.570141 1.573109 1.57666

1.571137 1.573106 1.57660

1.571135 1.573103 1.57659

1.571130 1.57499 1.57658

1.572127 1.57494 1.57653

1.571126 1.57493 1.57652

1.572125 1.57492 1.57651

1.572124 1.57491 1.57650

1.57487

由拟合直线可以看出周期T与振幅的关系式为:

说明:

(1)由于材料的性质和制造工艺等原因,使得弹簧系数k在扭转角度的改变而略有变化(3%左右)。为此测出周期与振幅之间的关系曲线,供作幅频特性曲线和相频特性曲线是查用,有效减小实验的系统误差。

(2)由于实验测量精度的原因,测量值无法表现出一种连续性的变化。所以在图上

的描点会出现这样的情况。采用直线拟合效果也是比较好的。

3.2观察研究摆轮的阻尼振动

10个周期(15.736s)时振幅记录

振幅15013812811710810092847871由公式:

可以得出:

所以:

3.3测定摆轮受迫振动的幅频与相频特性曲线,并求阻尼系数

数据载入(周期的单位均为S):

初始周期指的是对应角度的阻尼为0是的周期。由此,可以作出幅频特性曲线和相频特性曲线。

拟合出来的幅频特性曲线:

拟合的幅频特性曲线的参数如下:

由拟合可得,振幅与的关系为:

由公式(8),当时,

因为, 推出

因为,且理想条件为,通过查表可知,

所以,阻尼系数为:

说明:

(1)两次算出的值相差比较大,可能是因为使用的计算方式不一样造成的。拟合出来的幅频特性曲线:

相应的拟合参数为:

所以,拟合的方程为:

由拟合的参数可知,拟合的程度还是相当好的。

大学物理振动练习题有答案

一.选择题、填空题 1.一质点作简谐振动,振动方程为x =Acos(ωt +?) ,当时间t =T / 2(T 为周期) 时,质点的速度为B A. -A ωsin ? . B. A ωsin ? . C. -A ωcos ? . D. A ωcos ?. 2.两个质点各自作简谐振动,它们的振幅相同、周期相同, 第一个质点的振动方程为x 1=A cos(ω t +α). 当第一个质点从相对平衡位置的正位移处回到平衡位置时, 第二个质点正在最大位移处, 则第二个质点的振动方程为B (A) x 2=A cos(ω t +α +π/2) . (B) x 2=A cos(ω t +α -π/2) . (C) x 2=A cos(ω t +α -3 π/2) . (D) x 2=A cos(ω t +α + π) . 3.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A/2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为图16.1中哪一图?B 4.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点. 已知周期为T ,振幅为A . (1)若t =0时质点过x =0处且朝x 轴正方向运动,则振动方程为x = . (2)若t =0时质点处于x =A /2处且朝x 轴负方向运动,则振动方程为x = . 5.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相?=-π/3,则振动曲线为图17.2中哪一图?A 6.一质点作谐振动,振动方程为x=A cos(ωt +?),在求质点振动动能时,得出下面5个表达式:C (1) (1/2) m ω 2A 2sin 2 (ωt+?); (2) (1/2) m ω2A 2cos 2 (ωt+?); (A) 图16.1 (A) (C) (B) (D) 图17.2

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

弦振动实验报告

弦振动的研究 '、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密p、弦长L和弦的张力T的关系,并进行测 量。 、、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 、实验原理 为了研究问题的方便,认为波动是从A 点发出的,沿弦线朝E端方向传播,称为入射波,再由E端反射沿弦线朝A端传播,称为反射 波。入射波与反射波在同一条弦线上沿相反方向传 播时将相互干涉,移动劈尖E 到适合位置?弦线上 的波就形成驻波。这时, 弦线上的波被分成几段形 成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传 播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向 图(2)左传播的用细虚线 表示,它们的合成驻波用粗 实线表示。由图可见,两个 波腹间的距离都是等于半 个波长,这可从波动方程推

导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y i = Acos2 (ft —x/ ) Y2 = Acos[2 (ft + x/ "+ ] 式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波 叠加后的合成波为驻波,其方程为: Y i + 丫2 = 2Acos[2 (x/ ) + /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动, 它们的振幅为丨2A cos[2 (x/ )+ /2] | ,与时间无关t,只与质点的位置 x有关。 由于波节处振幅为零,即:丨cos[2 (x/ ) + /2] | =0 2 (x/ ) + /2 = (2k+1) / 2 (k=0. 2. 3. …) 可得波节的位置为: x = k /2 ②而相邻两波节之间的距离为: X k+1 —X k = (k + 1) 12—k / 2 = / 2③又因为波腹处的质点振幅为最大,即I cos[2 (x/ ) + /2] | =1

东南大学物理实验报告-受迫振动

物理实验报告 标题:受迫振动的研究实验 摘要: 振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。共振现象在许多领域有着广泛的应用,例如,众多电声器件需要利用共振原理设计制作。它既有实用价值,也有破坏作用。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。另外,实验中利用了频闪法来测定动态的相位差。

目录 1引言 (3) 2.实验方法 (3) 2.1实验原理 (3) 2.1.1受迫振动 (3) 2.1.2共振 (4) 2.1.3阻尼系数的测量 (5) 2.2实验仪器 (6) 3实验内容、结果与讨论 (7) 3.1测定电磁阻尼为0情况下摆轮的振幅与振动周期的对应关系 (7) 3.2研究摆轮的阻尼振动 (8) 3.3测定摆轮受迫振动的幅频与相频特性曲线,并求阻尼系数 (9) 3.4比较不同阻尼的幅频与相频特性曲线 (14) 4.总结 (15) 5.参考文献 (16)

1引言 振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。共振现象在许多领域有着广泛的应用,例如为研究物质的微观结构,常采用核共振方法。但是共振现象也有极大的破坏性,减震和防震是工程技术和科学研究的一项重要任务。表征受迫振动性质的是受迫振动的振幅—频率特性和相位—频率特性(简称幅频和相频特性)。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。 2.实验方法 2.1实验原理 2.1.1受迫振动 本实验中采用的是玻耳共振仪,其构造如图1所示: 图一

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k ==ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-==t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π-=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

波尔共振实验报告

波尔共振 振动是一种常见的物理现象,而共振是特殊的振动,为了趋利避害在工程技术和科学研究领域中对其给予了足够的重视。 目前,电力传输采用的是高压输电法。而据报载,2007年6月美国麻省理工学院的物理学家索尔加斯克领导的一个小组,成功地利用无线输电技术,点亮了距离电源2米远的灯泡!无线输电法原理的核心就是共振。人们期待着能在更远的距离实现无线输电,那时生产和生活将会发生一场重大变革。 【目的与要求】 1. 观察测量自由振动中振幅与周期的关系。 2. 研究阻尼振动并测量阻尼系数。 3. 观察共振现象及其特征;研究不同阻尼力矩对受迫振动的影响及其辐频特性和相频特 性。 4. 学习用频闪法测定动态物理量----相位差。 【实验原理】 物体在周期性外力(即强迫力)的作用下发生的振动称为受迫振动。若外力是按简谐振动规律变化,则稳定状态时的振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统的固有频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。在无阻尼情况下,当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。 当摆轮受到周期性强迫外力矩t M M ωcos 0=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-),其运动方程为 t M dt d b k dt d J ωθ θθcos 02 2+--= (33-1) 式中,J 为摆轮的转动惯量,-k θ为弹性力矩,M 0为强迫力矩的幅值,ω为强迫力的圆频率。 令 ,2 0J k =ω ,2J b =β J M m 0= 则式(33-1)变为 t m dt d dt d ωθωθβθcos 22022=++ (33-2) 当0cos =t m ω时,式(2)即为阻尼振动方程。 当0=β,即在无阻尼情况时式(33-2)变为简谐振动方程,系统的固有圆频率为ω0。方程(33-2)的通解为 )cos()cos(021?ωθαωθθβ+++=-t t e f t (33-3) 由式(33-3)可见,受迫振动可分成两部分: 第一部分,)cos(1αωθβ+-t e f t 和初始条件有关,经过一定时间后衰减消失。

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

均匀弦振动实验报告

实验八 固定均匀弦振动的研究 XY 弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。 [实验目的] 1. 了解均匀弦振动的传播规律。 2. 观察行波与反射波互相干涉形成的驻波。 3. 测量弦上横波的传播速度。 4. 通过驻波测量,求出弦的线密度。 [实验仪器] XY 型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。 [实验原理] 设有一均匀金属弦线,一端由弦码A 支撑,另一端由 弦码B 支撑。对均匀弦线扰动,引起弦线上质点的振动, 假设波动是由A 端朝B 端方向传播,称为行波,再由B 端 反射沿弦线朝A 端传播,称为反射波。行波与反射波在同 一条弦线上沿相反方向传播时将互相干涉,移动弦码B 到 适当位置。弦线上的波就形成驻波。这时,弦线就被分成 几段,且每段波两端的点始终静止不动,而中间的点振幅 最大。这些始终静止的点称为波节,振幅最大的点称为波 腹。驻波的形成如图4-8-1所示。 设图4-8-1中的两列波是沿x 轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。 下面用简谐表达式对驻波进行定量描述。设沿x 轴正方向传播的波为行波,沿x 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x =0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: )(2cos 1λπx ft A y -= )(2cos 2λ πx ft A y += 式中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 图 4-8-1

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

弦振动研究试验(教材)分析

弦振动研究试验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。 本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】 1. 了解波在弦上的传播及弦波形成的条件。 2. 测量拉紧弦不同弦长的共振频率。 3. 测量弦线的线密度。 4. 测量弦振动时波的传播速度。 【实验原理】 张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2π(ft-x/ λ) Y2=Acos2π(ft+x/ λ) 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos2π(x/ λ)cos2πft ······①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。 由于波节处振幅为零,即|cos2π(x / λ) |=0 2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为: X=(2K+1)λ /4 ······②而相邻两波节之间的距离为: X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ·····③又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1 2πX / λ=Kπ ( K=0. 1. 2. 3. ······) 可得波腹的位置为: X=Kλ / 2= 2kλ / 4 ·····④这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。 1

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告一、实验目的1.观测阻尼振动,学习测量振动系统基本参数的方法;2.研究受迫振动的幅频特性和相频特性,观察共振现象;3.观测不同阻尼对受迫振动的影响。 二、实验原理1.有粘滞阻尼的阻尼振动弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++=记ω0为无阻尼时自由振动的固有角频率,其值为ω0=,定义阻尼系数k/J β=γ/(2J ),则上式可以化为: 2220d d k dt dt θθβθ++=小阻尼即时,阻尼振动运动方程的解为2200βω-< (*)( )) exp()cos i i t t θθβφ=-+由上式可知,阻尼振动角频率为 ,阻尼振动周期为d ω=2d d T π=2.周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为22cos d d J k M t dt dt θθγθω++=()( ))()exp cos cos i i m t t t θθβφθωφ=-++-这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=-稳态解的振幅和相位差分别为路须同时切断习题电源,备制造厂家出具高中资料需要进行外部电源高中资料

m θ=2202arctan βωφωω=-其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。3.电机运动时的受迫振动运动方程和解弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω=式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为。于是在固定坐标系中摆轮转角θ的运动方程为()cos m t t θαθαω-=-()22cos 0m d d J k t dt dt θθγθαω++-=也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到m θ=由θm 的极大值条件可知,当外激励角频率时, 0m θω ??=ω=系统发生共振,θm 有极大值。α 引入参数,称为阻尼比。(0ζβ ωγ==于是,我们得到 m θ=()()0202arctan 1ζωωφωω=-三、实验任务和步骤 1.调整仪器使波耳共振仪处于工作状态。 2.测量最小阻尼时的阻尼比ζ和固有角频率ω0。进行隔开处理;同一线槽内人员,需要在事前掌握图纸电机一变压器组在发生内部

6.机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A ) 6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4 y A t π ω=+,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大 振幅 2A 处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8 T (D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体, 此三个系统振动周期之比为 (A);2 1 : 2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1 :2:1

5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;34 s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分, 且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1 ,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的 [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为 A 2 1 ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

阻尼振动与受迫振动实验报告

阻尼振动与受迫振动 一、 实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、 实验原理 1. 有粘滞阻尼的阻尼振动 在弹簧和摆轮组成的振动系统中,摆轮转动惯量为J ,γ为阻尼力矩系数,ω0=√ k /J 为无阻尼时自由振动的固有角频率,定义阻尼系数β=γ/(2J ),则振动方程为 2220d d k dt dt θθ β θ++= 在小阻尼时,方程的解为 ()) exp()cos i i t t θθβφ=-+ 在取对数时,振幅的对数和β有有线性关系,通过实验测出多组振 幅和周期,即可通过拟合直线得出阻尼系数进而得出其他振动参数。 2. 周期外力矩作用下受迫振动 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++=

()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 其中包含稳定项和衰减项,当t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ= 22 02arctan βω φωω=- 上式中反映当ω与固有频率相等时相位差达到90度。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θm 的极大值条件0m θω? ?=可知,当外激励角频率ω=时,系统发生共振, θm 有极大值α 引入参数(0ζβωγ ==,称为阻尼比,于是有

第九章简谐振动自测题

第九章简谐振动自测题 一、选择题 1、对于一个作简谐振动的物体,下列说法正确的是( (A)物体处在正的最大位移处时,速度和加速度都达到最大值 (B)物体处于平衡位置时,速度和加速度都为零 (C)物体处于平衡位置时,速度最大,加速度为零 (D)物体处于负的最大位移处时,速度最大,加速度为零 2、对一个作简谐振动的物体,下面哪种说法是正确的( (A)物体位于平衡位置且向负方向运动时,速度和加速度都为零 (B)物体位于平衡位置且向正方向运动时,速度最大,加速度为零 (C)物体处在负方向的端点时,速度和加速度都达到最大值 (D)物体处在正方向的端点时,速度最大,加速度为零 3、一弹簧振子作简谐振动,当运动到平衡位置时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 4、一弹簧振子作简谐振动,当运动到最大振幅处时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 5、一质点作简谐振动,振动方程为二Acos(‘t ?「),当质点处于最大位移时则 有() (A)=0 ;(B)V =0 ;(C)a =0 ;(D)- 0. 6 —质点作简谐振动,振动方程为x=Acos( 7 + ■'),当时间t=T 2( T为周期)时,质点的速度为() (A)A sin :(B)-A sin :(C)-A cos :(D A cos 7、将一个弹簧振子分别拉离平衡位置1m和2 m后,由静止释放(形变在弹性限度内),则它们作简谐振动时的() (A)周期相同(B)振幅相同(C)最大速度相同(D)最大加速度相同 8、一作简谐振动的物体在t=0时刻的位移x=0,且向x轴的负方向运动,则其初相位为()

相关文档