文档库 最新最全的文档下载
当前位置:文档库 › Linux内核编码风格(编程代码风格推荐)

Linux内核编码风格(编程代码风格推荐)

Linux内核编码风格(编程代码风格推荐)
Linux内核编码风格(编程代码风格推荐)

这是翻译版本,英文原版是linux源码Documentation文件夹下的CodingStyle

一个良好风格的程序看起来直观、美观,便于阅读,还能有助于对程序的理解,特别在代码量比较大情况下更显现编码素质的重要性。相反没有良好的风格的代码读起来难看、晦涩,甚至有时候一个括号没对齐就能造成对程序的曲解或者不理解。我曾经就遇见过这样的情况,花费了很多不必要的时间在程序的上下文对照上,还debug了半天没理解的程序。后来直接用indent -kr -i8给他转换格式来看了。特此转过来一个关于代码风格的帖子分享一下~

Linux内核编码风格

这是一份简短的,描述linux内核首选编码风格的文档。编码风格是很个人化的东西,而且我也不愿意把我的观点强加给任何人,不过这里所讲述的是我必须要维护的代码所遵守的风格,并且我也希望绝大多数其他代码也能遵守这个风格。所以请至少考虑一下本文所述的观点。

首先,我建议你打印一份GNU的编码规范,然后不要读它。烧掉它,这是一个很高调的具有象征意义的姿态。

Anyway, here goes:

第一章:缩进

制表符是8个字符,所以缩进也是8个字符。有些异端运动试图将缩进变为4(乃至2)个字符深,这跟尝试着将圆周率PI的值定义为3没什么两样。

理由:缩进的全部意义就在于清楚的定义一个控制块起止于何处。尤其是当你盯着你的屏幕连续看了20小时之后,你将会发现大一点的缩进将会使你更容易分辨缩进。

现在,有些人会抱怨8个字符的缩进会使代码向右边移动的太远,在80个字符的终端屏幕上就很难读这样的代码。这个问题的答案是,如果你需要3级以上的缩进,不管缩进深度如何你的代码已经有问题了,应该修正你的程序。

简而言之,8个字符的缩进可以让代码更容易阅读,还有一个好处是当你的函数嵌套太深的时候可以向你提出告警。请留意这个警告。

在switch语句中消除多级缩进的首选的方式是让“switch”和从属于它的“case”标签对

齐于同一列,而不要“两次缩进”“case”标签。比如:

switch (suffix) {

case 'G':

case 'g':

mem <<= 30;

break;

case 'M':

case 'm':

mem <<= 20;

break;

case 'K':

case 'k':

mem <<= 10;

/* fall through */

default:

break;

}

不要把多个语句放在一行里,除非你有什么东西要隐藏:

if (condition) do_this;

do_something_everytime;

也不要在一行里放多个赋值语句。内核编码风格超级简单。就是请避免使用怪异的表达式。除了注释、文档和Kconfig之外,不要使用空格来缩进,前面的例子是例外,是有意为之。

选用一个好的编辑器,不要在行尾留空格。

第二章:把长的行和字符串打散

编码风格的意义就在于使用平常使用的工具来维持代码的可读性和可维护性。

每一行的长度的限制是80列,我们强烈建议您遵守这个惯例。

长于80列的语句要打散成有意义的片段。每个片段要明显短于原来的语句,而且放置的位置也明显的靠右。同样的规则也适用于有很长参数列表的函数头。长字符串也要打散成较短的字符串。唯一的例外是超过80列可以大幅度提高可读性并且不会隐藏信息的情况。

void fun(int a, int b, int c)

{

if (condition)

printk(KERN_WARNING "Warning this is a long printk with "

"3 parameters a: %u b: %u "

"c: %u \n", a, b, c);

else

next_statement;

}

第三章:大括号和空格的放置

C语言风格中另外一个常见问题是大括号的放置。和缩进大小不同,选择或弃用某种放置策略并没有多少技术上的原因,不过首选的方式,就像Kernighan和Ritchie展示给我们的,是把起始大括号放在行尾,而把结束大括号放在行首,所以:

if (x is true) {

we do y

}

这适用于所有的非函数语句块(if、switch、for、while、do)。比如:

switch (action) {

case KOBJ_ADD:

return "add";

case KOBJ_REMOVE:

return "remove";

case KOBJ_CHANGE:

return "change";

default:

return NULL;

}

不过,有一种特殊情况,命名函数:它们的起始大括号放置于下一行的开头,这样:

int function(int x)

{

body of function

}

全世界的异端可能会抱怨这个不一致性,呃…确实是不一致的,不过所有思维健全的人都知道(a)K&R是正确的,并且(b)K&R是正确的。另外,不管怎样函数都是特殊的(在C语言中,函数是不能嵌套的)。

注意结束大括号独自占据一行,除非它后面跟着同一个语句的剩余部分,比如说do语句中的“while”或者if语句中的“else”,像这样:

do {

body of do-loop

} while (condition);

if (x == y) {

..

} else if (x > y) {

...

} else {

....

}

理由:K&R。也请注意这种大括号的放置方式还能使空(或者差不多空的)行的数量最小化,同时不失可读性。因此,由于你的屏幕上的新行的供应不是可回收的资源(想想25行的终端屏幕),你将会有更多的空行来放置注释。

仅有一个单独的语句时,不用加不必要的大括号。

if (condition)

action();

这点不适用于本身为某个条件语句的一个分支的单独语句。这时应该两个分支里都使用

大括号。

if (condition) {

do_this();

do_that();

} else {

otherwise();

}

3.1:空格

Linux内核的空格使用方格(主要)取决于它是用于函数还是关键字。(大多数)关键字后要加一个空格。值得注意的例外是sizeof、typeof、alignof和__attribute__,这些关键字在一定程度上看起来更像函数(它们在Linux里也常常伴随小括号使用,尽管在C语言里这样的小括号不是必需的,就像“struct fileinfo info”声明过后的“sizeof info”)

所以在这些关键字之后放一个空格:

if, switch, case, for, do, while

但是不在sizeof、typeof、alignof或者__attribute__这些关键字之后放空格。例如, s = sizeof(struct file);

不要在小括号里的表达式两侧加空格。这是一个反例:

s = sizeof( struct file );

当声明指针类型或者返回指针类型的函数时,“*”的首选使用方式是使之靠近变量名或者函数名,而不是靠近类型名。例子:

char *linux_banner;

unsigned long long memparse(char *ptr, char **retptr);

char *match_strdup(substring_t *s);

在大多数二元和三元操作符两侧使用一个空格,例如下面所有这些操作符:

= + - < > * / % | & ^ <= >= == != ? :

但是一元操作符后不要加空格:

& * + - ~ ! sizeof typeof alignof __attribute__ defined

后缀自增和自减一元操作符前不加空格:

++ --

前缀自增和自减一元操作符后不加空格:

++ --

“.”和“->”结构体成员操作符前后不加空格。

不要在行尾留空白。有些可以自动缩进的编辑器会在新行的行首加入适量的空白,然后你就可以直接在那一行输入代码。不过假如你最后没有在那一行输入代码,有些编辑器就不会移除已经加入的空白,就像你故意留下一个只有空白的行。包含行尾空白的行就这样产生了。当Git发现补丁包含了行尾空白的时候会警告你,并且可以应你的要求去掉行尾空白;不过如果你是正在打一系列补丁,这样做会导致后面的补丁失败,因为你改变了补丁的上下文。

第四章:命名

C 是一个简朴的语言,你的命名也应该这样。和Modula-2和Pascal程序员不同,C程序员不使用类似ThisV ariableIsA TemporaryCounter这样华丽的名字。C程序员会称那个变量为“tmp”,这样写起来会更容易,而且至少不会令其难于理解。

不过,虽然混用大小写的名字是不提倡使用的,但是全局变量还是需要一个具描述性的名字。称一个全局函数为“foo”是一个难以饶恕的错误。

全局变量(只有当你真正需要它们的时候再用它)需要有一个具描述性的名字,就像全局函数。如果你有一个可以计算活动用户数量的函数,你应该叫它“count_ac tive_users()”

或者类似的名字,你不应该叫它“cntuser()”。

在函数名中包含函数类型(所谓的匈牙利命名法)是脑子出了问题——编译器知道那些类型

而且能够检查那些类型,这样做只能把程序员弄糊涂了。难怪微软总是制造出有问题的程序。

本地变量名应该简短,而且能够表达相关的含义。如果你有一些随机的整数型的循环计数器,它应该被称为“i”。叫它“loop_counter”并无益处,如果它没有可能被误解的话。类似的“tmp”可以用来称呼任意类型的临时变量。

如果你怕混淆了你的本地变量名,你就遇到另一个问题了,叫做函数增长荷尔蒙失衡综合症。请看第六章(函数)。

第五章:Typedef

不要使用类似“vps_t”之类的东西。

对结构体和指针使用typedef是一个错误。当你在代码里看到:

vps_t a;

这代表什么意思呢?

相反,如果是这样

struct virtual_container *a;

你就知道“a”是什么了。

很多人认为typedef“能提高可读性”。实际不是这样的。它们只在下列情况下有用:

(a) 完全不透明的对象(这种情况下要主动使用typedef来隐藏这个对象实际上是什么)。

例如:“pte_t”等不透明对象,你只能用合适的访问函数来访问它们。

注意!不透明性和“访问函数本身”是不好的。我们使用pte_t等类型的原因在于真的是完全没有任何共用的可访问信息。

(b) 清楚的整数类型,这样抽象层就可以帮助我们消除到底是"int"还是"long"的混淆。

u8/u16/u32是完全没有问题的typedef,不过它们更符合(d)中所言,而不是这里。再次注意!要这样做,必须事出有因。如果某个变量是“unsigned long“,那么没有必要

typedef unsigned long myflags_t;

不过如果有一个明确的原因,比如它在某种情况下可能会是一个“unsigned int”而

在其他情况下可能为“unsigned long”,那么就不要犹豫,请务必使用typedef。

(c) 当你使用sparse按字面的创建一个新类型来做类型检查的时候。

(d) 和标准C99类型相同的类型,在某些例外的情况下。

虽然让眼睛和脑筋来适应新的标准类型比如“uint32_t”不需要花很多时间,可以有

些人仍然拒绝使用它们。

因此,Linux特有的等同于标准类型的“u8/u16/u32/u64”类型和它们的有符号类型是被允许的——尽管在你自己的新代码中,它们不是强制要求要使用的。

当编辑已经使用了某个类型集的已有代码时,你应该遵循那些代码中已经做出的选择。

(e) 可以在用户空间安全使用的类型。

在某些用户空间可见的结构体里,我们不能要求C99类型而且不能用上面提到的“u32”类型。因此,我们在与用户空间共享的所有结构体中使用__u32和类似的类型。

可能还有其他的情况,不过基本的规则是永远不要使用typedef,除非你可以明确的应用上述某个规则中的一个。

总的来说,如果一个指针或者一个结构体里的元素可以合理的被直接访问到,那么它们就不应该是一个typedef。

第六章:函数

函数应该简短而漂亮,并且只完成一件事情。函数应该可以一屏或者两屏显示完(我们都知道ISO/ANSI屏幕大小是80x24),只做一件事情,而且把它做好。

一个函数的最大长度是和该函数的复杂度和缩进级数成反比的。所以,如果你有一个理论上很简单的只有一个很长(但是简单)的case语句的函数,而且你需要在每个case里做很多很小的事情,这样的函数尽管很长,但也是可以的。

不过,如果你有一个复杂的函数,而且你怀疑一个天分不是很高的高中一年级学生可能甚至搞不清楚这个函数的目的,你应该更严格的遵守最大限制。使用辅助函数,并为之取个具描述性的名字(如果你觉得其对性能要求严格的话,你可以要求编译器将它们内联展开,它往往会比你更好的完成任务。)

函数的另外一个衡量标准是本地变量的数量。此数量不应超过5-10个,否则你的函数就有问题了。重新考虑一下你的函数,把它分拆成更小的函数。人的大脑一般可以轻松的同时跟踪7个不同的事物,如果再增多的话,就会糊涂了。即便你聪颖过人,你也可能会记不清你2个星期前做过的事情。

在源文件里,使用空行隔开不同的函数。如果该函数需要被导出,它的EXPORT*宏应该紧贴在它的结束大括号之下。比如:

int system_is_up(void)

{

return system_state == SYSTEM_RUNNING;

}

EXPORT_SYMBOL(system_is_up);

在函数原型中,包含函数名和它们的数据类型。虽然C语言里没有这样的要求,在Linux 里这是提倡的做法,因为这样可以很简单的给读者提供更多的有价值的信息。

第七章:集中的函数退出途径

虽然被某些人声称已经过时,但是goto语句的等价物还是经常被编译器所使用,具体形式是无条件跳转指令。当一个函数从多个位置退出并且需要做一些通用的清洁工作的时候,goto的好处就显现出来了。

理由是:

- 无条件语句容易理解和跟踪

- 嵌套程度减小

- 可以避免由于修改时忘记更新某个单独的退出点而导致的错误

- 减轻了编译器的工作,无需删除冗余代码;)

int fun(int a)

{

int result = 0;

char *buffer = kmalloc(SIZE);

if (buffer == NULL)

return -ENOMEM;

if (condition1) {

while (loop1) {

...

}

result = 1;

goto out;

}

...

out:

kfree(buffer);

return result;

}

第八章:注释

注释是好的,不过有过度注释的危险。永远不要在注释里解释你的代码是如何运作的:更好的做法是让别人一看你的代码就可以明白,解释写的很差的代码是浪费时间。

一般的,你想要你的注释告诉别人你的代码做了什么,而不是怎么做的。也请你不要把注释放在一个函数体内部:如果函数复杂到你需要独立的注释其中的一部分,你很可能需要回到第六章看一看。你可以做一些小注释来注明或警告某些很聪明(或者槽糕)的做法,但不要加太多。你应该做的,是把注释放在函数的头部,告诉人们它做了什么,也可以加上它做这些事情的原因。

当注释内核API函数时,请使用kernel-doc格式。请看

Documentation/kernel-doc-nano-HOWTO.txt和scripts/kernel-doc以获得详细信息。

Linux的注释风格是C89“/* ... */”风格。不要使用C99风格“// ...”注释。

长(多行)的首选注释风格是:

/*

* This is the preferred style for multi-line

* comments in the Linux kernel source code.

* Please use it consistently.

*

* Description: A column of asterisks on the left side,

* with beginning and ending almost-blank lines.

*/

注释数据也是很重要的,不管是基本类型还是衍生类型。为了方便实现这一点,每一行应只声明一个数据(不要使用逗号来一次声明多个数据)。这样你就有空间来为每个数据写一段小注释来解释它们的用途了。

第九章:你已经把事情弄糟了

这没什么,我们都是这样。可能你的使用了很长时间Unix的朋友已经告诉你“GNU emacs”能自动帮你格式化C源代码,而且你也注意到了,确实是这样,不过它所使用的默认值和我们想要的相去甚远(实际上,甚至比随机打的还要差——无数个猴子在GNU emacs里打字永远不会创造出一个好程序)(译注:请参考Infinite Monkey Theorem)

所以你要么放弃GNU emacs,要么改变它让它使用更合理的设定。要采用后一个方案,你

可以把下面这段粘贴到你的.emacs文件里。

(defun linux-c-mode ()

"C mode with adjusted defaults for use with the Linux kernel."

(interactive)

(c-mode)

(c-set-style "K&R")

(setq tab-width 8)

(setq indent-tabs-mode t)

(setq c-basic-offset 8))

这样就定义了M-x linux-c-mode命令。当你hack一个模块的时候,如果你把字符串

-*- linux-c -*-放在头两行的某个位置,这个模式将会被自动调用。如果你希望在你修改

/usr/src/linux里的文件时魔术般自动打开linux-c-mode的话,你也可能需要添加

(setq auto-mode-alist (cons '("/usr/src/linux.*/.*\\.[ch]$" . linux-c-mode)

auto-mode-alist))

到你的.emacs文件里。

不过就算你尝试让emacs正确的格式化代码失败了,也并不意味着你失去了一切:还可以用“indent”。

不过,GNU indent也有和GNU emacs一样有问题的设定,所以你需要给它一些命令选项。不过,这还不算太糟糕,因为就算是GNU indent的作者也认同K&R的权威性(GNU的人并不是坏人,他们只是在这个问题上被严重的误导了),所以你只要给indent指定选项“- kr -i8”(代表“K&R,8个字符缩进”),或者使用“scripts/Lindent”,这样就可以以最时髦的方式缩进源代码。“indent”有很多选项,特别是重新格式化注释的时候,你可能需要看一下它的手册页。不过记住:“indent”不能修正坏的编程习惯。

第十章:Kconfig配置文件

对于遍布源码树的所有Kconfig*配置文件来说,它们缩进方式与C代码相比有所不同。紧挨在“config”定义下面的行缩进一个制表符,帮助信息则再多缩进2个空格。比如:

config AUDIT

bool "Auditing support"

depends on NET

help

Enable auditing infrastructure that can be used with another

kernel subsystem, such as SELinux (which requires this for

logging of avc messages output). Does not do system-call

auditing without CONFIG_AUDITSYSCALL.

仍然被认为不够稳定的功能应该被定义为依赖于“EXPERIMENTAL”:

config SLUB

depends on EXPERIMENTAL && !ARCH_USES_SLAB_PAGE_STRUCT

bool "SLUB (Unqueued Allocator)"

...

而那些危险的功能(比如某些文件系统的写支持)应该在它们的提示字符串里显著的声明这一点:

config ADFS_FS_RW

bool "ADFS write support (DANGEROUS)"

depends on ADFS_FS

...

要查看配置文件的完整文档,请看Documentation/kbuild/kconfig-language.txt。

第十一章:数据结构

如果一个数据结构,在创建和销毁它的单线执行环境之外可见,那么它必须要有一个引用计数器。内核里没有垃圾收集(并且内核之外的垃圾收集慢且效率低下),这意味着你绝对需要记录你对这种数据结构的使用情况。

引用计数意味着你能够避免上锁,并且允许多个用户并行访问这个数据结构——而不需要担心这个数据结构仅仅因为暂时不被使用就消失了,那些用户可能不过是沉睡了一阵或者做了一些其他事情而已。

注意上锁不能取代引用计数。上锁是为了保持数据结构的一致性,而引用计数是一个内存管理技巧。通常二者都需要,不要把两个搞混了。

很多数据结构实际上有2级引用计数,它们通常有不同“类”的用户。子类计数器统计子类用户的数量,每当子类计数器减至零时,全局计数器减一。

这种“多级引用计数”的例子可以在内存管理(“struct mm_struct”:mm_users和

mm_count)和文件系统(“struct super_block”:s_count和s_active)中找到。

记住:如果另一个执行线索可以找到你的数据结构,但是这个数据结构没有引用计数器,这里几乎肯定是一个bug。

第十二章:宏,列举(enum)和RTL

定义常量和列举里的标签的宏的名字需要大写。

#define CONSTANT 0x12345

在定义几个相关的常量时,最好用列举。

宏的名字请用大写字母,不过形如函数的宏的名字可以用小写字母。

一般的,如果能写成内联函数就不要写成像函数的宏。

含有多个语句的宏应该被包含在一个do-while代码块里:

#define macrofun(a, b, c) \

do { \

if (a == 5) \

do_this(b, c); \

} while (0)

使用宏的时候应避免的事情:

1) 影响控制流程的宏:

#define FOO(x) \

do { \

if (blah(x) < 0) \

return -EBUGGERED; \

} while(0)

非常不好。它看起来像一个函数,不过却能导致“调用”它的函数退出;

don't break the internal parsers of those who will read the code.

2) 依赖于一个固定名字的本地变量的宏:

#define FOO(val) bar(index, val)

可能看起来像是个不错的东西,不过它非常容易把读代码的人搞糊涂,而且容易导致看起来不相关的改动带来错误。

3) 作为左值的带参数的宏:FOO(x) = y;如果有人把FOO变成一个内联函数的话,这种用法就会出错了。

4) 忘记了优先级:使用表达式定义常量的宏必须将表达式置于一对小括号之内。带参数的宏也要注意此类问题。

#define CONSTANT 0x4000

#define CONSTEXP (CONSTANT | 3)

cpp手册对宏的讲解很详细。Gcc internals手册也详细讲解了RTL(译注:register

transfer language),内核里的汇编语言经常用到它。

第十三章:打印内核消息

内核开发者应该是受过良好教育的。请一定注意内核信息的拼写,以给人以好的印象。不要用不规范的单词比如“dont”,而要用“do not”或者“don't”。保证这些信息简单、

明了、无歧义。

内核信息不必以句点结束。

在小括号里打印数字(%d)没有任何价值,应该避免这样做。

里有一些驱动模型诊断宏,你应该使用它们,以确保信息对应于正确的设备和驱动,并且被标记了正确的消息级别。这些宏有:dev_err(), dev_warn(),

dev_info()等等。对于那些不和某个特定设备相关连的信息,定义了pr_debug()和pr_info()。

写出好的调试信息可以是一个很大的挑战;当你写出来之后,这些信息在远程除错的时候就会成为极大的帮助。当DEBUG符号没有被定义的时候,这些信息不应该被编译进内核里(也就是说,默认地,它们不应该被包含在内)。如果你使用dev_dbg()或者pr_debug(),就能自动达到这个效果。很多子系统拥有Kconfig选项来启用-DDEBUG。还有一个相关的惯例是使用VERBOSE_DEBUG来添加dev_vdbg()消息到那些已经由DEBUG启用的消息之上。

第十四章:分配内存

内核提供了下面的一般用途的内存分配函数:kmalloc(),kzalloc(),kcalloc()和

vmalloc()。请参考API文档以获取有关它们的详细信息。

传递结构体大小的首选形式是这样的:

p = kmalloc(sizeof(*p), ...);

另外一种传递方式中,sizeof的操作数是结构体的名字,这样会降低可读性,并且可能会引入bug。有可能指针变量类型被改变时,而对应的传递给内存分配函数的sizeof的结果不变。

强制转换一个void指针返回值是多余的。C语言本身保证了从void指针到其他任何指针类型的转换是没有问题的。

第十五章:内联弊病

有一个常见的误解是内联函数是gcc提供的可以让代码运行更快的一个选项。虽然使用内联函数有时候是恰当的(比如作为一种替代宏的方式,请看第十二章),不过很多情况下不是这样。inline关键字的过度使用会使内核变大,从而使整个系统运行速度变慢。因为大内核会占用更多的指令高速缓存(译注:一级缓存通常是指令缓存和数据缓存分开的)而且会导致pagecache的可用内存减少。想象一下,一次pagecache未命中就会导致一次磁盘寻址,将耗时5毫秒。5毫秒的时间内CPU能执行很多很多指令。

一个基本的原则是如果一个函数有3行以上,就不要把它变成内联函数。这个原则的一个例外是,如果你知道某个参数是一个编译时常量,而且因为这个常量你确定编译器在编译时能优化掉你的函数的大部分代码,那仍然可以给它加上inline关键字。kmalloc()内联函数就是一个很好的例子。

人们经常主张给static的而且只用了一次的函数加上inline,不会有任何损失,因为这种情况下没有什么好权衡的。虽然从技术上说,这是正确的,不过gcc可以在没有提示的情况下自动使其内联,而且其他用户可能会要求移除inline,此种维护上的争论会抵消可以告诉gcc 来做某些事情的提示带来的潜在价值。不管有没有inline,这种函数都会被内联。

第十六章:函数返回值及命名

函数可以返回很多种不同类型的值,最常见的一种是表明函数执行成功或者失败的值。这样的一个值可以表示为一个错误代码整数(-E**=失败,0=成功)或者一个“成功”布尔值(0=失败,非0=成功)。

混合使用这两种表达方式是难于发现的bug的来源。如果C语言本身严格区分整形和布尔型变量,那么编译器就能够帮我们发现这些错误……不过C语言不区分。为了避免产生这种bug,请遵循下面的惯例:

如果函数的名字是一个动作或者强制性的命令,那么这个函数应该返回错误代码

整数。如果是一个判断,那么函数应该返回一个“成功”布尔值。

比如,“add work”是一个命令,所以add_work()函数在成功时返回0,在失败时返回

-EBUSY。类似的,因为“PCI device present”是一个判断,所pci_dev_present()函数在成功找到一个匹配的设备时应该返回1,如果找不到时应该返回0。

所有导出(译注:EXPORT)的函数都必须遵守这个惯例,所有的公共函数也都应该如此。私有(static)函数不需要如此,但是我们也推荐这样做。

返回值是实际计算结果而不是计算是否成功的标志的函数不受此惯例的限制。一般的,他们通过返回一些正常值范围之外的结果来表示出错。典型的例子是返回指针的函数,他们使用NULL或者ERR_PTR机制来报告错误。

第十七章:不要重新发明内核宏

头文件include/linux/kernel.h包含了一些宏,你应该使用它们,而不要自己写一些它们的变种。比如,如果你需要计算一个数组的长度,使用这个宏

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

类似的,如果你要计算某结构体成员的大小,使用

#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))

还有可以做严格的类型检查的min()和max()宏,如果你需要可以使用它们。你可以自己看看那个头文件里还定义了什么你可以拿来用的东西,如果有定义的话,你就不应在你的代码里自己重新定义。

第十八章:编辑器模式行和其他需要罗嗦的事情

有一些编辑器可以解释嵌入在源文件里的由一些特殊标记标明的配置信息。比如,emacs能够解释被标记成这样的行:

-*- mode: c -*-

或者这样的:

/*

Local V ariables:

compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"

End:

*/

Vim能够解释这样的标记:

/* vim:set sw=8 noet */

不要在源代码中包含任何这样的内容。每个人都有他自己的编辑器配置,你的源文件不应该覆盖别人的配置。这包括有关缩进和模式配置的标记。人们可以使用他们自己定制的模式,或者使用其他可以产生正确的缩进的巧妙方法。

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.wendangku.net/doc/2818362149.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

AndroidJava命名规范

Android Java命名规范 1、包(packages): 采用反域名命名规则,全部使用小写字母。一级包名为com,二级包名为xx(可以是公司或则个人的随便),三级包名根据应用进行命名,四级包名为模块名或层级名 2、类(classes):名词,采用大驼峰命名法,尽量避免缩写,除非该缩写是众所周知的,比如HTML,URL,如果类名称中包含单词缩写,则单词缩写的每个字母均应大写。

3、方法(methods):动词或动名词,采用小驼峰命名法例如:onCreate(), run() 4、变量:名词,采用小驼峰命名法 5 资源文件(图片drawable文件夹下):全部小写,采用下划线命名法,加前缀区分命名模式:控件名称_逻辑名称/common_逻辑名称

6、资源布局文件(XML文件(layout布局文件)): 全部小写,采用下划线命名法 1).contentview命名, Activity默认布局,以去掉后缀的Activity类进行命名。不加后缀: 功能模块.xml 例如:main.xml、more.xml、settings.xml 或则:activity_功能模块.xml 例如:activity_main.xml、activity_more.xml 2).Dialog命名:dialog_描述.xml 例如:dlg_hint.xml 2).PopupWindow命名:ppw_描述.xml 例如:ppw _info.xml 3). 列表项命名list_item_描述.xml 例如:list_item_city.xml 4).包含项:include_模块.xml 例如:include_head.xml、include_bottom.xml 5).adapter的子布局:功能模块_item.xml 例如:main_item.xml、 7、动画文件(anim文件夹下):全部小写,采用下划线命名法,加前缀区分。 Android编码规范建议: 1.Java代码中不出现中文; 2.代码中不出现字符串,所有的字符串定义到string.xml中; 3.图片尽量分拆成多个可重用的图片; 4.使用静态变量方式实现界面间共享要慎重; 5.Log(TAG,详细描述):TAG以常量的方式定义为该类的类名; 6.不要重用父类的handler,对应一个类的handler也不应该让其子类用到,否则会导致message.what冲突; 7.activity中在一个View.OnClickListener中处理所有的逻辑; 8.strings.xml中使用%1$s实现字符串的通配; 9.如果多个Activity中包含共同的UI处理,那么可以提炼一个CommonActivity,把通用部分叫由它来处理,其他activity只要继承它即可; 10.如果使用eclipse工具: 1. Format使用Android源码自定义的xml

Linux操作系统源代码详细分析

linux源代码分析:Linux操作系统源代码详细分析 疯狂代码 https://www.wendangku.net/doc/2818362149.html,/ ?:http:/https://www.wendangku.net/doc/2818362149.html,/Linux/Article28378.html 内容介绍: Linux 拥有现代操作系统所有功能如真正抢先式多任务处理、支持多用户内存保护虚拟内存支持SMP、UP符合POSIX标准联网、图形用户接口和桌面环境具有快速性、稳定性等特点本书通过分析Linux内核源代码充分揭示了Linux作为操作系统内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作现实中能让人自由获取系统源代码并不多通过本书学习将大大有助于读者编写自己新 第部分 Linux 内核源代码 arch/i386/kernel/entry.S 2 arch/i386/kernel/init_task.c 8 arch/i386/kernel/irq.c 8 arch/i386/kernel/irq.h 19 arch/i386/kernel/process.c 22 arch/i386/kernel/signal.c 30 arch/i386/kernel/smp.c 38 arch/i386/kernel/time.c 58 arch/i386/kernel/traps.c 65 arch/i386/lib/delay.c 73 arch/i386/mm/fault.c 74 arch/i386/mm/init.c 76 fs/binfmt-elf.c 82 fs/binfmt_java.c 96 fs/exec.c 98 /asm-generic/smplock.h 107 /asm-i386/atomic.h 108 /asm- i386/current.h 109 /asm-i386/dma.h 109 /asm-i386/elf.h 113 /asm-i386/hardirq.h 114 /asm- i386/page.h 114 /asm-i386/pgtable.h 115 /asm-i386/ptrace.h 122 /asm-i386/semaphore.h 123 /asm-i386/shmparam.h 124 /asm-i386/sigcontext.h 125 /asm-i386/siginfo.h 125 /asm-i386/signal.h 127 /asm-i386/smp.h 130 /asm-i386/softirq.h 132 /asm-i386/spinlock.h 133 /asm-i386/system.h 137 /asm-i386/uaccess.h 139 //binfmts.h 146 //capability.h 147 /linux/elf.h 150 /linux/elfcore.h 156 /linux/errupt.h 157 /linux/kernel.h 158 /linux/kernel_stat.h 159 /linux/limits.h 160 /linux/mm.h 160 /linux/module.h 164 /linux/msg.h 168 /linux/personality.h 169 /linux/reboot.h 169 /linux/resource.h 170 /linux/sched.h 171 /linux/sem.h 179 /linux/shm.h 180 /linux/signal.h 181 /linux/slab.h 184 /linux/smp.h 184 /linux/smp_lock.h 185 /linux/swap.h 185 /linux/swapctl.h 187 /linux/sysctl.h 188 /linux/tasks.h 194 /linux/time.h 194 /linux/timer.h 195 /linux/times.h 196 /linux/tqueue.h 196 /linux/wait.h 198 init/.c 198 init/version.c 212 ipc/msg.c 213 ipc/sem.c 218 ipc/shm.c 227 ipc/util.c 236 kernel/capability.c 237 kernel/dma.c 240 kernel/exec_do.c 241 kernel/exit.c 242 kernel/fork.c 248 kernel/info.c 255 kernel/itimer.c 255 kernel/kmod.c 257 kernel/module.c 259 kernel/panic.c 270 kernel/prk.c 271 kernel/sched.c 275 kernel/signal.c 295 kernel/softirq.c 307 kernel/sys.c 307 kernel/sysctl.c 318 kernel/time.c 330 mm/memory.c 335 mm/mlock.c 345 mm/mmap.c 348 mm/mprotect.c 358 mm/mremap.c 361 mm/page_alloc.c 363 mm/page_io.c 368 mm/slab.c 372 mm/swap.c 394 mm/swap_state.c 395 mm/swapfile.c 398 mm/vmalloc.c 406 mm/vmscan.c 409

关于Linux 内核中五个主要子系统的介绍

关于Linux 内核中五个主要子系统的介绍 发布时间:2008.01.02 06:23来源:赛迪网作者:sixth 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.wendangku.net/doc/2818362149.html, 来源: https://www.wendangku.net/doc/2818362149.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

java编程规范+数据库命名规范

Java编程规范 本编程规范建立在标准的Java编程规范的基础上,如和标准的Java编程规范有冲突,以本编程规范为准。 1.1 程序结构 包名 引入包/类名 类注释 类 常量//常量注释 构造器注释 构造器 构造器注释 构造器 方法注释 方法 方法注释 方法 1.2 命名规范 命名规范使得程序更易理解,可读性更强。并且能够提供函数和标识符的信息。 文件命名规范: java程序使用如下的文件名后缀: 文件类型后缀 Java 源文件.java Java 字节码文件.class 对系统的文件命名方式有待于根据实际业务决定。 包命名规范: 包名应该唯一,它的前缀可以为任何小写的ASCII字符,包名按照公司内部的命名规范,这些规范指出了某种目录名,主要包括部门,项目,机器,或者登录名。 命名规则为: app.系统名.模块名.xxx.xxx 包命名举例: app.oa.interceptor.xxx app.oa.sys.xxx 类命名规范: 类名应该是名词,并且是大小写混合的。首字母要大写。尽量保证类名简单并且描述性强。避免使用只取单词首字母的简写或者单词的缩写形式,除非缩写形式比单词的完整形式更常用(例如:URL或者HTML)。文件名必须和public的类名保持一致,注意大小写(JBuilder 等一些编译器可以忽略大小写,要特别注意)。如是实现类命名后缀+Impl。 类命名举例: classLoginAction; classUserServiceImpl; 接口命名规范:

接口命名方式与类命名方式相同。 接口命名举例: interfaceIUserService; interfaceSysYhjsDAO; 方法命名规范; 方法名应该为动词,并且是大小写混合的。首字母要小写,方法名的第 二个单词的第一个字母大写。 方法命名举例: String getNoticeNo(); Collection findByCondition(String); 变量命名规范 变量,以及所有的类实例应为首字母小写的大小写混合形式。变量名的第二个单词 的首字母大写。变量名的首字母不能为下划线或者$符。 变量名应该尽可能的短小,但要有意义。变量名应该便于记忆,也就是说变量名应 该尽可能的做到见名知意。除了暂时使用的变量外(一般用于循环变量),应该避免使 用只有一个字母的变量名。对于临时变量一般说来:i,j,k,m,n代表整型变量。c,d,e代表字符型变量。 变量命名举例: String dataType; String name; inti; char c; 常量命名规范: 声明为类常量的变量或者ANSI常量应该全部为大写字母,并且每个单词间用下划 线“_”隔开。为了便于调试,应避免使用ANSI常量。 常量命名举例: static final int MIN_WIDTH = 4; 1.3 注释规范 Java 提供了两种类型的注释:程序注释和文档注释。程序注释是由分隔符/*…*/,和// 隔开的部分,这些注释和C++ 中的注释一样。文档注释(即“doc 注释”)是Java 独有的。由分隔符/**…*/隔开。使用javadoc工具能够将文档注释抽取出来形成HTML 文件。程序注释主要是对程序的某部分具体实现方式的注释。文档注释是对程序的描述性注释,主要是提供给不需要了解程序具体实现的开发者使用。注释应该是代码的概括性描述,提供不易直接从代码中得到的信息,并且只包含对阅读和理解程序有用的信息。例如注释中包含相应的包如何编译或者在哪个目录下,而不应该包括这个包驻留在哪儿的信息。注释中可以描述一些精妙的算法和一些不易理解的设计思想,但应该避免那些在程序代码中很清楚的表达出来的信息。尽可能的避免过时的信息。错误的注释比没有注释更有害。经常性的注释有时也反映出代码质量的低下。 …程序注释: 程序注释有四种格式:块注释格式,单行注释,跟随注释,行尾注释 ?块注释格式 块注释主要用于描述:文件、方法、数据结构和算法。一般在文件或者方法定义的 之前使用。也可以用在方法定义里面,如果块注释放在函数或者方法定义里,它必须与它所描述的代码具有相同的缩进形式。

Linux源代码下载

1. 课程设计题目:下载某个版本的linux源代码,生成一个定制的linux操作系统,完成后该系统可以用来作为启动系统使用。 2.如何做的问题? 内核版本要编译一个最新的内核,您需要首先下载它的源代码在您下载内核的源代码前,您要知道到您要找什么。首先要问您自己的问题是-- 您需要一份稳定的还是测试版的内核?稳定版内核通常版本号第二位用偶数数字 -- 例如, 2.0.38、2.2.15、2.2.1 8 和2.4.1 是被认为是“稳定”的内核(分别由于其包含 0、2、2 和4)。如果您想尝试测试版内核,您通常需要找那些版本号第二位是奇数的号码又最高的内核。例如,2.3.99 和 2.1.38都是测试版内核(分别由于其包含 3 和 1)。 内核版本历史 2.2 系列的内核被认为是较新而且稳定的内核。如果"较新"和"稳定"是您想要的,查找一个版本号的第三位是最高的2.2 内核(2.2.16 是目前最新的版本)。当 2.2 系列的内核仍在开发中,2.3 系列已经开始了。这个系列是作为将被集成到 2.4稳定版系列的新功能和高级功能的测试版。2.3 系列已经到了 2.3.99,其开发已经停止。开发人员已经开始着手2.4.0。如果您喜欢冒险使用最最新的技术,您可能想使用可以找到的最新的 2.4 系列内核。

2.4 版内核警告信息 Once a real 2.4 series kernel comes out(like 2.4.0), don't assume that the kernel is ready for use on a mission-critical system like a server. Even though 2.4 is supposed tobe a stable series, early 2.4 kernels ar e likely to be not quite up tosnuff. As is often the case i n the computer industry, the first version o f anythin g can have fairly sizable bugs. While this may not be a problem i f you're testing the kernel on your home workstation, it is a risk you may want to avoid when you machine provides val uable services to others. 下载内核 如果您只是想编译一个您已安装内核的新版本(例如,实现 SMP 支持),那不需要下载任何代码 -- 跳过此部分继续下一屏。 您可以在https://www.wendangku.net/doc/2818362149.html,/pub/linux/kernel上找到内核代码。当您进入到那后,您将发现内核的源代码按内核版本(v2.2、v 2.3等),被组织到多个不同的目录中。在每个目录中,您将发现文件被冠以"linux-x.y.z.tar.gz"和"linux-x.y.z.tar.bz2"。这些就是Linux 内核的源代码。您也将看到冠以 "patch-x.y.z.gz" 和"pa tch-x.y.z.bz2"的文件。这些是用来更新前面完整的内核源代码的补丁包。如果您希望编译一个新的内核版本,您将需要下载这些"linu x"文件其中之一。

java类名命名规范

竭诚为您提供优质文档/双击可除 java类名命名规范 篇一:java各种命名规范 定义规范的目的是为了使项目的代码样式统一,使程序有良好的可读性。 包的命名(全部小写,由域名定义) java包的名字都是由小写单词组成。但是由于java面向对象编程的特性,每一名java程序员都可以编写属于自己的java包,为了保障每个java包命名的唯一性,在最新的java编程规范中,要求程序员在自己定义的包的名称之前加上唯一的前缀。由于互联网上的域名称是不会重复的,所以程序员一般采用自己在互联网上的域名称作为自己程 序包的唯一前缀。 例如:net.frontfree.javagroup 类的命名(单词首字母大写) 根据约定,java类名通常以大写字母开头,如果类名称由多个单词组成,则每个单词的首字母均应为大写例如testpage;如果类名称中包含单词缩写,则这个缩写词的每个字母均应大写,如:xmlexample,还有一点命名技巧就是

由于类是设计用来代表对象的,所以在命名类时应尽量选择名词。 例如:graphics 方法的命名(首字母小写,字母开头大写) 方法的名字的第一个单词应以小写字母作为开头,后面的单词则用大写字母开头。例如:drawimage 常量的命名(全部大写,常加下划线) 常量的名字应该都使用大写字母,并且指出该常量完整含义。如果一个常量名称由多个单词组成,则应该用下划线来分割这些单词。 例如:max_Value 参数的命名 参数的命名规范和方法的命名规范相同,而且为了避免阅读程序时造成迷惑,请在尽量保证参数名称为一个单词的情况下使参数的命名尽可能明确。 javadoc注释 java除了可以采用我们常见的注释方式之外,java语言规范还定义了一种特殊的注释,也就是我们所说的javadoc注释,它是用来记录我们代码中的api的。javadoc 注释是一种多行注释,以/**开头,而以*/结束,注释可以包含一些html标记符和专门的关键词。使用javadoc注释的好处是编写的注释可以被自动转为在线文档,省去了单独

读Linux内核源代码

Linux内核分析方法 Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追随者的主要原因: ?首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护机制等等,这些都是非都源码不能体会的。 ?同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与具体硬件不相关的平台; 同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 ?而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加快系统对中断的处理。 ?最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率; 他们总是在编码的同时,就考虑到了以后的代码维护和升级。甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。所有源文件均是相对于目录/usr/src/linux的。 方法之一:从何入手 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的Linux爱好者,和那些对源码分析很

Java命名规范

命名规范? 本规范主要针对java开发制定的规范 项目命名? 项目创建,名称所有字母均小写,组合方式为: com.leadal.$projectName.$component.$hiberarchy。 1.$projectName:项目名称 2.$component:模块名称 3.$hiberarchy:开发层次名称 例如: com.leadal.tims.exchange.dao 类文件夹命名? ?source代码模块 ?config配置文件模块 ?test 测试模块 包命名? ?规则 o全部小写。 o标识符用点号分隔开来。为了使包的名字更易读。如 com.leadal.shanty ?常用几个包名 o dao:数据层 o service:逻辑层 o model:持久类定义包 ?实现Serializable接口,创建serialVersionUID ?主键统一用id标识,Long类型 o web:表示层及控制层 o enums:枚举类型 o config:配置文件类包 o resource:资源文件包 类文件命名?

?尽量以英文进行类定义 ?所有类都以大写字母开头 ?组合词每个词以大写字母开头,不用下划线或其他符号 ?避免使用单词的缩写,除非它的缩写已经广为人知,如HTTP 变量命名? ?第一个字母小写,中间单词的第一个字母大写 ?不用_或&作为第一个字母。 ?尽量使用短而且具有意义的单词 ?单字符的变量名一般只用于生命期非常短暂的变量。i,j,k,m,n一般用于integers;c,d,e一般用于characters ?如果变量是集合,则变量名应用复数。 String myName; int[] students; int i; int n; char c; btNew; (bt是Button的缩写) 常量命名? ?所有常量名均全部大写,单词间以‘_’隔开 int MAX_NUM; 方法命名规则? ?规则 o第一个单词一般是动词。 o第一个字母是小些,但是中间单词的第一个字母是大写。

Linux内核源代码阅读与工具介绍

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux 目录下的东西就是内核源代码。另外还可以从互连网上下载,解压缩后文件一般也都位于linux目录下。内核源代码有很多版本,目前最新的版本是2.2.14。 许多人对于阅读Linux内核有一种恐惧感,其实大可不必。当然,象Linux内核这样大而复杂的系统代码,阅读起来确实有很多困难,但是也不象想象的那么高不可攀。只要有恒心,困难都是可以克服的。任何事情做起来都需要有方法和工具。正确的方法可以指导工作,良好的工具可以事半功倍。对于Linux内核源代码的阅读也同样如此。下面我就把自己阅读内核源代码的一点经验介绍一下,最后介绍Window平台下的一种阅读工具。 对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,基本要求是:⑴操作系统的基本知识;⑵对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录): arch这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。 include这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。 init此目录包含核心启动代码。 mm此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下,如对应于X86的就是arch/i386/mm/fault.c。 drivers系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。 ipc此目录包含了核心的进程间通讯代码。 modules此目录包含已建好可动态加载的模块。 fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。 kernel主要核心代码。同时与处理器结构相关代码都放在arch/*/kernel目录下。 net核心的网络部分代码。里面的每个子目录对应于网络的一个方面。 lib此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/*/lib/目录下。

Linux内核编码风格(编程代码风格推荐)

这是翻译版本,英文原版是linux源码Documentation文件夹下的CodingStyle 一个良好风格的程序看起来直观、美观,便于阅读,还能有助于对程序的理解,特别在代码量比较大情况下更显现编码素质的重要性。相反没有良好的风格的代码读起来难看、晦涩,甚至有时候一个括号没对齐就能造成对程序的曲解或者不理解。我曾经就遇见过这样的情况,花费了很多不必要的时间在程序的上下文对照上,还debug了半天没理解的程序。后来直接用indent -kr -i8给他转换格式来看了。特此转过来一个关于代码风格的帖子分享一下~ Linux内核编码风格 这是一份简短的,描述linux内核首选编码风格的文档。编码风格是很个人化的东西,而且我也不愿意把我的观点强加给任何人,不过这里所讲述的是我必须要维护的代码所遵守的风格,并且我也希望绝大多数其他代码也能遵守这个风格。所以请至少考虑一下本文所述的观点。 首先,我建议你打印一份GNU的编码规范,然后不要读它。烧掉它,这是一个很高调的具有象征意义的姿态。 Anyway, here goes: 第一章:缩进 制表符是8个字符,所以缩进也是8个字符。有些异端运动试图将缩进变为4(乃至2)个字符深,这跟尝试着将圆周率PI的值定义为3没什么两样。 理由:缩进的全部意义就在于清楚的定义一个控制块起止于何处。尤其是当你盯着你的屏幕连续看了20小时之后,你将会发现大一点的缩进将会使你更容易分辨缩进。 现在,有些人会抱怨8个字符的缩进会使代码向右边移动的太远,在80个字符的终端屏幕上就很难读这样的代码。这个问题的答案是,如果你需要3级以上的缩进,不管缩进深度如何你的代码已经有问题了,应该修正你的程序。 简而言之,8个字符的缩进可以让代码更容易阅读,还有一个好处是当你的函数嵌套太深的时候可以向你提出告警。请留意这个警告。 在switch语句中消除多级缩进的首选的方式是让“switch”和从属于它的“case”标签对 齐于同一列,而不要“两次缩进”“case”标签。比如: switch (suffix) { case 'G': case 'g': mem <<= 30;

java关键字和java命名规范

Java关键字和java中的命名规范 Java关键字是java语言和java的开发和平台之间的约定,程序员只要按照约定使用关键字,java的开发平台就能认识他,并正确处理,展示出程序员想要的效果。 下面列出java关键字的含义: 1.abstract :表明类或类中的方法是抽象的; 2.assert: 声明断言; 3.boolean:基本数据类型之一,布尔类型; 4.break:提前跳出一个块; 5.byte:基本数据类型之一,字节类型; 6.case:在switch语句中,表明其中的一个分支; 7.catch :用于处理例外情况的,用来捕捉异常; 8.char :基本数据类型之一,字符类型; 9.class :类; 10.continue :回到一个块的开始处; 11.default :用在switch语句中,表明一个默认的分支; 12.do :用在“do while循坏语句中”; 13.double: 基本数据类型之一,双精度浮点型; 14.else :在条件语句之后,与if形成对应; 15.extends :用来表明一个类是另一个类的子类; 16.final :用来表明一个类不能派生出子类,或类中的方法不能被覆盖,或声明一个变量时常量 17.finally :用于处理异常情况,表示这一块无论如何都被执行; 18.float :基本数据类型之一,单精度浮点数据类型 19.for :一种循坏结构的引导词; 20.if :条件语句的引导词; 21.Implements:表明一个类实现了给定的接口; 22.import: 表明要访问指定的类或包; 23.instanceof: 用来测试一个对象是否是一个指定类的实例; 24.int: 基本数据类型之一,整形; 25.interface:接口; 26.long: 基本数据类型之一,长整形; 27.native:用来声明一个方法是由与机器相关的语言(如C/C++/FORTRAN)实现的; 28.new:用来申请新对象; 29.package:包; 30.private: 一种访问方式:私有模式; 31.protected:一种访问方式:保护模式; 32.public: 一种访问方式,公共模式; 33.return:从方法中返回值; 34.short :基本数据类型之一,短整数类型; 35.static: 表明域或方法是静态的,即该域或方法是属于类的;

linux源代码分析实验报告格式

linux源代码分析实验报告格式

Linux的fork、exec、wait代码的分析 指导老师:景建笃 组员:王步月 张少恒 完成日期:2005-12-16

一、 设计目的 1.通过对Linux 的fork 、exec 、wait 代码的分析,了解一个操作系统进程的创建、 执行、等待、退出的过程,锻炼学生分析大型软件代码的能力; 2.通过与同组同学的合作,锻炼学生的合作能力。 二、准备知识 由于我们选的是题目二,所以为了明确分工,我们必须明白进程的定义。经过 查阅资料,我们得知进程必须具备以下四个要素: 1、有一段程序供其执行。这段程序不一定是进程专有,可以与其他进程共用。 2、有起码的“私有财产”,这就是进程专用的系统堆栈空间 3、有“户口”,这就是在内核中有一个task_struct 结构,操作系统称为“进程控制 块”。有了这个结构,进程才能成为内核调度的一个基本单位。同时,这个结构又 是进程的“财产登记卡”,记录着进程所占用的各项资源。 4、有独立的存储空间,意味着拥有专有的用户空间:进一步,还意味着除前述的 系统空间堆栈外,还有其专用的用户空间堆栈。系统为每个进程分配了一个 task_struct 结构,实际分配了两个连续的物理页面(共8192字节),其图如下: Struct task_struct (大约1K) 系统空间堆栈 (大约7KB )两个 连续 的物 理页 面 对这些基本的知识有了初步了解之后,我们按老师的建议,商量分工。如下: 四、 小组成员以及任务分配 1、王步月:分析进程的创建函数fork.c ,其中包含了get_pid 和do_fork get_pid, 写出代码分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作 比例35%。 2、张少恒:分析进程的执行函数exec.c,其中包含了do_execve 。写出代码分析结 果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例35% 。 3、余波:分析进程的退出函数exit.c,其中包含了do_exit 、sys_wait4。写出代码 分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例30% 。 五、各模块分析: 1、fork.c 一)、概述 进程大多数是由FORK 系统调用创建的.fork 能满足非常高效的生灭机制.除了 0进程等少数一,两个进程外,几乎所有的进程都是被另一个进程执行fork 系统调 用创建的.调用fork 的进程是父进程,由fork 创建的程是子进程.每个进程都有一

Java编码规范(命名规则).

1. Java 命名约定 除了以下几个特例之外,命名时应始终采用完整的英文描述符。此外,一般应采用小写字母,但类名、接口名以及任何非初始单词的第一个字母要大写。 1.1一般概念 n 尽量使用完整的英文描述符 n 采用适用于相关领域的术语 n 采用大小写混合使名字可读 n 尽量少用缩写,但如果用了,要明智地使用,且在整个工程中统一 n 避免使用长的名字(小于 15个字母是个好主意 n 避免使用类似的名字,或者仅仅是大小写不同的名字 n 避免使用下划线(除静态常量等 1.2示范 包(Package采用完整的英文描述符,应该都是由小写字母组成。对于全局包,将你的 Internet 域名反转并接上包名。 j ava.aw t,com.ambysof t.www.persistence 类(Class采用完整的英文描述符,所有单词的第一个字母大写。 Customer, SavingsAccount 接口(Interface采用完整的英文描述符说明接口封装,所有单词的第一个字母大写。习惯上,名字后面加上后缀 able, ible 或者 er,但这不是必需的。Contactable,Prompter 组件/部件(Component使用完整的英文描述来说明组件的用途,末端应接上组件类型。 okButton, customerList,f ileMenu 异常(Exception通常采用字母 e 表示异常。 e

类变量字段采用完整的英文描述,第一个字母小写,任何中间单词的首字母大写。 firstName, lastName 实参/参数同字段/属性的命名规则 public void setFirstName(String firstName{ this.firstName = f irstName;} 局部变量同字段/属性的命名规则 获取成员函数被访问字段名的前面加上前缀 get。 getFirstName(, getLastName( 布尔型的获取成员函数所有的布尔型获取函数必须用单词 is做前缀。isPersistent(, isString( 设置成员函数被访问字段名的前面加上前缀 set。 setFirstName(, setLastName(,setWarpSpeed( 普通成员函数采用完整的英文描述说明成员函数功能,第一个单词尽可能采用一个生动的动词,第一个字母小写。 openFile(, add Account( 静态常量字段(static final全部采用大写字母,单词之间用下划线分隔。 MIN_B ALANCE, DEF AULT_DATE 循环计数器通常采用字母 i,j,k 或者 counter 都可以接受。 i, j, k, counter 数组数组应该总是用下面的方式来命名:obj ectType[]。 byte[] buff er; 2. Java 注释约定 一个很好的可遵循的有关注释的经验法则是:问问你自己,你如果从未见过这段代码,要在合理的时间内有效地明白这段代码,你需要哪些信息。 2.1. 一般概念 n 注释应该增加代码的清晰度

Linux源代码分析_存储管理

文章编号:1004-485X (2003)03-0030-04 收稿日期:2003-05-10 作者简介:王艳春,女(1964 ),副教授,主要从事操作系统、中文信息处理等方面的研究工作。 Linux 源代码分析 存储管理 王艳春 陈 毓 葛明霞 (长春理工大学计算机科学技术学院,吉林长春130022) 摘 要:本文剖析了Linux 操作系统的存储管理机制。给出了Linux 存储管理的特点、虚存的实现方法,以及主要数据结构之间的关系。 关键词:Linux 操作系统;存储管理;虚拟存储中图分类号:T P316 81 文献标识码:A Linux 操作系统是一种能运行于多种平台、源代码公开、免费、功能强大、与Unix 兼容的操作系统。自其诞生以来,发展非常迅速,在我国也受到政府、企业、科研单位、大专院校的重视。我们自2000年开始对Linux 源代码(版本号是Linux 2 2 16)进行分析,首先剖析了进程管理和存储管理部分,本文是有关存储管理的一部分。主要介绍了Linux 虚存管理所用到的数据结构及其相互间的关系,据此可以更好地理解其存储管理机制,也可以在此基础上对其进行改进或在此后的研究中提供借鉴作用。作为一种功能强大的操作系统,Linux 实现了以虚拟内存为主的内存管理机制。即能够克服物理内存的局限,使用户进程在透明方式下,拥有比实际物理内存大得多的内存。本文主要阐述了Linux 虚存管理的基本特点和主要实现技术,并分析了Linux 虚存管理的主要数据结构及其相互关系。 1 Lin ux 虚存管理概述 Linux 的内存管理采用虚拟页式管理,使用多级页表,动态地址变换。进程在运行过程中可以动态浮动和扩展,为用户提供了透明的、灵活有效的内存使用方式。 1)32 bit 虚拟地址 在Linux 中,进程的4GB 虚存需通过32 bit 地址进行寻址。Linux 中虚拟地址与线性地址为同一概念,虚拟地址被分成3个子位段,而大小为4k,如图1所示。 2)Linux 的多级页表结构 图1 32位虚拟地址 标准的Linux 的虚存页表为三级页表,依次为页目录(Pag e Directory PGD)、中间页目录(Pag e Middle Directory PMD )、页表(Page Table PT E )。在i386机器上Linux 的页表结构实际为两级,PGD 和PMD 页表是合二为一的。所有有关PMD 的操作关际上是对PGD 的操作。所以源代码中形如*_pgd _*()和*_pmd_*()函数实现的功能也是一样的。 页目录(PGD)是一个大小为4K 的表,每一个进程只有一个页目录,以4字节为一个表项,分成1024个表项(或称入口点),表项的索引即为32位虚拟地址的页目录,该表项的值为所指页表的起始地址。页表(PTE)的每一个入口点的值为此表项所指的一页框(page frame),页表项的索引即为32位虚拟地址中的页号。页框(page reame)并不是物理页,它指的是虚存的一个地址空间。 3) 页表项的格式 图2 Linux 中页目录项和页表项格式 4)动态地址映射 Linux 虚存采用动态地址映射方式,即进程的地址空间和存储空间的对应关系是在程序的执行过 第26卷第3期长春理工大学学报 Vol 26N o 32003年9月 Journal of Changchun University of Science and T echnology Sep.2003

相关文档
相关文档 最新文档