文档库 最新最全的文档下载
当前位置:文档库 › 有限元法基础试题

有限元法基础试题

有限元法基础试题
有限元法基础试题

有限元法基础试题(A )

一、填空题(5×2分) 1.1单元刚度矩阵e

T k B DBd Ω

=

Ω?

中,矩阵B 为__________,矩阵D 为___________。

1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功:

()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。

1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。

二、判断题(5×2分)

2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分)

3.1列举有限元法的优点。(8分)

3.2写出有限单元法的分析过程。(8分)

3.3列出3种普通的有限元单元类型。(6分)

3.4简要阐述变形体虚位移原理。(4分)

四、计算题(54分)

4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分)

4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

4.3对称桁架如图(a )所示,杆单元弹性模量均为E ,横截面面积均为A ,单元长度如图,根据对称性,求图(b )的整体刚度矩阵。(12分)

(a ) (b )

4.4如图所示的平面桁架,确定转换矩阵[]1T ,并写出[][][]11T

T K T (10分)

x

4.5确定下图所示梁的各节点位移。梁已按节点编号离散化。梁在节点1固支,节点2有滚柱支撑,节点3作用有垂直向下的力P=50kN 。令沿梁弹性模量E=210GPa ,I=12×10-4m 4,梁单元长L=3m 。弹簧常数k=200kN/m 。(12分)

参考答案(A ):

一、填空题(5×2分)

1.1变形矩阵或应变矩阵 弹性矩阵或本构关系矩阵 1.2 齐次边界 非齐次边界

1.3 微元体上外力在随基点刚体平移所做虚功 外力在微元体变形虚位移上所做虚功 1.4 1 1 1.5 1 0 二、判断题(5×2分)

2.1 √ 2.2 √ 2.3 √ 2.4 × 2.5 √ 三、简答题(26分)

3.1答:优点有:①很容易地模拟不规则形状结构;②可以很方便地处理一般荷载条件;③由于单元方程是单个建立的,因此可以模拟由几种不同材料构成的物件;④可以处理数量不受限制和各类边界条件;⑤单元尺寸大小可以变化;⑥改变模型比较容易⑦可以包括动态作用⑧可以处理大变形和非线性材料带来的非线性问题。(8分)

3.2答:有限元方法的一般步骤有:①离散和选择单元类型;②选择位移函数;③定义应变位移和应力应变关系;④推导单元刚度矩阵和方程;⑤组装单元方程得出总体方程并引入边界条件;⑥求解未知自由度;⑦求解单元应变和位移;⑧解释结果。(8分)

3.3答:弹簧单元,杆单元,梁单元,轴对称单元,常应变三角单元,线应变三角形单元,四面体单元等。(任意上述三种均可)(6分)

3.4答:变形体虚位移原理:受给定外力的变形体处于平衡状态的充分、必要条件是,对一切虚位移,外力所作总虚功恒等于变形体所接受的总虚变形功。(4分) 四、计算题(54分)

4.1解:沿弹簧建立X 坐标:

(A )每个弹簧单元刚度矩阵如下:

()()1310000100001000010000k k -??==??-?? ()220000200002000020000k -??=??-??

总体刚度矩阵:

()()()123K k k k =++

1000010000

0010000300002000000200003000010000001000010000K -????--??=??--??

-??

(B )总体刚度矩阵方程:

112233441000010000

0010000300002000000200003000010000001000010000x x x x x x x x F d F d F d F d -????????????--??????=??????--??????????-??????

边界条件:2450x F N =, 30x F =,10x d =,40x d =

解得:20.027x d m =,30.018x d m =,1270x F N =-,4180x F N = (C )求单元2节点力

2233?2000020000?2000020000x x x x f d d f ??-??????=??????-????

???? 解得:2?180x f N =,3?180x

f N =-

4.2解:沿杆单元建立X 坐标: (A )每个单元刚度矩阵如下:

()()1

2

611111101111AE k k L --????==

=?????--????

N/m ()3

61121011k -??=???-??

N/m

总体刚度矩阵:

()()()123K k k k =++ 611001210110

01320022K -??

??--??=???--??

-??

(B )总体刚度矩阵方程:

1122633441100121011001320022x x x x x x x x F d F d F d F d -????

????????--??????=???????--??????????-??????

边界条件:25000x F N =, 30x F =,10x d =,40x d =

解得:20.003x d m =,30.001x d m =,13000x F N =-,42000x F N =- (C )单元②的应力

22633?1

1110?11x x x x f d d f ??-??????=???????-???????

? 解得:2?2000x f N =,3?2000x

f N =- ()

23?x x

f

A σ==

4

200010210MPa --=-? 杆单元②受压

有限元法基础试题(B )

一、填空题(5×2分)

1.1整体刚度矩阵方程中节点荷载由两部分组成,一是__________,二是___________。 1.2常应变三角形单元的位移函数i N +j N +m N =_________。

1.3最小势能原理与虚位移原理等价,一个是以_____的形式描述,另一个用____的形式表达。 1.4计算轴对称单元刚度矩阵有三种方法,一是采用数值积分,二是__________________,三是__________________。

1.5基本的三维单元是_____________。 二、判断题(5×2分)

2.1边界条件通常有两类。通常发生在位置完全固定不能转动的情况为非其次边界。( ) 2.2线应变三角形单元中变形矩阵是x 或y 的函数。 ( ) 2.3杆单元的位移函数1N +2N =1。 ( ) 2.4单元刚度矩阵e

T k B DBd Ω

=

Ω?

中,矩阵B 为弹性矩阵,矩阵D 为变形矩阵。 ( )

2.5在梁单元中节点力与位移的方向规定应该是与材料力学中规定是一致的。 ( )

三、简答题(26分)

3.1简述刚度矩阵的特性。(6分)

3.2写出位移函数的含义。(4分)

3.3写出推导弹簧单元刚度矩阵的分析过程。(7分)

3.4试列举三种有限元商用软件,并说明各自优点。(9分)

四、计算题(54分)

4.1对于下图所示的弹簧组合,单元①的弹簧常数为2000N/m ,单元②的弹簧常数为2000N/m ,节点3处位移δ为0.01m ,确定各节点位移、单元力和反力。(10分)

4.2如图所示的杆单元,杆单元弹性模量为E ,杆单元长为L ,横截面面积为A ,试分别计算(a )、(b )总体x-y 坐标下的刚度矩阵。(10分)

1

x

(a ) (b )

4.3对称桁架如图(a )所示,杆单元弹性模量均为E ,横截面面积均为A ,单元长度如图,根据对称性,求图(b )的整体刚度矩阵。(12分)

(a ) (b )

4.4确定下图所示梁的各节点位移。梁已按节点编号离散化。梁在节点2作用有垂直向下的力P=12kN 。令沿梁弹性模量E=70GPa ,I=2×10-4m 4,梁单元长L=4m 。弹簧常数k=200kN/m 。(10分)

4.5如图所示梁,确定节点位移,以及每一单元的力和反作用力。梁弹性模量E=70GPa ,I=3

×10-4m4,梁单元长L=4m。作用在梁单元②的均布荷载P为8 kN/m。(12分)

P

参考答案(B):

一、填空题(5×2分)

1.1直接节点荷载等效节点荷载 1.2 1

1.3 能功 1.4 直接积分对单元中心点计算1.5 四面体单元

二、判断题(5×2分)

2.1 × 2.2 √ 2.3 √ 2.4 × 2.5 ×

三、简答题(26分)

3.1答:刚度矩阵的特性有:①对称的;②奇异的;③主对角项总是正的。(6分)

3.2答:位移函数的含义:将单元中任意一点的位移近似地表示成该单元节点的函数。当第i

N代表在整个单元域中假定的位移函数形状。个单元自由度为1,而所有其他自由度值为0,

i

(4分)

3.3答:推导弹簧单元刚度矩阵的分析过程为①选择单元类型;②选择位移函数;③定义应变位移和应力应变关系;④推导单元刚度矩阵和方程;⑤组装单元方程得出总体方程并引入边界条件;⑥求解节点位移;⑦求解单元力。(7分)

3.4答:①ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。它长于非线性有限元分析,可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,其系统级分析的特点相对于其他分析软件来说是独一无二的。

②ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,

发展了很多版本,但是它们核心的计算部分变化不大,只是模块越来越多。ANSYS系统擅

长于多物理场和非线性问题的有限元分析,在铁道,建筑和压力容器方面应用较多。③

LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室由J.O.Hallquist主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。LSDYNA长于冲击、接触等非线性动力分析。(9分)

四、计算题(54分)

4.5常应变三角单元(12分)

P

P

4.4如图所示梁,确定节点位移,以及每一单元的力和反作用力。梁弹性模量E=210GPa,I=2×10-4m4,作用在梁单元上的均布荷载P为5 kN/m。图中长度L=1m。(10分)

P

4.5如图所示梁,确定节点位移,以及每一单元的力和反作用力。梁弹性模量E=10GPa,I=2×10-4m4,作用在梁单元上的均布荷载P为1 kN/m。图中长度L=1m。(10分)

P

有限元基础(期末考试题)

《有限元基础》期末测试 一、结构线性静力分析 如图所示的托架,其顶面承受2 lbf in的均匀分布载荷。托架通过有孔的表面 50/ ν=,托架尺固定在墙上,托架是钢制的,弹性模量6 =?,泊松比0.3 E psi 2910 寸如图,单位为英寸。试通过ANSYS求其变形图及von Mises应力分布图。 对题目分析。进行建模,网格划分 托架网格图

施加约束后,就可以对实体进行加载求解, 托架变形图 托架变形图输出的是原型托架和施加载荷后托架变形图的对比,

虚线部分即为托架的原型,托架变形图可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们在应用托架的时候应当注意的。 节点位移图

托架von Mises 应力分布图

上面两个图为托架的应力分布图,由图可看出主要在两孔处出现应力集中,也就是说这些地方所受的应力的最大的,比较容易出现裂痕。我们在应用托架的时候,应当注意采取一些设施,以便减缓其应力集中。特别是在施加载荷时,绝对不能够超过托架所能承受的极限,否则必将导致事故的发生。 二、动力分析 如图1有一梁板结构,板的四角由四根梁固定支撑,板质量集中于中央。梁板材料相关参数为弹性模量112210/E N m =?,泊松比0.3ν=,密度 337.810/kg m ρ=?。板的厚度0.02t =,板长2000L mm =,宽1000B mm =,板的质量100M kg =。梁长1000h mm =,截面面积为42210A m -=?,惯性矩为 84210J m -=?,现在板的表面施加均匀压力载荷如图2。试研究该梁板结构的瞬 态动力响应。 图 1 图2

有限元试题

一判断题节点的位置依赖于形态而并不依赖于载荷的位置√2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元×3. 不能把梁单元、壳单元和实体单元混合在一起作成模型√4. 四边形的平面单元尽可能作成接近正方形形状的单元×5. 平面应变单元也好平面应力单元也好如果以单位厚来作模型化处理的话会得到一样的答案×6. 用有限元法不可以对运动的物体的结构进行静力分析√7. 一般应力变化大的地方单元尺寸要划的小才好×8. 所谓全约束只要将位移自由度约束住而不必约束转动自由度√9. 同一载荷作用下的结构所给材料的弹性模量越大则变形值越小√10一维变带宽存储通常比二维等带宽存储更节省存储量。二、填空平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板但前者受力特点是平行于板面且沿厚度均布载荷作用变形发生在板面内后者受力特点是垂直于板面的力的作用板将变成有弯有扭的曲面。平面应力问题与平面应变问题都具有三个独立的应力分量三个独立的应变分量但对应的弹性体几何形状前者为薄板后者为长柱体。位移模式需反映刚体位移反映常变形满足单元边界上位移连续。单元刚度矩阵的特点有对称性奇异性还可按节点分块。轴对称问题单元形状为三角形或四边形截面的空间环形单元由于轴对称的特性任意一点变形只发生在子午面上因此可以作为二维问题处理。等参数单元指的是描述位移和描述坐标采用相同的形函数形式。等参数单元优点是可以采用高阶次位移模式能够模拟复杂几何边界方便单元刚度矩阵和等效节点载荷的积分运算。有限单元法首先求出的解是节点位移单元应力可由它求得其计算公式为。8、一个空间块体单元的节点有 3 个节点位移变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元 三选择题分等参变换是指单元坐标变换和函数插值采用__B___的结点和______ 的插值函数。不相同不相同相同相同相同不相同不相同 相同2 有限元位移模式中广义坐标的个数应与_______B____相等。单元结点个数 单元结点自由度数场变量个数 3 如果出现在泛函中场函数的最高阶导数是m阶单元的完备性是指试探函数必须至少是___B___完全多项式。-1次 次-1次 4 与高斯消去法相比高斯约当消去法将系数矩阵化成了____C_____形式因此不用进行回代计算。上三角矩阵下三角矩阵对角矩阵5 对分析物体划分好单元后会对刚度矩阵的半带宽产生影响。单元编号单元组集次序结点编号6 n个积分点的高斯积分的精度可达到__C____阶。--引入位移边界条件是为了消除有限元整 体刚度矩阵的_____C_____。对称性稀疏性奇异性三简答题 共20分每题5分、简述有限单元法结构刚度矩阵的特点。2、简述有限元法中选取单元位移函数多项式的一般原则。1、答答对前3个给4分对称性 奇异性主对角元恒正稀疏性非零元素带状分布2、答一般原则有(1) 广义坐标的个数应该与结点自由度数相等选取多项式时常数项和坐标的一次项必须完备多项式的选取应由低阶到高阶尽量选取完全多项式以提高单元的精度。有限元方法分析的目的对变形体中的位移、应力、应变进行定义和表达进而建立平衡方程、几何方程和物理方程。2)针对具有任意复杂几何形状的变形体完整得获取在复杂外力作用下它内部的准确力学信息。3)力学分析的基础上对设计对象进行强度(strength)、刚度评判修改、优化参数。有限单元法分析步骤1、结构的离散化2、选择位移模式3 、分析单元的力学特性4、集合所有单元平衡方程得到整体结构的平衡方程5、由平衡方程求解未知节点位移6、单元应变和应力的计算4连续体结构分析的基本假定连续性假设完全弹性假设均匀性假设

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

北京科技大学有限元考试试题

一.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。()(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。()(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。()(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。()(5)有限元位移法求得的应力结果通常比应变结果精度低。()(6)等参单元中Jacobi行列式的值不能等于零。()(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。()(8)四边形单元的Jacobi行列式是常数。()(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。()(10)一维变带宽存储通常比二维等带宽存储更节省存储量。() 二.单项选择题(共20分,每小题2分) 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ________________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用______的结点和______的插值函数。 (A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与___________相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般___________。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是______完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进 行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到______阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的__________。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 2、简述有限元法中选取单元位移函数(多项式)的一般原则。 3、简述有限单元法的收敛性准则。

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元法试题

《汽车有限元基础》2009-2010二学期考试试卷

《汽车有限元基础》2009-2010第二学期考试试卷 一、填空题 1. 有限元法的基本思想是用个单元的集合来代替原来具有个自由 度的连续体。 2. 单元刚度矩阵K中元素K ij的物理意义:当单元第j个自由度产生而其它自由度固定时,在第i个自由度产生的。 3.按照各杆轴线及外力作用线在空间的位置,杆系结构可分为: 和。4.平面刚架中各单元发生轴向拉压变形及面内的弯曲变形,而且这两种变形相互独立,因此刚架单元可以看成是由单元和单元叠加而成。因此,平面刚架单元的节点位移应包含个平动分量和个转动分量。 5.工程中常用的薄板单元有:单元和单元。6.有限元分析的主要步骤先后为:(1) 网格划分, (2) , (3) 。 7. 单元特性分析的主要内容先后为:(1) 、(2) 、(3) 应力或内力、(4) 、(5) 单元节点载荷。 8.对于弹性变形体,承受的外载荷共有三种:集中载荷、和。在有限元法中,对于没有作用在节点上的这些外载荷,是按照的原则将其移置到节点上。 9.工程中任一平板,若其厚度为t,板面宽度为b,当t/b小于时可以认为是薄板。常用的薄板单元有:单元和单元。10.薄壳单元中的应力可看成平面应力问题和问题中两种应力的叠加。 11.求解结构系统的动力响应时,常用的两种求解方法为:和 12.在有限元分析中,为了描述几何模型和有限元模型,需要用到几种坐标系: (1) (2) (3) 和(4)

《汽车有限元基础》2009-2010第二学期考试试卷 二、 问答题 1.某一薄板矩形单元的节点编号按照逆时针依次为i 、j 、m 和p 。假设该单元每个节点的位移表示为{}{}T yi xi i i w θθδ=, (i, j, m, p );该单元每个节点的载荷表示为{}{}T iy ix i i T T Z F θθ=,(i, j, m, p )。请写出该单元的单元节点位移列阵和单元 节点载荷列阵。 2.请写出使用有限元分析软件时,进行数据前处理的主要工作内容。 3.右下图为一典型三节点三角形平面单元,节点按照逆时针依次编号为i 、j 和m ,节点的坐标依次为(x i ,y i ),(x j ,y j )、(x m ,y m )。假设单元内任意一点的两个位移分量分别表示u 和v 。请写出该单元位移模式的多项式形式,并简述待定常数个数的确定理由。 4. 请简述针对动力问题的有限元分析的基本步骤。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

北京科技大学有限元试题及答案

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为 {}{} [][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

西工大有限元试题附答案68872

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a)4结点四边形元; b)2结点线性杆元。 3、对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别就是多大? 4、下图所示,若单元就是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽就是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。

5. 设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k 6、设阶梯形杆件由两个等截面杆件\o \a c(○,1)与错误!所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。 7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P,求各结点的轴向位移与各杆的轴力。 8、 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x,y 为总体坐标系,x 轴与x 轴的夹角为 。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k

9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K ] 。 10. 设上题中的桁架的支承情况与载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。

有限元法中的几个基本概念

诚信·公平·开放·共赢 Loyalty Fair Opening Win-win 有限元法中的几个基本概念 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。 这些单元仅在顶角处相互联接,称这些联接点为结点。 离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。 通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。 在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。其中并行版在前后处理上进行了相应的改进。

有限元试题及答案

有限元试题及答案

一判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内; 后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。 4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u,v,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元考试试题.(优选)

一.是非题(认为该题正确,在括号中打;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。(×)(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。(√)(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。(√)(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。(×)(5)有限元位移法求得的应力结果通常比应变结果精度低。(×)(6)等参单元中Jacobi行列式的值不能等于零。(√)(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。(×)(8)四边形单元的Jacobi行列式是常数。(×)(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。(√)(10)一维变带宽存储通常比二维等带宽存储更节省存储量。(√) 二.单项选择题(共20分,每小题2分)C B B C B C D C C C 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ____C__________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用__B____的结点和______的插值函数。(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与_____B______相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般______C_____。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是__B____完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了____C_____形式,因此,不用 进行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________D________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,______C____会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到__C____阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的____C______。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 (1)对称性;(2)奇异性;(3)主对角元恒正;(4)稀疏性;(5)非零元素带状分布

有限元试卷(1)答案

静、动态有限元试卷(一)答案 一、(1)答:圣维南原理第一种叙述:如果把物体的一小部分边界上的面力,变换为 分布不同但静力等效的面力(即主矢量相同、对同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但远处所受的影响可以不计。 圣维南原理第二种叙述:如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么,这个面力就只会使得近处产生显著的应力,远处的应力可以不计。 (2)答:所谓等效节点力,就是把分布载荷按照虚功相等的原则移至到节点上的力。 (3)答:首先导出关于局部坐标系的规整形状的单元(母单元)的高阶位移模式的形函数,然后利用形函数进行坐标变换,得到关于整体坐标系的复杂形状的单元(子单元),如果子单元的位移函数插值结点数与其位移坐标变换节点数相等,其位移函数插值公式与位移坐标变换式都有相同的形函数与结点参数进行插值,则称其为等参元。 (4)答:单元节点I发生单位位移时,函数Ni表示单元内部的位移分布形状,故Ni,,Nj,Nm都称为位移的形状函数,简称形函数。 (5)答:系统随时间变化时的响应。 (6)答:系统随频率变化时的响应。 (7)答:在静力分析时,一个结构在不同时刻可能承受不同的载荷。结构同时承受的一组载荷,它是各种实际作用的集中载荷和分布载荷的组合。称为一组结构载荷工况。 (8)答:单元的位移模式就是把单元内任一点的位移近似地表达为其坐标的函数二、答:(1)A:有限元的基本思想是: 将连续结构分割成数目有限的小单元体(成为单元),这些小单元体彼此间只在数目有限的指定点(成为节点)上互相连接,用这些小单元体组成的集合体来代替原来的连续结构。当然,每个小单元体的力学特性都与原结构对应与该小单元的力学特性相同,再把每个小单元体上实际作用的外载荷按虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程通常称为结构离散化。其次,对每个小单元根据分块近似的思想,选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中变分原理建立起单元节点力与节点位移之间的关系。最后,把全部单元的节点力与节点位移之间的关系组集起来,就得到了一组以结构节点位移为位置量的代数方程组,并考虑结构约束情况,消去节点位移分量。 B:有限元方法的解题步骤: 1)根据工程的实际情况和原始条件选定适当的力学模型,并按一定比例尺绘制结构图 形,注明尺寸、载荷和约束情况; 2)选定单元类型,对力学模型进行离散化,编制单元和节点号码,选定坐标,并求出各 节点坐标值; 3)根据载荷类型,将各单元所受的载荷移置到有关节点上, 4)并求出各节点的等效节点载荷; 5)根据节点坐标值和材料参数(E,μ等),按公式求出各单元刚度矩阵; 6)按刚度集成法,由各单元刚度矩阵组集成结构的整体刚度矩阵,由各节点位移组集成 整体结构位移列阵,再由各单元节点的载荷列阵组集成整体结构的载荷列阵,并建立整体刚度方程; 7)引入约束条件,修改整体刚都举镇和载荷列阵,并求解此方程组得出各节点位移; 8)根据以求得的各单元节点的位移分量,求解各单元的应力分量和各单元的主应力以及 住平面方向角; 9)将计算结果输出,并绘制结构的变形图和各应力分量的分布图等。

有限元法基础重点归纳(精)

1、有限元这种数值计算方法起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。 2、有限单元法的基本思想:在力学模型上将一个原来连续的物体离散成为有限个具有一定 大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。 3、节点:网格间相互连接的点。 4、边界:网格与网格的交界线。 5、有限元的优点:①理论基础简明,物理概念清晰,且可在不同的水平上建立起对该法的 理解②具有灵活性和适用性,应用范围极为广泛③该法在具体推导运算中,广泛采用了矩阵方法。 6、有限单元法分类(从选择基本未知量的角度:位移法(以节点位移为基本未知量,通用 性广、力法(以节点力、混合法(一部分以节点位移,另一部分以节点力 7、有限元法分析计算的基本步骤:①结构的离散化②单元分析(选择位移模式,建立单元 刚度方程,计算等效节点力③整体分析④求解方程,得出节点位移⑤由节点位移计算单元的应变与应力。 8、单元划分:将某个机械结构划分为由各种单元组成的计算模型。 9、有限元法基本近似性------几何近似。

10、弹性力学的任务:分析弹性体在受外力作用并处于平衡状态下产生的应力、应变和位移状态及其相互关系等。 11、弹性力学假设所研究的物体是连续的、完全弹性的、均匀的、各向同性的、微小变形的和无初应力的 12、外力:体力(分布在物体体积内的力---重力、惯性力、电磁力面力(分布在物体表面上的力---流体压力、接触力、风力 13、应力:物体受外力作用,或由于温度有所改变,其内部发生的内力。σ={ σx σy σz τx τy τz } = [σx σy σz τx τy τz ]T 14、应变:物体受到外力作用时,其形状发生改变时的形变。---长度和角度。 ε={ εx εy εz γx γy γz } = [εx εy εz γx γy γz ]T 15、位移:弹性体在载荷作用下,不仅会发生形变,还将产生位移,即弹性体位置 的移动。 δ={u v w }=[u v w ]T 16:、变形协调条件:设想在变形前,把弹性体分为许多微小立方单元体。变形后,每个单元体都产生任意变形而变成一些六面体。可能发生这样的情况,这些六面体

有限元单元法复习资料

1.1有限单元法中“离散”的含义是什么?有限单元法是如何将具 有无限自由度的连续介质的问题转变为有限自由度问题的?位移有限单元法的标准化程式是怎样的?(1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。(2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。(3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.2单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别? 单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。 单元刚度矩阵Kij物理意义Kij即单元节点位移向量中第j个自由度发生单位位移而其他位移分量为零时,在第i个自由度方向引起的节点力。 整体刚度矩阵K中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.1 为了使计算结果能够收敛于精确解,位移函数需要满足什么条件?为什么? 满足完备性和协调性。 原因:完备性包括两个条件:即刚体位移条件与常应变条件。首先,位移函数必须包含单元的刚体位移。结构中的单元不仅产生与该单元本身变形相应的位移,还可能因其他单元变形而通过节点位移产生单元刚体位移。为了正确反映单元的实际位移形态,位移函数必须具有反映刚体位移的能力。 其次,由于单元位移函数采用多项式,故在单元内部协调条件总能满足,要求反映在相邻单元之间。实质上来说,要求相邻单元间协调是为了保证单元交界面上应变有限。 3.1构造单元形函数有那些基本原则?试采用构造单元几何方法,构造T10单元的形函数,并对其收敛性进行讨论。 答:形函数是定义于单元内坐标的连续函数。通常单元位移函数采用多项式,其中的待定常数由节点位移参数确定,因此其个数应与单元节点自由度数相等。根据实体结构的几何方程,单元的应变是位移的一次导数。为了反映单元刚体位移和常应变即满足完备性要求,位移函数中必须包含常数项和一次项,即完全一次多项式。 3.3 何谓面积坐标?其特点是什么? 答:三角形单元中,任一点P(x,y)与其3个角点相连形成3个子三角形,其位置可以用下述称为面积坐标的三个比值来确定: L1=A1/A L2=A2/A L3=A3/A 其中A1,A2,A3分别为P23,P31,P12的面积。 各三角形面积为:Ai=1/2* =(ai+bi+ci)/2 由于A1+A2+A3=A,所以有L1+L2+L3=1,Li=(ai+bi+ci)/(2A) 特点:①T3单元的形函数Ni就是面积坐标Li ②面积坐标与三角形在整体坐标系中的位置无关,故称为局部坐标。 ③三个节点的面积坐标分别为节点1(1,0,0),节点2(0,1,0),节点3(0,0,1),形心的面积坐标(1/3,1/3 ,1/3)。④单元边界方程为Li=0 (i=1,2,3); ⑤在平行于2,3边的一条直线上,所有点都要相同的面积坐标。⑥面积坐标与直角坐标互为线性关系。 体积坐标:P点与四面体四个面围成的四个子四面体的体积与原来四面体体积的比值。即 剪切闭锁现象:当梁的高度与梁的长度之比t/l趋于零时,这种单元将出现这种现象,算得的挠度趋于零。 为克服剪切闭锁,使C0型单元适用于各种高度的梁。采用减缩积分方案与假设减应变法。 零能模式:对应于某种非刚体位移模式,减缩积分时高斯点上的应变正好等于零,此时的应变能当然也为零,这种非刚体位移模式称为零能模式。采用减缩积分时会发生零能模式。 5.1、等参单元:将整体坐标系中xy中形状中较复杂的真实单元变换成局部坐标系xy中规则的标准单元,然后在标准单元中构造形函数。由于坐标变换式与单元位移函数中用了相同的形函数N i(ξ,η),故称这种变换为等参变换,相应的单元称为等参单元。 2、等参单元的优越性:①有些工程较复杂,用直边单元离散这些结构需要大量的单元才能得到较好的近似,而曲边的等参单元可方便地离散复杂结构。②如在单元内多取些节点,单元便具有较多的位移自由度,从而就能够插值表示较复杂的单元内部位移场,这样就提高了单元本身的精度。③等参单元刚度矩阵、荷载矩阵的计算是在规则单元域内进行的因此不管被积函数多么复杂,都可以方便地采用标准化数值积分。 3、数值积分的阶次:对于N点积分,当被积函数为m次多项式且m<=2N-1时,可得精确积分值。反之,对于m次多项式的被积函数,精确积分要求的积分点数N>=(m+1)/2。 6.1、工程梁和剪切梁的基本假设?有两种梁弯曲理论①工程梁理论基本假设:平截面假设与横向纤维无挤压假设。前者认为梁横截面变形后仍为平面,且垂直于变形后的中性轴。该假设意味着横向剪切应变γxy =0,后者认为梁的横向纤维无挤压,即εy=0。②剪切梁理论基本假设:横向纤维元无挤压与另一假设认为法平面变形后仍为平面,但不再垂直于变形后的中性轴。 6.2. 剪切梁怎么考虑剪切影响:在结构单元分析中,可在工程梁单元的基础上考虑剪切变形的影响,也可通过挠度与转角各自独立插值直接构造剪切梁单元。 6.3对于杆系结构单元,为什么要在局部坐标系内建立单元刚度矩阵?为什么还要坐标变换?(1)在局部坐标系内可以更方便的建立单 元刚度矩阵。(2)在整体分析中,对所有单元都应采用同一个坐标系即整体坐标系X Y,否则围绕同一节点的不同单元对节点施加的节点力不能直接相加。因此,在进行整体分析之前,还需要进行坐标转换工作,把局部坐标系中得出的单元刚度方程转换成整体坐标系中的单元刚度方程,从而得出整体坐标系中的单元刚度矩阵。 7.1. 薄板弯曲理论基本假定:第一条:板厚方向的挤压变形可忽略不计,即εz=0,。这项假设类似于梁的横向纤维间无挤压假设。第二条:在板弯曲变形中,中面法线保持为直线且仍为弹性曲面(挠度曲面)的法线。第三条:薄板中面只发生弯曲变形,没有面内的伸缩变形,即中面水平位移(u)z=0=(v) z=0=0. 7.2. 厚板理论基本假设:板的中面法线变形后基本保持为直线,但因横向变形的缘故,该直线不在垂直于变形后的中面。因此,法线绕坐标轴的转角θx、θy不再是挠度的导数,而是独立变量;中面内的线位移和板厚方向的挤压变形也可忽略。 7.3. 薄板、厚板基本假定的不同:薄板:板弯曲变形中,中面法线保持为直线且仍为弹性曲面法线。厚板:板中面法线变形后仍基本保持为直线,但该直线不再垂直于变形后的中面。 7.4. DKT单元:离散Kirchhoff理论的基本思想是在若干离散点上满足Kirchhoff直法线假设。基于这种理论构造薄板单元时,w,θx,,θy 也各自独立插值;然后在若干离散点上引入直法线假设。这样构造的单元叫做DKT单元 8.1. 薄壳单元基本假设:薄壳理论假设:薄壳发生微笑变形时,忽略沿壳体厚度方向的挤压变形;且认为直法线假设成立,即变形后中面法线保持为直线且仍为中面的法线;壳体变形时中面不但发生弯曲,而且面内也将产生面内伸缩变形;折板假设;非耦合假设。 薄壳与薄板理论的假设的异同点:相同点:直法线假设和法向(板厚度方向)的纤维无挤压假设均成立。不同点:薄板中面只发生弯曲变形,没有面内的伸缩变形,即中面水平位移为零,而壳体变形时中面不但发生弯曲,而且也将产生面内伸缩变形。 厚壳分析的假设:变形前后的中曲面法线变形后仍基本保持为直线,但因横向剪切变形的缘故,该直线不再垂直于变形后的中曲面,此外,壳体厚度方向的挤压变形可以忽略。 与厚板理论的假设的 相同点:中面法线变形后仍基本保持为直线,但因横向剪切变形的缘故,该直线不在垂直于变形后的中面。厚度方向的挤压变形忽略不计。不同点:厚板理论的假设中,中面内的线位移可以忽略,而厚壳理论的假设中,中面内的位移不可忽略,并且厚壳的位移场可用中面位移表示。 8.2. 平板型单元:组成的折板系统去代替原来的壳体,由平面应力状态与平板弯曲应力状态加以组合而得壳体的应力单元。 分析这种单元时所提出的假设:理论假设:薄壳发生微笑变形时,忽略沿壳体厚度方向的挤压变形,且认为直法线假设成立,即变形后中面法线保持为直线且仍为中面的法线。,折板假设,非耦合假设。 应用平板型壳单元可能会出现的问题,如何解决:1.单元共面问题,解法:引入唯一边界条件可解方程Ka=P 。2.虚拟旋转刚度,解法:在特殊节点上给以任意的虚拟刚度系数。Kθzθzθzi=0,经坐标变换,整体坐标系中该节点平衡方程将满足唯一解条件。赋予Kθzθz任何值。3.新型平面膜元:在平面膜元角点上增加旋转自由度θz,使其有对应的刚度。 8.3. 面内变形与弯曲变形之间非耦合的假设是针对什么提出来的?试说明单元组装时,面内效应与弯曲效应的耦合将会出现。 答:面内变形与弯曲变形之间非耦合的假设是针对局部坐标系下的单元提出的。 9.1. 减少自由度的措施有哪些?各自基本概念如何? 答:1.恰当利用结构对称性。基本思想:利用结构的对称性,取结构一部分建立有限元模型。根据荷载对称性,分析对称面上的位移状态,以确定对称面上节点的位移边界条件。2.采用子结构技术。基本思想:在大型复杂结构的有限元分析中,可将原结构分成若干区域,每个区域作为一个子结构,这些子结构在其公共边界上互相连接起来。 2. 为什么说位移法中应力解的精度低于位移解? 答:在位移有限单元法中,沿单元边界是连续的,而位移的导数通常不连续,因此,在单元边界上应力是不连续的;基本未知量是位移,而单元应变和应力是由位移求导得到的,因此应力精度低于位移精度。 3. 在无法获得精确解的条件下,如何进行误差估计? 答:有限元解法的误差估计有:残值法,后处理法。后处理法:由于无法获得精确解,一般以修匀后的改进值σ*作为“精确解”进行误差估计,通过与精确值误差范数对比,这样做非常有效。

相关文档