文档库 最新最全的文档下载
当前位置:文档库 › 浪涌保护器的设计选型(新)

浪涌保护器的设计选型(新)

浪涌保护器的设计选型(新)
浪涌保护器的设计选型(新)

(1)考察建筑物所处地理位置及供电进线方式

首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。

推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:

高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs)

郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs)

城市内(埋地进线):40KA(8/20μs)

第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);

第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。

(2)检查建筑物内供电系统的类别

?单相、三相及直流供电系统

在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。

其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。

下面是防雷器的几个重要参数:

(1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

(2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。

(3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。

(4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

(5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

(6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

加空开(或熔断器)的目的只是保护浪涌保护器不被持续由过电压导致的过电流损坏,所以你加的空开小于等于浪涌也可以,但要大幅高于浪涌保护器约几十毫安的额定放电电流(MOV材质的浪涌保护器有弱放电现象

浪涌保护器的选型及使用

浪涌保护器的选型及使用 由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。 风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。业主对浪涌保护器的需求越来越普遍。这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规范。 应用指南 该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。该标准也说明了选择过电压保护设备的各种问题。标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。下图是评估中最重要问题的概览:

选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT 系统等)。浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。 仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。所以设计该系统时,记得连接电缆要包含火线和接地线。

浪涌保护器选型

电涌保护器选型 随着国际信息潮流的冲击、微电子科技的沸腾和通讯、计算机及自动控制技术的日新月 异,建筑开始走向高品质、高功能领域,形成了一种新的建筑形式——智能建筑。由于在智能建筑中存在众多信息系统,《建筑物防雷设计规范》GB50057-94(2002年版)(以下简称《防雷规范》)提出了安装电涌保护器的相关要求,以保证信息系统的安全稳定运行,笔者仅对其中使用的电涌保护器的产品选型提几点自己的看法。电涌保护器从本质上看就是一种等电位连接用的材料而已,其选型就是指在不同的防雷区内,按照不同雷击电磁脉冲的严重程度和等电位连接点的位置,决定位于该区域内的电子设备采用何种电涌保护器,实现与共用接地体等电位联结。笔者将从电涌保护器的最大放电电流Imax、持续工作电压Uc、保护电压Up、漏电流Ip、告警方式等方面进行论述。按照《防雷规范》第6.4.4条规定“电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流。”即电涌保护器的最大钳位电压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。最大放电电流按照《防雷规范》第6.4.6条规定,在LPZOA、LPZOB与LPZ1区的交界处安装电涌保护器其最大放电电流计算如下:根据《防雷规范》规定的“全部雷电流的50%流入建筑物的防雷装置。另50%流入引入建筑物的各种外来导电物、电力线缆、通信线缆等设施”, 表一:首次雷击的雷电流参量 雷电流参数一类防雷建筑物二类防雷建筑物三类防雷建筑物 I幅值(KA)200 150 100 T1波头时间( s)350 350 350 雷电波经建筑物引入的电力线缆、信息线缆、金属管道等分解,总配电间的低配供电线缆雷电流的分流值计算表如表二,线路屏蔽时,通过的雷电流降低到原来的30%,根据《通信局(站)雷电过电压保护工程设计规范》YD/T5098-2001中规定的脉冲为10/350 s波形的电荷量 约为8/20 s模拟雷电波波形电荷量的20 ..倍,具体计算如下: 表二:供电线缆雷电流分流值表 雷电流参数一类防雷建筑二类防雷建筑三类防雷建筑 I幅值(KA)200 150 100 供电线缆总分流值(kA)33.33 25 16.67 每根电缆分流值(kA)11.11 8.33 5.56

浪涌保护器的设计选型

浪涌保护器设计 目录 1 总则 (1) 3建筑物防雷分类 (1) 4 建筑物的防雷措施 (2) 5 防雷装置(略) (6) 6 防雷击电磁脉冲 (7) 6.1基本规定 (7) 6.2 防雷区和防雷击电磁脉冲 (7) 6.3 屏蔽、接地和等电位连接的要求 (9) 6.4 安装和选择电涌保护器的要求 (21) 电涌保护器的有效电压保护水平值的选取 (22) 选用S P D举例 (23) OBO的SPD典型配置 (24) 【SPD的安装接线】 (26) 1 总则 (1)为使建(构)筑物防雷设计因地制宜地采取防雷措施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,以及雷击电磁脉冲引发的电气和电子系统损坏或错误运行,做到安全可靠、技术先进、经济合理,制定本规范。 (2)本规范适用于新建、扩建、改建建筑物的防雷设计。 (3)建(构)筑物防雷设计,应在认真调查地理、地质、土壤、气象、环境等条件和雷电活动规律,以及被保护物的特点等的基础上,详细研究并确定防雷装置的形式及其布置。 (4)建(构)筑物防雷设计,除应符合本规范外,尚应符合国家现行有关标准的规定。 3建筑物防雷分类 表3-1 防雷分类对比

4 建筑物的防雷措施4.1 基本规定

表中k c—分流系数,单根引下线时为1,2根引下线及接闪器不成闭合环的多根引下线时为0.66,接闪器成闭合环或网状的多根引下线应为0.44。 l x—引下线上需考虑隔距的计算点到最近的等电位联结点(即金属物或电气/电子线路与防雷装置之间直接或通过SPD相连接之点)的长度,m。 R i—接地装置的冲击接地电阻,Ω; h x—被保护物或计算点的高度,m。 h —接闪线或接闪网的支柱高度,m; l—接闪线的水平长度,m。 l1—从接闪网中间最低点沿导体至最近支柱的距离,m; n —从接闪网中间最低点沿导体至最近不同支柱并有同一距离l1的个数,但至少应取2。 表4-2 防闪电感应的措施

浪涌保护器选择应注意的几个问题

低压配电系统SPD选择应注意的几个问题 1. SPD最大持续工作电压U C 1)TN系统U C≥(U0=220V相电压) 由于GB12325《电能质量供电电压》标准规定220V电网内的正偏差不大于7%,但我国实际电压正偏差往往超过此值,再加上SPD老化等因素,所以规定U C ≥ 2)TT系统U C≥(在剩余电流保护器负荷侧,U0=220V相电压) 此种TT系统变电所10kV侧必须为中性点不接地系统。根据IEC标准,为防范TT系统内绝缘击穿事故而规定的过电压允许值和切断电源时间:低压电气绝缘允许承受的过电压为U0+250V,切断时间>5s。 按此规定低压电气绝缘允许承受的过电压为450V且切断时间大于5s。根据电力行业标准DL/T620-1997相关规定,10kV中性点不接地系统允许最大接地故障电容电流按线路不同情况分别为10A、20A、30A,因线路情况复杂取其中间值20A。当10kV线路发生单相接地故障时接地故障电容电流会流经变电所变压器中性点的接地电阻流回不接地的两相,一般接地电阻不大于4Ω,此时可能产生80V的最大故障电压,使地电位升高80V。低压电气绝缘允许承受的过电压为U0+80V,切断时间>5s。在此系统中低压电气绝缘允许承受的过电压为300V且切断时间大于5s,同理需考虑1)款中的系数则 U C≥×300=345V≈×U0=341V。由于断路器的额定工作电压均为400V,冲击耐压为6000V,所以SPD可以以四星型接法接在剩余电流保护器负荷侧。 3)TT系统U C≥(在剩余电流保护器电源侧,U0=220V相电压) 此种TT系统变电所10kV侧采用小电阻接地,同时和变压器低压侧中性点接地

浪涌保护器的设计选型(新)

(1)考察建筑物所处地理位置及供电进线方式 首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。 推荐选择第一级浪涌保护器的最大通流量应大于以下标准值: 高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs) 郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs) 城市内(埋地进线):40KA(8/20μs) 第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs); 第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。 (2)检查建筑物内供电系统的类别 ?单相、三相及直流供电系统 在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。 其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。 下面是防雷器的几个重要参数: (1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 (2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。 (3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 (4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

电源系统电涌保护器(SPD)选用

电源系统电涌保护器(SPD)选用(2013版) 一、主要依据 《建筑物电子信息系统防雷技术规范》GB50343-2012 《建筑物防雷设计规范》GB50057-2010 二、按建筑物电子信息系统的重要性和使用性质, 确定本单位目前的设计的建筑物 (主要为住宅)的雷电防护等级为D级。经计算当第一级浪涌保护器保护的线路长度大于100m时,需设第二级浪涌保护器,当第二级浪涌保护器保护的线路长度大于 50m时,需在被保护设备处设第三级浪涌保护器;在具有重要终端设备或精密敏感设备处,可安装第三级SPD。 三、 SPD的选用原则及主要参数 1、 第一级 SPD (主要安装在建筑物380V低压配电柜(箱)总进线处) 1.1 、 在 IPZ0A或LPZ0B区与LPZ1区交界处,在电源引入的总配电箱出应装设Ⅰ级试 验的电涌保护器。主要参数需满足以下要求: 波形 10/350μS 最大持续运行电压 Uc≥253V 电压保护水平 Up≤2.5KV 冲击电流Iimp≥12.5KA 1.2、 当进线完全在LPZ0B或雷击建筑物和雷击与建筑物相连接的电力线路或通信线上的失效风险可以忽略时,可采用Ⅱ级试验的电涌保护器。主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2.5KV 标称放电电流In≥50KA

1.3、 过电流保护器(熔断器和断路器,优先使用熔断器),选用100A 2、第二级 SPD (主要安装在动力配电柜、楼层配电箱、水泵房、中央控制室、消防、电梯机房、屋面用电设备等)。 2.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2KV 标称放电电流In≥10KA 2.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用32A 3、第三级 SPD (主要安装在重要的终端设备或精密敏感设备处,如信息机房、办公室入室配电箱等)。 3.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤1.2KV 标称放电电流In≥3KA 3.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用16A 四、产品选用要求(需在说明中注明) 选用的浪涌保护器(SPD) 须经过北京雷电防护装置测试中心或上海防雷产品测试中心的检测通过,并经过当地防雷装置主管机构的备案。

spd浪涌保护器选型

深圳市安普迅通信技术有限公司是专业的spd浪涌保护器生产厂商,主要的防雷系列有:AX电源防雷箱,AM电源防雷模块、ASspd浪涌保护器、AR天馈浪涌保护器、AJ监控系统三合一(二合一)集成浪涌保护器、防雷插座(排插),千兆网浪涌保护器,POE以太网供电浪涌保护器,并对外提供OEM等。 交流电源spd浪涌保护器 交流电源spd浪涌保护器适用范围 ·交流电源防雷模块适用于配电室、配电柜、开关柜、交直流配电屏等系统的电源保护;·建筑物内有室外输入的配电箱、建筑物层配电箱; ·用于低压( 220/380V AC)工业电网和民用电网; ·在电力系统中,主要用于自动化机房、变电站主控制室电源屏内三相电源输入或输出端。命名规则 AM系列交流电源spd浪涌保护器的型号命名规则

保护方式 保护方式 三相 L1,L2,L3,N—PE 三相 L1,L2,L3—N,N—PE (3+1电路) 单相 L,N—PE; 单相 L—N, N—PE;(1+1电路) 代号 A B C D 产品性能参数及特点 性能特点 ·通流容量大,残压低,响应时间快; ·漏电流及变化率小; ·采用最新热脱离技术,彻底避免火灾; ·采用特殊冲击熔片,具有高可靠性; ·自带远程告警干接点,便于远程监控; ·具有工作故障指示,遥信告警功能; ·采用温控保护电路,内置热保护,短路故障自动脱离装置; · 3+1保护模式(L-N, N-PE),特别适合电网差的地区使用; ·采用标准模块化设计,安装简单,维护方便; ·核心元件采用国际知名品牌,性能优异,工作稳定可靠; ·可以实现凯文接线;结构严谨,安装方便,维护简单; ·工艺考究,能在酸、碱、尘、盐雾及潮湿等恶劣环境下长期工作。 主要技术参数 型号AM100A AM80B AM60C AM40D

浪涌保护器的设计选型(完整资料).doc

【最新整理,下载后即可编辑】 (1)考察建筑物所处地理位置及供电进线方式 首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。 推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs)郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs)城市内(埋地进线):40KA(8/20μs) 第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。 (2)检查建筑物内供电系统的类别 ?单相、三相及直流供电系统 在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。 在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。 在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC (48),FRD-40-2A-DC(48)。 首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为

12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。 其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P电源防雷器,TN-S三相五线系统选择4P电源防雷器。 下面是防雷器的几个重要参数: (1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 (2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。 (3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 (4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 加空开(或熔断器)的目的只是保护浪涌保护器不被持续由过电压导致的过电流损坏,所以你加的空开小于等于浪涌也可以,但要大幅高于浪涌保护器约几十毫安的额定放电电流(MOV 材质的浪涌保护器有弱放电现象

浪涌保护器选择要点及相关问题

浪涌保护器 浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲,。可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。 浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。浪涌保护器(也称防雷器)的分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。 入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流

浪涌保护器选择

浪涌保护器选择 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

6.2.1防雷区的划分应符合下列规定: 1 本区内的各物体都可能遭到直接雷击并导走全部雷电流,以及本区内的雷击电 区。 磁场强度没有衰减时,应划分为LPZO A 2 本区内的各物体不可能遭到大于所选滚球半径对应的雷电流直接雷击,以及本 区。 区内的雷击电磁场强度仍没有衰减时,应划分为LPZO B 3 本区内的各物体不可能遭到直接雷击,且由于在界面处的分流,流经各导体的电涌电流比LPZO 区内的更小,以及本区内的雷击电磁场强度可能衰减,衰减程 B 度取决于屏蔽措施时,应划分为LPZ1区。4 需要进一步减小流入的电涌电流和雷击电磁场强度时,增设的后续防雷区应划分为LPZ2···n后续防雷区。 浪涌保护器(也称防雷器)的分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。 入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电

浪涌保护器的选型要求

浪涌保护器的选型要求 摘要:本文通过介绍浪涌保护器的分类,从设计角度分析了浪涌保护器及其保护 元件的选型要点和布置原则,给出浪涌保护器的正确使用方法。 关键词:浪涌保护器;选型;要求 浪涌保护器作为一种新兴的防雷电保护器件,是弱电设备防雷的主要手段, 也是内部防雷保护的主要措施,正在被越来越广泛的应用。 一、浪涌保护器的分类 通常按工作原理,浪涌保护器分为电压开关型、限压型和混合型浪涌保护器。 1.1电压开关型浪涌保护器 无电涌出现时为高阻抗,当突然出现电压电涌时变为低阻抗。通常采用放电 间隙、充气放电管、硅可控整流器或三段双向可控硅元件,做电压开关型电涌保 护器的组件。可疏导0.03μs的雷冲击电流,由于它的雷电泄放能量大,所以通常 装在建筑物入口处。但是其缺点是残压较高,一般可达2~4kV。 1.2限压型浪涌保护器 无电涌出现时为高阻抗,随着电涌电流和电压的增加,阻抗连续变小。通常 采用压敏电阻、抑制二极管作限压型电涌保护器的组件。可以用于疏导0.4μs的 雷电冲击电流,虽然其雷电泄放能量小,但是过电压抑制能力好,用来限制因前 级雷电流泄放后,在后级产生的过高电压。 1.3混合型 将开关型和限压型原件组合在一起的一种SPD,随着施加的冲击电压特性不同,SPD有时会呈现开关型SPD特性,有时呈现限压型SPD特性,有时同时呈现两种 特性。 电压开关型浪涌保护器为间隙放电型器件,其雷电能量泻放能力大,在线路 上使用的主要作用是泻放雷电能量;限压型浪涌保护器为压敏电阻器件,其雷电 能量泻放能力小,但其过电压抑制能力好,在线路上使用的主要作用是限制过电压。因为,一般在建筑物入口处选用电压开关型浪涌保护器来泄放雷电能量,然后,在后级电路使用限压型浪涌保护器来限制因前级雷电能量泻放后,在后级线 路产生的高过电压。两种浪涌保护器需配合使用,方能保证配电线路中设备的安全。 二、浪涌保护器的选型安装 浪涌保护器的安装位置如图1所示。在任何两雷电防护区的交界处应装设浪 涌保护器。雷电防护区是组织、布置防雷设施的手段,在实际中,不可能一步就 将雷击电磁脉冲限制到电气、电子设备能承受的程度,而是逐步消减的。图1中LPZ0A是直接雷击未受到任何防护的空间;LPZ0B是直接雷击受到防护的空间, 是得到接闪器或其他可提供雷击保护的物体的保护范围(建筑物外)。LPZ1是雷 电流得到分流、雷击电磁场得到衰减的空间,是建筑物内部空间;LPZ2是雷电流 得到进一步分流和雷击电磁场得到进一步衰减的空间,这是建筑物内部某一设有 屏蔽和电涌保护的空间,例如系统中央控制室机柜间。 浪涌保护器是雷电防护区划界的重要部件,第一个界面处;LPZ0A-LPZ1边 界用(冲击电流Iimp)一类测试的浪涌保护器;LPZ0B—LPZ1边界用(标称放电 电流In)二类测试的浪涌保护器。第二个界面LPZ1—LPZ2处用(标称放电电流In)二类测试的浪涌保护器。安装在设备侧通常用三类复合波(开路电压峰值Uoc) 测试的浪涌保护器,其安装位置与被保护设备越近越好。

浪涌保护选择

浪涌保护器选择的几个原则 (1) SPD的电压保护水平Up应始终小于被保护设备的冲击耐受电压Uchoc,并且大于根据接地类型得出的电网最高运行电压Usmax,即UsmaxUpUchoc,若线路无屏蔽,尚应计入线路感应电压,Uchoc宜按其值的80%考虑 (2) SPD与被保护设备两端引线应尽可能短,控制在0.5m以内 (3) 如果进线端SPD的Up加上其两端引线的感应电压以及反射波效应与距其较远处的被保护设备的冲击耐受电压相比过高,则需在此设备处加装第二级SPD,其标称放电电流In不宜小于8/20s 3kA当进线端SPD距被保护设备不大于10m时,若该SPD的Up加上其两端引线的感应电压小于设备的Uchoc的80%,一般情况在该设备处可不装SPD (4) 当按上述第3点要求装的SPD之间设有配电盘时,若第一级SPD的Up加上其两端引线的感应电压保护不了该配电盘内的设备,应在该配电盘内安装第二级SPD,其标称放电电流In 不宜小于8/20s 5kA (5) 当在线路上多处安装SPD时,电压开关型SPD与限压型SPD之间的线路长度不宜小于10m,限压型SPD之间的线路长度不宜小于5m。例如:被保护设备与配电中心距离较近,在线路敷设上可特意多绕一些导线 (6) 当进线端的SPD与被保护设备之间的距离大于30m时,应在离被保护设备尽可能近的地方安装另一个SPD,通流容量可为8kA (7) 选择SPD时应注意保证不会因工频过压而烧毁SPD,因SPD是防瞬态过电压(s级),工频过电压是暂态过电压(ms级),工频过电压的能量是瞬态过电压能量的几百倍,因此,应注意选择较高工频工作电压的SPD (8) SPD的保护:每级SPD都应设保护,可采用断路器或熔断器进行保护,保护器的断流容量均大于该处最大短路电流 (9) 此外,选用SPD时还应注意:响应时间尽可能快使用寿命的长短、价格因素、可维护性要好、通流容量的大小、耐湿性能等方面。 -

电源浪涌保护器快速选型表

电源浪涌保护器快速选型表 防雷分级: 第一级一般选在室内总配电处,即380V 低压配电柜进线。 第二级一般选在分配电处,楼层配电箱、消防、电梯机房、层面用电设备、热泵、水泵、中央控制室等。 第三级一般加在终端设备电源,住宅用户配盘和别墅用户配电盘。 残压Ur(限制电压) 反映了SPD限制浪涌过电压的能力,其值应不大于所保护对象耐压等级。 据IEC标准,SPD选装一般在防需区的分界,在LPZOA LPZOBf LPZ1交界处定为 第一级,在LPZ1与LPZ2的交界处定为第二级,LPZ2与LPZ3的交界处定为第三 级。根据国内的设计的要求,一般的选装位置如下: 重要参数: 标称放电电流In(额定放电电流) 扬州中恒及国标GB50057-94均以IN作为考查SPD放电能力及产品性能分类的标准值,IN 反应了SPD的耐雷能力。 最大持续运行电压Uc可持续加于电涌保护品两端,而使SPD不动作,不烧损 的最大运行电压值。 TN系统UO1.15Un;TT系统Uc>1.55Un;IT 系统Uc>1.15;IES 标准产品的 Uc=420V。选择适当的断路器: 扬州中恒建议在模块前所加装的断路器配置如下图:(断路器的作用在于故障检修、维护)电涌保护器断路器 ZH-D25/2 10A ZH1-C40/4 16A

ZH1-B80/4 ZH1-B60/4 32A ZH1-B100/4 60A 选型方案: 根据电子信息系统的分类,推荐电源浪保护装置以及弱电系统浪涌保护装置的选型方案。 型号额定放电电流相数防护级别适用场合 ZH1-B100/4 60 KA 3 第一级380V 低压配电柜进线处等(四个或三个单相模块 组合安装) ZH1-B60(80)/4 ZH1-C40/4 30(40)KA 20KA 3 第二级线力配电柜、楼层配电箱、热泵、水泵房、中央控制室和消防、电梯机房、室面用电设备等(模块式安装) ZH1-D25/2 10KA 3 第三级别墅用户配电等(模块式安装) ZH1-B100/4 60KA 3 第一级380V 低压配电柜进线处等(四个或三个单相模块组 合安装) ZH1-B60(80)/4 30(40)KA 3 第二级户外电缆分支箱等(组合安装、模块 式安装) ZH-D25/2 10KA 1 第三级终端设备电源(模块式安装) ZH1-D25/1+NPE 10KA 1+E(N)第三级住宅用户配电等(模块式安装) 浪涌保护器的应用与选型 、应用: 1、浪涌电压 电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高的操作过电压,这种瞬时过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰: 例如直流6V继电器线圈断开时会出现300V,600V的浪涌电压;接通白炽灯时会出现 8,10 倍额定电流的浪涌电流; 当接通大型容性负载如补偿电容器组时,常会出现大

浪涌保护器产品选型英文样本

Surge Protection Device Catalogue 2011 Focus on the Security of Automatic-Control Systems Future from Quality

1CHENZHU INSTRUMENT Tel:400-881-0780 Web:https://www.wendangku.net/doc/285227014.html, Shanghai Chenzhu Instrument Co. Ltd (Chenzhu) was founded in April, 2002 and was honored with the title of "Hi-Tech Enterprise of Shanghai". Before, it was the isolated barrier department of Shanghai Institute of Process Automation Instrument (SIPAI). There is a professional and efficient R&D (Research & development) team in Chenzhu, based on the technology and experience accumulated in SIPAI in the field of automatic control, which is in charge of several state-level Key Programs for Science & Technology, and key projects of high-tech achievements transformation. All of our products have independent intellectual property rights. We are now compliant with ISO 9001 : 2008 Quality Management System and ISO14001 : 2004 Environment Management System. All of our products achieved more than 10 international certificates including IECEx, ATEX, CE, UL, SIL, NEPSI, CCS, etc. Surge protection devices (SPD) have passed the test of Shanghai Lighting Protecting Device Testing Center. Nowadays an effective manufacturing system has been established, including isolated barrier, signal isolator, electrical monitor and transducer, surge protection device and temperature transmitter and so on, covering 10 categories, hundreds of product Types. A comprehensive network of marketing, sales & technical service has been established in Chenzhu. In the past serval years, our production and sales are increasing by 50% per year. Now Chenzhu has become a leading supplier of isolation barriers in the domestic automation market. We insist about "Future from quality" and we'll keep improving. Future from Quality

浪涌保护器SPD的后备保护选用原则

浪涌保护器SPD的后备保护选用原则

浪涌保护器SPD的后备保护选用原则 樀要:通过对建筑物的电子信息系统各级防雷的电源线路浪涌保护器标称放电电流的I2t及电压保护水平的分析,说明浪涌保护器SPD的后备保护宜采用熔断器,并提出于建筑物的电子信息系统各级防雷相对应的电源线路浪涌保护器后备保护熔体额定电流推荐值 关键词浪涌保护器 SPD 后备保护选用涌保护器后备保护熔体额定电流推荐值 随着我国经济、社会的快速发展,各种电子信息技术产品越来越多地渗入到社会和家庭生活的各个领域,雷电过电压产生的危害和损失也越来越大,人们对雷电过电压的防治也空前的重视。因此在民用和工业建筑中SPD(浪涌保护器)被大量的使用。国标《建筑物电子信息系统防雷设计规范》(GB500343-2004)中根据建筑物电子信息系统所处的环境、重要性和使用性质以及遭受雷击的风险,把民用建筑物的电子信息系统防雷分为A、B、C、D四级,其中对SPD的通流容量也进行了规定。详见下表: 电源线路浪涌保护器标称放电电流参数值

一问题的提出: 《建筑物防雷设计规范》(GB-50057-94 2000年版)第6.4.4条规定“电浪涌保护器必须能承受预期通过它的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。”但由于SPD的老化问题及检修方便,作为SPD故障短路的后备保护,SPD支路过流保护是必要的。规范中只明确SPD后备保护器采用熔丝、断路器或剩余电流保护器,但没有明确多大通流容量的SPD,设置多大整定值的SPD支路过流后备保护。各个SPD生产厂商的推荐标准也不一样,有的厂商甚至推荐不设置。电气设计中究竟采用何种后备保护器以及整定值设为多少,也只能凭设计人员的经验值或厂商的推荐值来选取。笔者查阅大量资料和结合工程实践提出以下几点不成熟的意见。 二SPD为什么要设置后备保护 现在市场上可以购买的SPD主要可分为三种型式:电压开关型、电压限制型和复合型。电压开关型

避雷器(浪涌保护器)的设计与选择

避雷器(浪涌保护器)的设计与选择 摘要目前,智能电子设备广泛应用于日常生产生活中,由于智能电子设备自身耐过电压的水平较低,雷电流电磁脉冲引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。为了加强建(构)筑物内部电子设备的雷电防护,正确设计选择安装避雷器(浪涌保护器),有效保护低压设备迫在眉睫。 关键词避雷器(浪涌保护器);设计;安装 电子设备感应灵敏,且自身耐过电压的水平较低,雷闪期间,雷电流脉冲波会引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。2010年8月2日,中卫香山机场遭雷击,雷电流脉冲波引着电源线窜入室内,烧坏了航站楼内德国进口的电子设备主板,造成直接经济损失20多万元;2007年,中卫长河化工厂遭雷电感应袭击,配电室2个空气开关烧坏,直接经济损失2万多元。正确设计选择安装避雷器(浪涌保护器),有效保护耐过电压水平较低且感应灵敏的电子设备,对企业安全生产、防雷减灾意义重大。 1浪涌保护器的参数 浪涌保护器常用的参数包括:标准电压Un、额定电压Uc、额定放电电流Isn、最大放电电流Imax、电压保护级别Up:、响应时间Ta、数据传输速率Vs、插入损耗Ae:、回波损耗Ar。 2浪源电涌保护器选型 《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:“电涌保护器必须能承受通过它们的雷电流,并应符合两个要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流”。 2.1最大放电电流 按照《建筑物防雷设计规范》GB50057-94(2000年版)相关条款:“全部雷电流的50%流入建筑物的防雷装置,另外50%流入建筑物的各种外来导电物、电力线、通信线、网线等设施”。 图1进入建筑物各种设施的雷电流分配图 雷电波进入建筑内电力线、信息线、金属管道等,总配电间的低配供电线雷电流的分流,如表1所示。 2.2电压保护水平Up

浪涌保护器选择

6.2.1防雷区的划分应符合下列规定:1 本区内的各物体都可能遭到直接雷击并导走全部雷电流,以及本区内的雷击电磁场强度没 区。有衰减时,应划分为L P Z O A 2 本区内的各物体不可能遭到大于所选滚球半径对应的雷电流直接雷击,以及本区内的雷击 区。电磁场强度仍没有衰减时,应划分为L P Z O B 3 本区内的各物体不可能遭到直接雷击,且由于在界面处的分流,流经各导体的电涌电流比 区内的更小,以及本区内的雷击电磁场强度可能衰减,衰减程度取决于屏蔽措施时,LPZO B 应划分为L P Z1区。 4 需要进一步减小流入的电涌电流和雷击电磁场强度时,增设的后续防雷区应划分为L P Z2···n后续防雷区。浪涌保护器(也称防雷器)的分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到 2500—3000V。 入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过电源防雷器时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASS I级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。

低压配电系统中浪涌保护器的设计与选择

低压配电系统中浪涌保护器的设计与选择 【摘要】:在本文中,通过分析浪涌电压的产生,阐述了浪涌保护器(SPD)工作过程、防护等级的划分以及浪涌保护器(SPD)的设计、选择和安装;由于浪涌保护器(SPD)长期在过电压情况下工作,其自身也会受到较大侵害,因此为了延长浪涌保护保护器(SPD)的使用寿命,在本文中,我们也给出了浪涌保护器(SPD)自身的防护设计。 【关键词】:浪涌电压SPD 防护设计 1.引言 当前随着科技发展,电子产品种类越来越多,应用领域也越来越广广泛。但是这些电子产品耐冲击电压水平一般都低于低压配电装置[1],因此他们很容易受到电压波动-即浪涌电压-的损害,所谓浪涌又称瞬态过电压,是在电路中出现的一种瞬时的电压波动,在电路中通常可以持续约百万分之一秒,比如在雷电天气中,雷电脉冲可能会在电路中产生电压波动。220V电路系统中会产生持续瞬间可达到5000或10000V的电压波动,也就是浪涌或者瞬态过电压。我国的雷电区较多,而雷电又作为在线路中产生浪涌电压的一个重要因素,因此加强在低压配电系统中的防雷电保护就显得十分必要[2]。 浪涌保护器既过电压保护器,工作原理是当电力线、信号传输线出现瞬时过电压时,浪涌保护器就会将过电压泄流来将电压限制在设备

所能承爱的电压范围内,从而保护设备不受电压冲击。浪涌保护器在正常情况时,处于高电阻状态,不发生漏流;当电路中出现过电压时,浪涌保护器就会在极短时间内被触发,将过电压的能量漏流,保护设备;过电压消失后,浪涌保护器恢复高阻状态,完全不会影响电源的正常供电。 2.浪涌保护器的设计 2.1 SPD设计的不足 目前,SPD的设计还存在很多不足的地方,在实际的施工中造成了很多问题,甚至造成工程延期,具体如下: 2.1.1 对设计的描述太过简单,意思表达不清晰,安装要求也不够 具体,施工时容易造成很多的不确定性,可能会使要被保护的电子设备受到破坏或经济损失。 2.1.2 浪涌保护器的设计不够灵活,有时甚至直接套用固定的防 雷施工图,没有根据配电系统的接地制式进行针对性的设计,可能会导致SPD在具体接线安装时出现错误。 2.1.3 在配电系统图中,SPD的设计参数不够完整,如电压保护 水平UP、是否防爆、最大运行电压UC等重要参数未设计或部分设计,又或者部分参数不准确,造成浪涌保护器实际运行中出现故障或对电子设备的损坏。 2.1.4 设计说明书不详细。一般地,要有针对SPD设计进行详细 说明的设计说明书,如建设项目概况、设计的依据、是否包含有电子信息系统、SPD设计的防护等级等。

相关文档