文档库 最新最全的文档下载
当前位置:文档库 › 动点问题题型方法归纳

动点问题题型方法归纳

动点问题题型方法归纳
动点问题题型方法归纳

x

A O

Q

P B

y 图(3)

A

B

C O

E

F

A B C O D 图(1) A B

O

E F

C 图(2)

动点问题 题型方法归纳

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点

1、(2009年齐齐哈尔市)直线3

64

y x =-

+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;

(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48

5

S =

时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

提示:第(2)问按点P 到拐点B 所有时间分段分类;

第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市)

如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o.

(1)求⊙O 的直径;

(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;

(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;

O

M B

H A C x y 图(1)

O

M B

H A C x y 图(2) x

y M C

D P

Q

O

A

B P

Q

A B C D

(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?

(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

注意:发现并充分运用特殊角∠DAB=60°

当△OPQ 面积最大时,四边形BCPQ 的面积最小。 二、 特殊四边形边上动点

4、(2009年吉林省)如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿

A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间

为x 秒时,APQ △与ABC △重叠部分....

的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:

(1)点P 、Q 从出发到相遇所用时间是 秒;

(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;

(3)求y 与x 之间的函数关系式.

提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。

5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;

(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);

(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.

注意:第(2)问按点P 到拐点B 所用时间分段分类;

第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中,

利用OB ⊥AC,再求OP 与AC 夹角正切值.

6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒. (1)求∠ABC 的度数;

(2)当t 为何值时,AB∥DF; (3)设四边形AEFD 的面积为S . ①求S 关于t 的函数关系式;

②若一抛物线y=x 2

+mx 经过动点E ,当S<23时,求m 的取值范围(写出答案即可).

注意:发现特殊性,DE ∥OA 7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且

∠AOC=60°,点B 的坐标是(0,83),点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D. (1)求∠AOB 的度数及线段OA 的长;

(2)求经过A ,B ,C 三点的抛物线的解析式; (3)当4

3,33

a O D ==时,求t 的值及此时直线PQ 的解析式;

(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB

?相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ?不相似?请给出你的结论,并加以证明. 8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;

(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的

27

? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;

(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.

B

A

C

D P

O

Q

x

y

B

D

C y

B

D

C

y

y

O x C

N B P M A 9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线

214

10189

y x x =

--与x 轴的交点为点A,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒)

(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;

(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <

9

2

时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,

得PF=OA (定值)。

第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF. 三、 直线上动点

8、(2009年湖南长沙)如图,二次函数2

y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(03)C ,,且当4x =-和2x =时二次函数的函数值y 相等.

(1)求实数a b c ,,的值;

(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将B M N △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;

(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与

ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.

提示:第(2)问发现

特殊角∠CAB=30°,∠CBA=60°

特殊图形四边形BNPM 为菱形;

第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判

断是否在对称轴上。 9、(2009眉山)如图,已知直线1

12

y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2

12

y x bx c =

++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。 ⑴求该抛物线的解析式;

⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。

提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE 为直径画圆与x 轴交点即为所求点P ,②A 为直角顶点时,过点A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;

第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。 10、(2009年兰州)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的

时间为t 秒.

(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;

(2)求正方形边长及顶点C 的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动

时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.

注意:第(4)问按点P 分别在AB 、BC 、CD 边上分类讨论;求t 值时,灵活运用等腰三角形“三线合一”。 11、(2009年北京市)如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为

()6,0A -,()6,0B ,()

0,43C ,延长AC 到点D,使CD=

1

2

AC ,过点D 作DE ∥AB 交BC 的延长线于点E.

(1)求D 点的坐标;

(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;

(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。(要求:简述确定G 点位置的方法,但不要求证明)

提示:第(2)问,平分周长时,直线过菱形的中心;

第(3)问,转化为点G到A的距离加G到(2)中直线的距离和最小;发现(2)中直线与x轴夹角为60°.见“最短路线问题”专题。

A

D P

C

B Q

图1

D

A

P

C

B (Q )

图2

图3

C A

D

P

B Q

12、(2009年上海市)

已知∠ABC=90°,AB=2,BC=3,AD ∥

BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足

AB

AD PC PQ =

(如图1所示). (1)当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长;

(2)在图8中,联结AP .当3

2

AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,

APQ PBC S y S =△△,其中APQ S △表示△APQ 的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域; (3)当AD AB <,且点Q 在线段AB 的延长线上时(如图3所示),求QPC ∠的大小.

注意:第(2)问,求动态问题中的变量取值范围时,先动手操作找到运动始、末两个位置变量的取值,

然后再根据运动的特点确定满足条件的变量的取值范围。当PC ⊥BD 时,点Q 、B 重合,x 获得最小值; 当P 与D 重合时,x 获得最大值。

第(3)问,灵活运用SSA 判定两三角形相似,即两个锐角三角形或两个钝角三角形可用SSA 来判定两个三角形相似;或者用同一法;或者证∠BQP =∠BCP ,得B 、Q 、C 、P 四点共圆也可求解。

13、(08宜昌)如图,在Rt△ABC 中,AB =AC ,P 是边AB (含端点)上的动点.过P 作BC 的垂线PR ,R 为

垂足,∠PRB 的平分线与AB 相交于点S ,在线段RS 上存在一点T ,若以线段PT 为一边作正方形PTEF ,其顶点E ,F 恰好分别在边BC ,AC 上.

(1)△ABC 与△SBR 是否相似,说明理由; (2)请你探索线段TS 与PA 的长度之间的关系;

(3)设边AB =1,当P 在边AB (含端点)上运动时,请你探索正方形PTEF 的面积y 的最小值和最大值.

提示:第(3)问,关键是找到并画出满足条件时最大、最小图形;当p 运动到使T 与R 重合时,PA=TS 为最大;当P 与A 重合时,PA 最小。此问与上题中求取值范围类似。 (第13题)

T P S R E A B

C F (第13题) T P S R E A B C

F

A C

B P Q E

D

14、(2009年河北)如图,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).

(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;

(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;

(4)当DE 经过点C 时,请直接..

写出t 的值.

提示:(3)按哪两边平行分类,按要求画出图形,再结合图形性质求出t 值;有二种成立的情形, DE∥QB,PQ∥BC;

(4)按点P 运动方向分类,按要求画出图形再结合图形性质求出t 值;有二种情形, CQ=CP=AQ=t 时, QC=PC=6-t时.

15、(2009年包头)已知二次函数2

y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D . (1)求二次函数的解析式;

A O C

、、为顶点的三角形相似,求E点坐标(用含m的代数式表示);

(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.

提示:

第(2)问,按对应锐角不同分类讨论,有两种情形;

第(3)问,四边形ABEF为平行四边形时,E、F两点纵坐标相等,且AB=EF,对第(2)问中两种情形分别讨论。

四、

抛物线上动点

16、(2009年湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.

(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴

第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

O y

x B

E A D C F

17、(2009年黄石市)正方形ABCD 在如图所示的平面直角坐标系中,A 在x 轴正半轴上,D 在y 轴的负半轴上,AB 交y 轴正半轴于E BC ,交x 轴负半轴于F ,1OE =,抛物线2

4y ax bx =+-过

A D F 、、三点.

(1)求抛物线的解析式;

(2)Q 是抛物线上D F 、间的一点,过Q 点作平行于x 轴的直线交边AD 于M ,交BC 所在直线于N ,

若3

2

FQN AFQM S S =△四边形,则判断四边形AFQM 的形状; (3)在射线DB 上是否存在动点P ,在射线CB 上是否存在动点H ,使得AP PH ⊥且AP PH =,若存

在,请给予严格证明,若不存在,请说明理由.

注意:第(2)问,发

现并利用好NM ∥FA 且NM =FA;

第(3)问,将此问题分离出来单独解答,不受其它图形的干扰。需分类讨论,先画出合适的

图形,再证明。

近三年黄冈中考数学

“坐标几何题”(动点问题)分析

(马铁汉)

070809

动点

个数

两个一个两个

问题背景特殊菱形两边

上移动

特殊直角

梯形三边

上移动

抛物线中特殊

直角梯形底边

上移动

考查难点探究相似三角

探究三角

形面积函

数关系式

探究等腰三角

考点①菱形性质

②特殊角三角

函数

③求直线、抛物

线解析式

④相似三角形

⑤不等式

①求直线

解析式

②四边形

面积的表

③动三角

形面积函

数④矩形

性质

①求抛物线顶

点坐标

②探究平行四

边形

③探究动三角

形面积是定值

④探究等腰三

角形存在性

特点①菱形是含60°

的特殊菱形;

△A O B是底角为

30°的等腰三角

形。

②一个动点速

度是参数字母。

③探究相似三

角形时,按对应

角不同分类讨

论;先画图,再

探究。

④通过相似三

角形过度,转化

相似比得出方

程。

⑤利用a、t范

围,运用不等式

求出a、t的值。

①观察图

形构造特

征适当割

补表示面

②动点按

到拐点时

间分段分

③画出矩

形必备条

件的图形

探究其存

在性

①直角梯形是

特殊的(一底

角是45°)

②点动带动线

③线动中的特

殊性(两个交

点D、E是定

点;动线段P F

长度是定值,

P F=O A)

④通过相似三

角形过度,转

化相似比得出

方程。

⑤探究等腰三

角形时,先画

图,再探究(按

边相等分类讨

论)

三年共同点:

①特殊四边形为背景;

②点动带线动得出动三角形;

③探究动三角形问题(相似、等腰三角形、面积

函数关系式);

④求直线、抛物线解析式;

⑤探究存在性问题时,先画出图形,再根据图形

性质探究答案。

大趋势:

动点问题题型方法归纳

动点问题 知识点: 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 6 4 y x =-+ 与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点 Q的运动时间为t秒,OPQ △的面积为S,求出S与t之间的函数关系式; (3)当 48 5 S= 时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M的坐标.

提示:第(2)问按点P到拐点B所有时间分段分类; 第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速 度从B点出发沿BC方向运动,设运动时间为 )2 )( (<

一次函数动点经典题型

一次函数动点经典题型 例题如图,直线l1的解析表达式为y 3x 3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积; (4)在直线l2上存在异于点C的另一点P,使得 △ADP与△ADC的面积相等,请直接写出点P的坐标. .. 例题如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒. (1) 求直线AB的解析式;(2) 当t为何值时,△APQ的面积为5个平方单位? 24

2、如图,直线y kx 6与x轴、y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0)。(1)求k 的值; (2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围; 27 (3)探究:当点P运动到什么位置时,△OPA的面积为8 练习题 1、如果一次函数y=-x+1的图象与x轴、y轴分别交于点A点、B点,点M在x轴上,并且使以点A、B、M为顶点的

三角形是等腰三角形,那么这样的点M有()。 A.3个B.4个C.5个D.7个 2、直线与y=x-1与两坐标轴分别交于A、B两点,点C 在坐标轴上,若△ABC为等腰三角形,则满足条件的点C最多有(). A.4个B.5个C.6个D.7个 4、如图,在平面直角坐标系xOy中,直线y x 1与y 点C,点D是直线AC上的一个动点.(1)求点A,B,C的坐标. (2)当△CBD为等腰三角形时,求点D的坐标. 3 x 3交于点A,分别交x轴于点B和4 5、如图:直线y kx 3与x轴、y轴分别交于A、B两点, B不重合的动点。 (1)求直线y kx 3的解析式;

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结: ⑴求二次函数的图象与x轴的交点坐标.需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号.或由二次函数 中a,b,c的符号判断图象的位置.要数形结合; ⑷二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点 坐标.或已知与x轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式.二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或

其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A 和点B (-.与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M .问在对称轴上是否存在点P .使△CMP 为等腰三角形若存在.请直接写出所有符合条件的点P 的坐标;若不存在.请说明理由. (3) 如图②.若点E 为第二象限抛物线上一动点.连接BE 、CE .求四边形BOCE 面积的最大值.并求此时E 点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时.以C 为圆心CM 为半径画弧.与对称轴交点即为所求点P.②M 为顶点时.以M 为圆心MC 为半径画弧.与对称轴交点即为所求点P.③P 为顶点时.线段MC 的垂直平分线与对称轴交点即为所求点P 。 第(3)问方法一.先写出面积函数关系式.再求最大值(涉及二次函数最值); 方法二.先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组).再求面积。

一次函数动点问题(整理好的)

龙文教育学科教师辅导讲义 学生: 科目: 数学 第 阶段第 次课 教师: 课 题 一次函数的应用——动点问题 教学目标 1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。 2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。 重点、难点 理解在平面直角坐标系中,动点问题列函数关系式的方法。 教学内容 例题1:已知:在平面直角坐标系中,点Q 的坐标为(4,0),点P 是直线y=-2 1x+3上在第一象限内的一动点,设△OPQ 的面积为s 。 (1)设点P 的坐标为(x ,y ),问s 是y 的什么函数,并求这个函数的定义域。 (2)设点P 的坐标为(x ,y ),问s 是x 的什么函数,并求这个函数的定义域。 (3)当点P 的坐标为何值时,△OPQ 的面积等于直线y=-2 1x+3与坐标轴围成三角形面积的一半。 练习:已知:在平面直角坐标系中,点A 的坐标为(6,0),另有一动点B 的坐标为(x ,y ),点B 在第一象限,且点B 的横纵坐标之和为8,设△OAB 的面积为s ,求: (1)s 与点B 的横纵坐标x 之间的函数关系式,并写出定义域。 (2)当△OAB 的面积为20时,求B 点的坐标。 例题2:在矩形ABCD 中,AB=6cm,BC=12cm,点P 从点A 开始以1cm/s 的速度沿AB 边向点B 移动,点Q 从点B 开始以2cm/s 的速度沿BC 边向点C 移动, 当点P 运动到点B 时,点Q 也随之停止。如果P 、Q 分别从A 、B 同时出发,设△PAD 的面积为s ,运动时间为t ,求s 与t 的函数关系式?运动到何时△PBQ 为等腰三角形? 例题3:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

初一数学动点问题答题技巧与方法

初一数学动点问题答题技巧与方法 关键:化动为静,分类讨论。解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数等等。动点问题定点化是主要思想。比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。 步骤:①画图形;②表线段;③列方程;④求正解。 数轴上动点问题 数轴上动点问题离不开数轴上两点之间的距离。为了便于大家对这类问题的分析,首先明确以下几个问题: 1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。即数轴上两点间的距离=右边点表示的数—左边点表示的数。 2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b 个单位后所表示的数为a+b。 3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。 问题引入:如图,有一数轴原点为O,点A所对应的数是﹣1,点A沿数轴匀速平移经过 原点到达点B. (1)如果OA=OB,那么点B所对应的数是什么? (2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数. 【考点】数轴;比较线段的长短.【专题】数形结合. 【分析】(1)由于OA=OB,可得点B所对应的数是点A所对应的数的相反数; (2)先求出AB的距离,再根据速度=路程÷时间求解; (3)先求出AC的距离,得到点C所对应的数,由KC=KA,得到点K所对应的数. 【解答】解:(1)∵OA=OB,点A所对应的数是﹣1,∴点B所对应的数是1; (2)[1﹣(1)]÷3=3÷3=1.故该点的运动速度每秒为1. (3)1×9=9,9÷2=4.5,∴点C所对应的数为﹣1+9=7, 点K所对应的数为﹣1+4.5=3.故点C所对应的数为7,点K所对应的数为3. 【点评】考查了数轴和路程问题,熟练掌握数轴上两点间的距离的求法,本题虽有几题,但基础性较强,难度不大. 练习:

(完整版)一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结 考点1:一次函数的概念. 相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 1、已知一次函数k x k y )1(-=+3,则k = . 2、函数n m x m y n +--=+1 2)2(,当m= ,n= 时为正比例函数;当m= , n 时为一次函数. 考点2:一次函数图象与系数 相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上, 0

是 . 8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( ) A.m >0,n <2 B. m >0,n >2 C. m <0,n <2 D. m <0,n >2 9.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __. 10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。 考点3:一次函数的增减性 相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0m C. 2m 5. (2011内蒙古赤峰)已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。(填“>”、“<”或“=”号) 6.当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ). A .y ≥-7 B .y ≥9 C .y >9 D .y ≤9 7.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).

中考圆知识点经典总结

圆知识点学案 考点一、圆的相关概念 1、圆的定义 在一个平面,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。 2、圆的几何表示 以点O为圆心的圆记作“⊙O”,读作“圆O” 考点二、弦、弧等与圆有关的定义 (1)弦 连接圆上任意两点的线段叫做弦。(如图中的AB) (2)直径 经过圆心的弦叫做直径。(如途中的CD) 直径等于半径的2倍。 (3)半圆 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 (4)弧、优弧、劣弧 圆上任意两点间的部分叫做圆弧,简称弧。 弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。 大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示) 考点三、垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 垂径定理及其推论可概括为: 过圆心 垂直于弦 直径平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧 考点四、圆的对称性 1、圆的轴对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 2、圆的中心对称性 圆是以圆心为对称中心的中心对称图形。 考点五、弧、弦、弦心距、圆心角之间的关系定理

1、圆心角 顶点在圆心的角叫做圆心角。 2、弦心距 从圆心到弦的距离叫做弦心距。 3、弧、弦、弦心距、圆心角之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。 推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 考点六、圆周角定理及其推论 1、圆周角 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 2、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 考点七、点和圆的位置关系 设⊙O的半径是r,点P到圆心O的距离为d,则有: dr?点P在⊙O外。 考点八、过三点的圆 1、过三点的圆 不在同一直线上的三个点确定一个圆。 2、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外心 三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 4、圆接四边形性质(四点共圆的判定条件) 圆接四边形对角互补。 考点九、直线与圆的位置关系 直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

一次函数经典题型+习题(精华,含答案)

1 一次函数 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________; 若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第 ______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________; 到原点的距离是____________; 2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原 点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ????? ,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°, 则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2323y k x x =-++-是一次函数; 2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 题型四、函数图像及其性质 ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线相交。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线

初一数学动点问题解题技巧

初一数学动点问题解题技巧 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想。 1、有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C 所对应的数。 2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度. 3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A 与点B重合时,点P所经过的总路程是多少? 4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒. (1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度; (2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置? 5、在数轴上,点A表示的数是-30,点B表示的数是170. (1)求A、B中点所表示的数. (2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.

一次函数压轴题经典培优

一次函数压轴题训练 典型例题 题型一、A卷压轴题 一、A卷中涉及到的面积问题 例1、如图,在平面直角坐标系xOy中,一次函数 12 2 3 y x =-+与x轴、y轴分别相交于点 A和点B,直线 2 (0) y kx b k =+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分. (1)求△ABO的面积; (2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。

练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :1 2 1 +=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。 (1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。 2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运 动(0y 2 (2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积(10分) A B C O D x y 1 l 2 l

二、A 卷中涉及到的平移问题 例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。 ①直线y=43x-8 3经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ?? ? ??- 0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位 交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积.

一次函数知识点及典型例题复习

一次函数知识点 考点一:变量、常量及函数定义 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。 ※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 1、下列函数关系式中不是函数关系式的是( ) A. 21y x =+ B. 21y x =+ C. 1y x x =+ D. 22y x = 2、下列各图中表示y 是x 的函数图像的是 ( ) 考点二、自变量取值围:一般的,一个函数的自变量允许取值的围。 确定函数自变量取值围的方法: (1)必须使关系式成立。 ①当关系式为整式时,自变量取值围为全体实数; ②当关系式含有分式时,自变量取值围要使分式的分母的值不等于零; ③关系式含有二次根式时,自变量取值围必须使被开方的式子不小于零; ④当关系式中含有指数为零或负数的式子时,自变量取值围要使底数不等于零; (2)当函数关系表示实际问题时,自变量的取值围还要符合实际情况,使之有意义。 (3)当函数关系表示一个图形的变化关系时,自变量的取值围必须使图形存在。 1、函数31-= x y 的自变量x 的取值围是 2、函数3-=x y 的自变量x 的取值围是 3、函数()220x y x -=++的自变量x 的取值围是 4、小强在劳动技术课中要制作一个周长为10cm 的等腰三角形.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并写出自变量的取值围. 考点三、函数的图像与解析式的关系 1、函数的表示方法 (1 )列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数A B D

中考复习圆专题所有知识点和题型汇总全

《圆》题型分类资料 一.圆的有关概念: 1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有() A. 1个 B.2个 C.3个 D.4个 2.下列命题是假命题的是() A.直径是圆最长的弦B.长度相等的弧是等弧 C.在同圆或等圆中,相等的圆心角所对的弧也相等 D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。 3.下列命题正确的是() A.三点确定一个圆B.长度相等的两条弧是等弧 C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形 4.下列说法正确的是( ) A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半 C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90° 5.下面四个图中的角,为圆心角的是( ) A.B.C.D. 二.和圆有关的角: 1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________ 图1 图2 2.如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( ) A.116° B.64° C. 58° D.32° 3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为

A 图3 图4 4. 如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°, 那么∠BDC=_________度. 5. 如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=. A 图5 图6 6. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°. 7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。 8. 若⊙O的弦AB所对的劣弧是优弧的 1 3 ,则∠AOB= . 9.如图7,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________ A 图7 图8 10.如图8,△ABC是O的内接三角形,点C是优弧AB上一点(点C不与A,B重合),设OABα ∠=,Cβ ∠=(1)当35 α=时,求β的度数; (2)猜想α与β之间的关系为 11.已知:如图1,四边形ABCD内接于⊙O,延长BC至E,求证:∠A+∠B C D=180°,∠DCE=∠A; 如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系;

初二一次函数动点经典题型(全部题型)

一次函数动点问题 例题如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l , 2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积; (4)在直线2l 上存在异于点C 的另一点P ,使得 ADP △与ADC △的面积相等,请直接.. 写出点P 的坐标. 练习题 如图,以等边△OAB 的边OB 所在直线为x 轴,点O 为坐标原点,使点A 在第一象限建立平面直角坐标系,其中△OAB 边长为6个单位,点P 从O 点出发沿折线OAB 向B 点以3单位/秒的速度向B 点运动,点Q 从O 点出发以2单位/秒的速度沿折线OBA 向A 点运动,两点同时出发,运动时间为t (单位:秒),当两点相遇时运动停止. ① 点A 坐标为_____________,P 、Q 两点相遇时交点的坐标为________________; ② 当t =2时,S =△OPQ ____________;当t =3时,OPQ S =△____________; ③ 设△OPQ 的面积为S ,试求S 关于t 的函数关系式; ④ 当△OPQ 的面积最大时,试求在y 轴上能否找一点M ,使得以M 、P 、Q 为顶点的三角形是Rt △,若能找到请求出M 点的坐标,若不能找到请简单说明理由。 x y O A B x y O A B x y O A B

例题如图,在Rt △AOB 中,∠AOB=90°,OA=3cm ,OB=4cm ,以点O 为坐标原点建立坐标系,设P 、Q 分别为AB 、OB 边上的动点它们同时分别从点A 、O 向B 点匀速运动,速度均为1cm/秒,设P 、Q 移动时间为t (0≤t ≤4) (1)过点P 做PM ⊥OA 于M ,求证:AM :AO=PM :BO=AP :AB ,并求出P 点的坐标(用t 表示) (2)求△OPQ 面积S (cm 2 ),与运动时间t (秒)之间的函数关系式,当t 为何值时,S 有最大值最大是多少 (3)当t 为何值时,△OPQ 为直角三角形 (4)证明无论t 为何值时,△OPQ 都不可能为正三角形。若点P 运动速度不变改变Q 的运动速度,使△OPQ 为正三角形,求Q 点运动的速度和此时t 的值。 练习题己知如图在直角坐标系中,矩形OABC 的对角线AC 所在直线的解析式为3 1y x 。 (1)求线段AC 的长和ACO 的度数。 (2)动点P 从点C 开始在线段CO 3个 单位长度的速度向点O 移动,动点Q 从点O 开始 在线段OA 上以每秒1个单位长度的速度向点A 移动, (P 、Q 两点同时开始移动)设P 、Q 移动的时间为t 秒。 ①设 BPQ 的面积为S ,求S 与t 之间的函数关系式, 并求出当t 为何值时,S 有最小值。 (3)在坐标平面内存在这样的点M ,使得MAC 为等腰三角形且底角为30 °,写出所有符合要求的点M 的坐标。 y O 第33题图 Q P C B A

初二数学动点问题-初二数学动点问题分析-初二数学动点问题总结

初二动点问题解题技巧 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握

方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点 --- 问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一次函数及动点问题(有难度)

一次函数及动点问题 1、如图,在长方形ABCD 中,AB=2,BC=1,动点P 从点 B 出发,沿路线 B→C→D 做匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致为( ) A B C D 2、如图,正方形ABCD 在平面直角坐标系中的位置如图所示,点B 与原点重合,点D 的坐标为(4,4),当三角板直角顶点P 坐标为(3,3)时,设一直角边与x 轴交于点E ,另一直角边与y 轴交于点F .在三角板绕点P 旋转的过程中,使得△POE 成为等腰三角形,请写出满足条件的点E 的坐标为________________

3、已知在矩形ABCD中,AB=4,BC= 25/2,O为BC上一点,BO= 7/2,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点. (1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在矩形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;(2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标; (3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P的坐标)

4、如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC. (1)求点A、C的坐标; (2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②); (3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

相关文档
相关文档 最新文档