文档库 最新最全的文档下载
当前位置:文档库 › 数学分析2 习题课 准备题 第一次

数学分析2 习题课 准备题 第一次

数学分析2 习题课 准备题 第一次
数学分析2 习题课 准备题 第一次

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

第一章复习题解答(数学分析)

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 1 ,下确界为 -1 。 2、 =∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 3、)(lim 2 n n n n -+∞ → = _______ 1 2 ________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = {}sup n a . 5. 设,2 12,21221 2n n n n n n x x +=-=- 则 =∞→n n x lim 1 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( B )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( B ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( D ) A 、}1 { 2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( D ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( D ) (A) ∞=∞ →n n x lim ; (B) +∞=∞ →n n x lim ;

数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案 一、填空题(每小题3分,共18分) 1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈?,有β≥x ;2) ,则称β是数集E 的下确界。 3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点 0x 可导。 4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。 5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。 6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈?α,有 成 立,则称)(x f 在),(b a 上为下凸函数。 二、单项选择题(每小题3分,共18分) 1.设f :Y X →,X A ??,则A ( )))((1 A f f - A. = B. ≠ C. ? D. ? 2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈?,有1)(0<)(x ?' D. 前三个结论都不对 4.已知???∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义?=x t t f x F 0d )()(,则)(x F 在区 间[0,2]上( )。 A. 连续 B. 不连续 C. 可导 D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。

数学分析第一章

第一章 实数集与函数 §1 实数 Ⅰ.教学目的与要求 1.理解实数的概念,掌握实数的表示方法 2.了解实数的性质, 并在有关命题中正确地加以应用 3.理解绝对值的概念,掌握绝对值的性质,并在有关命题中正确地加以应用. Ⅱ.教学重点与难点 重点: 实数的定义及性质、绝对值与不等式. 难点: 实数的定义及其应用. Ⅲ.讲授内容 一 实数及其性质 实数的组成:实数由有理数与无理数两部分组成. 有理数的表示:有理数可用分数形式q p (p ?q 为整数,q ≠0)表示,也可用有限十进 小数或无限十进循环小数来表示. 无理数:无限十进不循环小数则称为无理数.有理数和无理数统称为实数. 有限小数(包括整数)也表示为无限小数.规定如下:对于正有限小数(包括整数)x,当x=a 0.a 1a 2n a 时,其中0,9≤≤i a i=1,2, n, na ,0≠0a 为非负整数,记x=a 0.a 1a 2-n a ( 1)?.999 9, 而当x=a 1为正整数时,则记x=(a 0—1).999 9…, 例如2.001记为2.000 999 9…;对于负有限小数(包括负整数)y ,则先将—y 表示为无限小数,再在所得无限小数之前加负号,例如—8记为—7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数来表示. 我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系. 定义1 给定两个非负实数 x= 0a .a a 1n a , y=,.210 n b b b b 其中00,b a 为非负整数,k k b a ,(k=1,2,…)为整数,0≤a k ≤9,0≤b k ≤9.若有==k b a k k ,0,1,2,, 则称x 与y 相等,记为x=y ;若00b a >或存在非负整数L ,使得 a k =b k (k=0,1,2,…,L)而11++>l l b a ,则称x 大于y 或y 小于x ,分别记为x>y 或y-,则分别称x=y 与xx).另外,自然规定任何非负实数大于任何负实数. 定义2 : x =a 0.a 1a 2n a 为非负实数.称有理=n x a 0.1a a 2n a 为实数

数学分析习题课1.1

第一章 实数集与函数 习题课 实数集、确界原理与函数 一、基本要求: 1、掌握有关实数的性质与运算。 2、正确理解确界概念与确界原理,并运用于有关命题的运算与证明。 3、在中学已掌握函数概念的基础上,以两个数集之间映射的观点来加深对函数概念的理解。 4、进一步掌握函数的运算性质(四则运算、复合运算、和反函数等)及其表示方法。 5、加深对某些特性函数(有界函数、单调函数、奇(偶)函数和周期函数)的认识。并能依次对所给函数是否具有上述性质做出判断。 二、内容复习: 1、实数的定义:实数是有理数和无理数的统称。有理数可用分数形式q p (q p ,为整数,0≠q )表示也可用有限十进小数或无限十进循环小数来表示;而无限十进不循环小数则称为无理数。 2、实数的性质: (1) 封闭性:实数集R 对加、减、乘、除(除数不为0)四则运算是封闭的. (2) 有序性:任意两实数b a ,必满足下述三个关系之一:b a <,b a =,b a >. (3) 传递性:若b a >,c b >,则c a >. (4) 阿基米德性:对任何R b a ∈,,若0>>a b ,则存在正整数n ,使得b na >. (5) 稠密性:任何两个实数之间必有另一个实数,且既有有理数,也有无理数. (6) 实数集与数轴上的点有着一一对应关系. 3、绝对值的定义: ???<-≥=. 0,,0,||a a a a a 从数轴上看,数a 的绝对值||a 就是a 到原点的绝对值. 4、绝对值的性质: (1) 0||||≥-=a a ;当且仅当时0=a 有0||=a .

第一章 实数集与函数 (2) ||||a a a ≤≤-. (3) )0(||;||>≤≤-?≤<<-?=+∞ R =+∞-∞),( 邻域:设0,>∈δR a 点a 的δ邻域:),(}|||{);(δδδδ+-=<-=a a a x x a U . 点a 的空心δ邻域:}||0|{);(δδ<-<=a x x a U . 点a 的左δ邻域:],();(a a a U δδ-=-. 点a 的右δ邻域:),[);(δδ+=+a a a U . ∞邻域:}|||{)(M x x U >=∞,其中为充分大的正数(下同). ∞+邻域:}|{)(M x x U >=+∞;∞-邻域:}|{)(M x x U -<=-∞. 6、确界的定义: 确界是上确界与下确界的统称。 上确界的定义:设S 是R 中的一个数集。若η满足:

《数学分析》5第一章§3函数概念

授课章节:第一章 §3 函数概念 教学目的:使学生深刻理解函数概念。 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示方法; (2)牢记基本初等函数的定义、性质及其图象。会求初等函数的存在域,会分析初等函数的复 合关系。 教学重点:函数的概念。 教学难点:初等函数复合关系的分析。 教学方法:课堂讲授,辅以提问、练习、部分内容可自学。 教学程序: 引言:关于函数概念,在中学数学中已有了初步的了解。为便于今后的学习,本节将对此作进一步讨 论。 一 函数的定义 1.定义1 设,D M R ?,如果存在对应法则f ,使对x D ?∈,存在唯一的一个数y M ∈与之对应,则称f 是定义在数集D上的函数,记作:f D M →(|x y →). 函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f D 。即 {}()|(),f D y y f x x D ==∈。 2.几点说明 (1)函数定义的记号中“:f D M →”表示按法则f 建立D到M的函数关系,|x y →表示这两个数集中元素之间的对应关系,也记作|()x f x →。习惯上称x 自变量,y 为因变量。 (2) 函数有三个要素,即定义域、对应法则和值域。当对应法则和定义域确定后,值域便自然确定下来。因此,函数的基本要素为两个:定义域和对应法则。所以函数也常表示为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则。 例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同) 2)()||,,x x x R ?=∈ ().x x R ψ=∈(相同,对应法则的表达形式不同) 。 (3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域)。此时,函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。即“函数()y f x =”或“函数f ”。 (4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。a 称为()f a 的原象。 (5)函数定义中,x D ?∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x 值,可以对应多于一个y 值,则称这种函数为多值函数。本书中只讨论单值函数(简称函数)。 (6)定义1中的定义是Cauchy 于1834年给出。不是完美的、现代意义上的函数定义。事实上,函数定义的产生也经历了一个从无到有,从具体到抽象。从特殊到一般,从不完美到逐步完美的过程。这个进程

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 学院 班级 学号(后两位) 姓名 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为 ()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????=dx x g dx x f dx x g x f ( ). 3. 若()? +∞ a dx x f 绝对收敛,()?+∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必 然条件收敛( ). 4. 若()? +∞ 1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散于 正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ).

二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑ ∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B. 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛;

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

数学分析知识点汇总

第一章实数集与函数 §1实数 授课章节:第一章实数集与函数——§1实数 教学目的:使学生掌握实数的基本性质. 教学重点: (1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用. 教学方法:讲授.(部分内容自学) 教学程序: 引言 上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. [问题]为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一、实数及其性质

1、实数 (,q p q p ?≠??????有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示. {}|R x x =为实数--全体实数的集合. [问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 01(1)9999n n a a --0,a =则记表示为无限小数,现在所得的小数之前加负例: 2.001 2.0009999→; 利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小? 2、两实数大小的比较 1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中 3 2.99992.001 2.0099993 2.9999→-→--→-; ;

数学分析_各校考研试题及答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值范围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感谢小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤? 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在

卢同善实变函数青岛海洋大学出版社第二章习题答案

第二章习题答案 1. 若y y x x m m →→且,则(,)(,)m m x y x y ρρ→. 特别的, 若x x m →, 则(,)(,).m x y x y ρρ→ 证明:这实际上是表明(,)x y ρ是n n R R ?上的连续函数. 利用三角不等式, 得到 (,)(,)(,)(,)(,)(,) (,)(,)0,) m m m m m m m m x y x y x y x y x y x y x x y y m ρρρρρρρρ-≤-+-≤+→→∞(. 2. 证明:若()δ,01x O x ∈,则δδ,使得0(,)O x E δ=?I . 证明:注意到'E E E =U . (i ).若(1)成立,则0x E ∈或0'x E ∈. 若前者成立,显然(2)成立;若后者0'x E ∈成立,由极限点的定义也有(2)成立. 总之,由(1)推出(2). (ii). 若(2)成立,则对任意的n ,有10(,)n O x E ≠?I ,在其中任选一点记为n x . 这样就得到点列{}n x E ?,使得10(,)n n x x ρ<,即(3)成立. (iii). 设(3)成立. 若存在某个n 使得0n x x =,当然有0n x x E E =∈?;若对任意的n ,都有0n x x ≠,则根据极限点的性质知0'x E E ∈?. 总之,(1)成立. 5. 证明:A B A B ?=?. 证明:因为()'''A B A B =U U ,所以有 ()()()()()()'''''A B A B A B A B A B A A B B A B ?=??=??=??=?U U U . 6. 在1 R 中,设[0,1]E Q =?,求',E E . 解: '[0,1]E E ==

《数学分析》课本上的习题2

P.27 习题 2.按N -ε定义证明: (1)11 lim =+∞→n n n 证明因为 n n n n 11111<+=-+,所以0>?ε,取ε 1=N ,N n >?,必有ε<<-+n n n 111. 故11lim =+∞→n n n (2)2 3123lim 22=-+∞→n n n n 证明因为n n n n n n n n n n n n n 32525)1(232)12(23223123222222<=<-++<-+=--+ )1(>n ,于是0>?ε,取}3 ,1max{ε=N ,N n >?,有ε<<--+n n n n 3 231232 2. 所以2 3 123lim 22=-+∞→n n n n (3)0! lim =∞→n n n n 证明因为 n n n n n n n n n n n n n n n n 11211)1(!0!≤???-=???-==-ΛΛΛ,于是0>?ε,取 ε 1 = N ,N n >?,必有 ε<≤-n n n n 10!. 所以0!lim =∞→n n n n (4)0sin lim =∞ →n n π 证明因为n n n π π π ≤ =-sin 0sin ,于是0>?ε,取ε π = N ,N n >?,必有επ π <≤ -n n 0sin . 所以0sin lim =∞ →n n π

(5))1(0lim >=∞→a a n n n 证明因为1>a ,设)0(1>+=h h a ,于是 2 22 )1(2)1(1)1(h n n h h n n nh h a n n n -≥++-+ +=+=Λ,从而 22 )1(22 )1(0h n h n n n a n a n n n -=-≤=-,所以0>?ε,取12 2 +=h N ε,N n >?,有 ε<-≤-2 )1(20h n a n n . 故0lim =∞→n n a n 3.根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列: (1)n n 1lim ∞ →;(2)n n 3lim ∞ →;(3)3 1 lim n n ∞→ (4)n n 31lim ∞→;(5)n n 2 1lim ∞→;(6)n n 10lim ∞→;(7)n n 21lim ∞→ 解 (1)01lim 1lim 2 1==∞ →∞ →n n n n (用例2的结果,2 1= a ),无穷小数列. (2)13lim =∞ →n n ,(用例5的结果,3=a ) (3)01 lim 3 =∞→n n , (用例2的结果,3=a ),无穷小数列. (4)031lim 31lim =?? ? ??=∞→∞→n n n n ,(用例4的结果,31=q ),无穷小数列. (5)021lim 2 1 lim =??? ??=∞→∞ →n n n n ,(用例4的结果,21=q ),无穷小数列. (6)110lim =∞ →n n ,(用例5的结果,10=a ). (7)12 1 lim 2 1lim ==∞ →∞→n n n n ,(用例5的结果,21=a ). 4.证明:若a a n n =∞ →lim ,则对任一正整数 k ,有a a k n k =+∞ →lim

数学分析 第一章 实数集与函数练习题

第一章 实数集与函数 一、填空题 1. 已知函数)(x f 的定义域为[]4,0,则函数)1()1()(-++=x f x f x g 的定义域为_________。 2. 设x e x f =)(,[]21)(x x g f -=,则=)(x g _______ 3.函数 2112++-= x x y 的定义域是 ; 4.函数 x x y 1arctan 3+-= 的定义域是 ; 5.设 ? ??<+≥++=1 x , 2x 1 x , 14)(3x x x f ,则 )4(+x f = ; 6.函数 2tan 32sin 2x x y += 的周期是 ; 7.把函数 32arcsin ln x y = 分解为简单函数 ; 8.函数 1 x , 1≥-= x y 的反函数是 ; 9.函数 1+=x e y 的反函数是 ; 10.设 , cos (x), )(2)(x a e x f a x +==-?则 =)]([x f ? ; 11.212arccos x x y +=的定义域是 ,值域是 ; 12.若x x f -=11)(,则=)]([x f f ,=)]}([{x f f f ; 13.若31)1(22++=+x x x x f ,则=)(x f ; 14.设?? ???<≤<≤<≤-=31 1-10 201 2)(x x x x x f x ,则)(x f 的定义域是 ,=)0(f ,)1(f = ; 15.函数x y ln 1=的定义域是 ; 16.设)(x f y =的定义域是]1,0[,则)(2x f 的定义域是 ; 17.设函数, 1)(, ln 1)(+= +=x x g x x f 则=)]([x g f ; 18.设???<≤+<<-=20 102 sin )(2x x x x x f ,则=)2(πf ;

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析1 习题课 参考题 第二次

第二次习题课 关于序列极限的进一步讨论 2012.09.24 1.夹逼原理 (1)求下列极限:i.lim n →∞ 1(n +1)2+1(n +2)2+···+1(2n )2 ii.lim n →∞ m k =1 a k b n k 1n ,a k ,b k >0,m ∈N .iii.lim n →∞n k =1k !n ! .(2)求证如下结论:i.1n +114.试证明:{q n }的极限存在,并求其极限. (4)设a n ∈(0,1),?n ∈N ,且a n <12 (a n ?1+a n +1),?n 2.证明:{a n }收敛.3.闭区间套定理 (5)证明:利用闭区间套定理证明确界原理. (6)设A,B 是两个非空且互不相交的数集,若A ∪B =[0,1],则必存在ξ∈[0,1],使得?δ>0,于O δ(ξ)中既有集合A 的点,又有集合B 的点.

4.子列与Bolzano ?W eierstrass 定理 (7)设{x n }是单调数列.证明:{x n }收敛??一个子序列{x n k }收敛. (8)若{x n }的任意一个子序列{x n k }都存在收敛到a 的子列,证明:lim n →∞ x n =a .(9)证明:{x n }是有界序列的充要条件是:{x n }的任意子列都有收敛子列. (10)设{x n }是有界序列,证明:存在子序列{x n k },使得{x n k },{x n k +1},{x 2n k }这三个子列均收敛. 5.Cauchy 列与Cauthy 收敛准则 ?若序列{x n }满足对?ε>0,?N ∈N ,s.t.对?n,m >N ,都有|x n ?x m |<ε成立,则称{x n }为Cauchy 列.实数域中的序列{x n }为收敛列(且收敛到一个实数)的充分必要条件是{x n }为Cauchy 列. ?Cauchy 列也可以等价地表述成:?ε>0,?N ∈N ,s.t.对?n >N,p ∈N ,都有|x n +p ?x n |<ε成立. (11)用Cauchy 准则判定如下序列不收敛: i.x n =n k =1 1√k ,n ∈N ;ii.x n =sin n,n ∈N . 6.其他 (12)设{a n }是单调递增的正数列,若对于任意的正整数m,n 都有a mn ≥ma n 成立,且sup a n n =A <+∞,证明:lim n →∞a n n =A .(13)若lim n →∞x n =α,lim n →∞y n =β,证明:lim n →∞x 1y n +x 2y n ?1+···+x n y 1n =αβ.

数学分析试题及答案4

(十四) 《数学分析Ⅱ》考试题 一 填空(共15分,每题5分): 1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 2 设 =--='→5 ) 5()(lim ,2)5(5 x f x f f x 则54; 3 设?? ?>++≤=0 , )1ln(,0, sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。 二 计算下列极限:(共20分,每题5分) 1 n n n 1 )1 31211(lim ++++ ∞→ ; 解: 由于,n n n n 1 1)131211(1≤++++≤ 又,1lim =∞→n n n 故 。1)131211(lim 1 =++++∞→n n n 2 3 )(21lim n n n ++∞→; 解: 由stolz 定理, 3 )(21lim n n n ++∞→33)1()(lim --=∞→n n n n ) 1)1()(1(lim -+-+ -- =∞ →n n n n n n n n ) 1)1(2))(1(() 1(lim --+---+=∞→n n n n n n n n n .3 2)1)11(21 11lim 2=-- +- + =∞ →n n n n 3 a x a x a x --→sin sin lim ;

解: a x a x a x --→sin sin lim a x a x a x a x --+=→2sin 2cos 2lim .cos 2 2sin 2 cos lim a a x a x a x a x =--+=→ 4 x x x 10 ) 21(lim + →。 解: x x x 10 )21(lim +→.)21(lim 2 2 210e x x x =?? ??? ?+=→ 三 计算导数(共15分,每题5分): 1 );(),1ln(1)(22x f x x x x f '++-+= 求 解: 。 1 11 11 1 1221122)(2 2 2 22 2+-= +- +=++++ - +='x x x x x x x x x x x x f 2 解: 3 设。 求)100(2 ,2sin )23(y x x y -= 解: 由Leibniz 公式 )23()2(sin )23()2(sin )23()2(sin 2)98(2 1002)99(11002)100(0100)100(' '-+'-+-=x x C x x C x x C y 6)2sin(26)2sin(2100)23)(2sin(22 98982991002999922100100?+++?+-+=?πππx x x x x x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。 ]2cos 12002sin )22970812[(2298x x x x --= 四 (12分)设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n ;sin cos 33 表示的函数的二阶导数求由方程???==t a y t a x , tan sin cos 3cos sin 3)cos ()sin (22 33t t t a t t a t a t a dx dy -=-=''=。t t a t t a t dx y d sin cos 3sec )cos (sec 223222='-=

相关文档
相关文档 最新文档