文档库 最新最全的文档下载
当前位置:文档库 › 晶体结构分析讲义(上)

晶体结构分析讲义(上)

晶体结构分析讲义(上)
晶体结构分析讲义(上)

晶体结构分析

主讲人:吴文源

2011.5

1.Shelxtl 使用流程

※解析原始文件有hkl文件(或raw文件),包含衍射数据;p4p文件,包含晶胞参数

※为一个晶体的数据建立project,该项目下所有文件具有相同的文件名;一旦在XPREP 中发生hkl文件的矩阵转换,则需要输出新文件名的hkl等文件,因此要建立新的project。※首先运行XPREP,寻找晶体的空间群

※然后运行XS,根据XPREP设定的空间群,寻找结构初解

※在Xshell中观察初解是否合理,如不合理,需重回XPREP中设定其他的空间群

2.Xshell 使用流程

※找出重原子或者确定性大的原子

※找出其余非氢原子

※精修原子坐标

※精修各项异性参数

※找到氢原子(理论加氢或差值傅里叶图加氢)

※反复精修,直到wR2等指标收敛。最后的R1<0.06(0.08) wR2<0.16(0.18)

※通过HTAB指令寻找氢键,判定氢的位置是否合理,并且将相关氢键信息通过HTAB和EQIV指令写进ins文件中

※将原子排序(sort)

3.cif 文件生成和检测错误流程

※在步骤1、2完成后,在ins文件中加入以下三条命令

bond $H

conf

acta

※此时生成了cif和fcf文件,将cif文件拷贝到planton所在文件夹中检测错误,也可以通过如下在线检测网址:https://www.wendangku.net/doc/2d10411830.html,/services/cif/checkcif.html

※根据错误提示信息,修改或重新精修,将A、B类错误务必全部消灭,C类错误尽量消灭。

4.Acta E 投稿准备流程

投稿前,请务必切实做好如下工作:

※按步骤1、2、3解析晶体并生成相应cif和fcf文件。

※准备结构式图(Chemical structural diagram)、分子椭球图(Molecular ellipsoid diagram)和晶胞堆积图(Packing diagram),最好是pdf格式。

※按要求撰写文章的文字部分,填写cif中相应段落,注意格式要求!

_publ_section_title 题目

_publ_section_abstract 摘要

_publ_section_related_literature 相关文献

_publ_section_comment 评论

_publ_section_exptl_prep 制备方法

_publ_section_exptl_refinement 精修说明

_publ_section_references 参考文献

_publ_section_figure_captions 插图说明

_publ_section_table_legends 表格说明

_publ_section_acknowledgements 致谢

※将cif中需要填写的其他部分(在cif的标准空白样本中以!标注)全部完成,并再次检查整个cif文件格式和内容。

参考书目

?单晶结构分析原理与实践O723/0301陈小明,蔡继文, 科学出版社2003

2007年第2版O723/10001 ?固体科学中的空间群O711/8401 (美)(G.Burns),(A.M.Galzer) 高等教育出版社1981 ?结晶化学导论O711/8401 (英)(R.C.Evans), 人民教育出版社1980

?结晶化学导论O74/10002钱逸泰,中国科学技术大学出版社2005

?晶体结构的周期性和对称性O723/9201周公度, 高等教育出版社1992

?X射线分析的发展O434.1/8901 (英)(Bragg,W.L.), 科学出版社1988

?X射线衍射分析原理与应用O657.39/0401刘粤惠,刘平安, 化学出版社2003

?晶体生长O78/81001张克从,张乐惠, 科学出版社1981

?超分子化学O631.1/0402 (法)Jean-Marie Lehn, 北京大学出版社2002

应用软件

Shelxtl V6.10, Bruker 2000

晶体解析、分析、作图的首选软件

Platon V1.15, A.L.Spek, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands 2008

Cif文件查错、解析结构全面解析的软件,下载及更新地址:

https://www.wendangku.net/doc/2d10411830.html,/~louis/software/platon/

Mercury V2.3 CCDC 2010

晶体结构分析、作图辅助软件下载及更新地址

https://www.wendangku.net/doc/2d10411830.html,/free_services/mercury/downloads/

enCIFer V 1.3, CCDC 2008

cif 填写、检查格式软件

https://www.wendangku.net/doc/2d10411830.html,/free_services/encifer/downloads/

publCIF v 1.9.2, IUCr 2008

cif 填写、检查格式、预览软件

https://www.wendangku.net/doc/2d10411830.html,/services/cif/publcif/#download

Acrobat V6.0 standard version, Adobe 2003

其中Distiller工具能将Shelxtl产生的ps格式转换成常见格式图像的功能

Chem Office Ultra V 8.0, Cambridge Soft 2003

其中Chem Draw可用于分子结构式图Scheme的制作

相关机构网址

在线检测Cif文件的地址:

https://www.wendangku.net/doc/2d10411830.html,/services/cif/checkcif.html

IUCr:International Union of Crystallography

国际晶体学联合会

https://www.wendangku.net/doc/2d10411830.html,/

IUCr:Acta Crystallography Section A-E

(国际晶体学联合会主办的晶体学报A-E)

https://www.wendangku.net/doc/2d10411830.html,/

Section C : Crystal Structure Communications

Section E : Structure Report Online

其中Section E : Structure Report Online的投稿指南地址CCDC:The Cambridge Crystallographic Data Centre

剑桥晶体数据中心

https://www.wendangku.net/doc/2d10411830.html,/

第一章绪论

本课程的特色

先进性:单晶X射线衍射技术对化学进步的深刻贡献,是所有化学工作者都应该了解的。综合性:涉及到多门学科的交叉;既有较为艰深的理论知识,又有动手解析的乐趣。

实用性:单晶X射线衍射能获得物质最全面的结构信息,是目前对于化学物质最彻底的解析,任何一个物质的晶体结构都具有发表论文的价值。

单晶X射线衍射

Single Crystal X-Ray Diffraction

※X射线的波长恰好在10 -10 m (?)数量级,与原子和分子的尺寸相近。

※因此晶体中晶格的尺寸也在X射线的波长数量级范围。

※利用X射线在晶体中发生的衍射现象,能够了解晶体的结构信息,这一技术称为X射线衍射技术。

※目前只有单晶的XRD才能解析出晶体结构的完整信息(晶胞参数,原子坐标)。

本课程内容与目的

涵盖内容

?晶体化学

?X射线衍射技术?超分子化学

学习目的

?了解晶体中的对称性

?了解单晶XRD技术的原理

?培养单晶的技巧

?解析单晶的方法

?掌握发表晶体结构论文的一般步骤了解超分子化学和晶体(分子)工程学

单晶解析的历史与现实

?1895年,伦琴(W. C. R?ngtgen)发现了X射线,并因此于1901年获得诺贝尔物理学奖。?20世纪初期,劳埃(Max von Laue)和布拉格(W. H. &W.L.Bragg)父子分别发现了X射线对晶体的衍射现象,并分别于1914和1915年先后获得诺贝尔物理学奖。

?粉末衍射(powder diffraction)技术和单晶衍射(single crystal diffraction)技术平行发展。?1938年,Hanawalt将X射线用于物相定性分析。

?1941年,美国材料和测试协会(ASTM),开始制订粉末衍射卡。

?1969年,成立粉末衍射标准联合委员会(JCPDS),制订标准衍射数据。至2005年,收集至set55,总计17万种物相数据。

?1913年,W.L. Bragg通过X射线衍射技术首次对NaCl的结构进行了解析。

?1923,首次测定有机分子的晶体结构:六次甲基四胺。

?方法从初期的模型和Patterson(重原子法)到上世纪四十年代的直接法,已经发展成熟。

?仪器从1970年出现的四园衍射仪和上世纪八十年代后计算机广泛应用于数据处理和CCD衍射仪使得单晶结构分析技术已经越来越普及。

第二章晶体化学知识

?晶体基本概念

?晶体中的对称性

?十四种布拉维晶格

?三十二种点群

?二百三十种空间群

2.1 晶体的基本概念

?何为晶体?

晶体(crystal, crystalline)的定义:

分子/离子/原子等微粒在空间按照一定规律重复排列而形成的固体物质。

晶体的特性:

(1) 微观上的周期性和宏观上的均匀性

(2) 各向异性

(3) 晶体外观的对称形状

(4) 具有固定的熔点

等等……

2.2 晶体中的对称性

晶体结构=基元+点阵(格子)Crystal structure = motif + lattice

分析晶体结构的方法※寻找基元

※将基元抽象为等同点

※等同点排列为点阵

※将点阵划分为晶胞

基元必须符合的条件:

※化学组成相同

※空间结构相同

※排列取向相同

※周围环境相同

2.2 对称的基本概念

一、对称操作(symmetry operation)

1、旋转(Rotation):某一物体围绕一个轴旋转2π/n共计n次,如果该物体在每次操作前后都能够和原物体完全重合,则称该物体中具有Cn(Schoenflies熊夫利斯符号)或n次(Hermann-Mauguin国际符号)对称轴,这样的操作称为旋转操作。

在晶体中存在的对称轴有:C1,C2,C3,C4,C6 或1,2,3,4,6

C1=E(恒等操作,identity operation)旋转360度,C2每次旋转180度,C3每次旋转120度,C4每次旋转90度,C6每次旋转60度。

2、反映(Reflection):如果某一物体通过镜面映射得到的镜像和原物能够完全重合,则称该物体中具有镜面m(国际符号)或σ(熊夫利斯符号) 。

镜面对称性表明物体具有左右对称的特性。

手性物质(Chiral,chirality)通过镜面反映得到其对应异构体(enantiomorph),因此存在镜面的分子必定不是手性分子。

3、倒反(Inversion),也称反演:该操作是将一物体中所有的点经过某一点反向延长等距离,如果得到的物体和原来能够重合,则该物体中存在位于该点的对称中心(center of symmetry),用符号i (熊夫利斯符号)或者1(国际符号)表示。手性物质通过倒反操作得到其对应异构体,因此存在对称中心的分子必定不是手性分子。

4、旋转倒反(Rotainversion),也称旋转反演:该操作是将某一物体中所有的点,先围绕一个轴旋转2π/n,再经过对称轴上某一点反向延长等距离,如果得到的物体和原来能够重合,则该物体中存在位于n次反轴,记作n。手性物质通过旋转倒反操作得到其对应异构体,因此存在反轴的分子必定不是手性分子。

旋转倒反操作是复合操作,一般具有反轴的分子中,还会另外存在其他对称元素,只有四次反轴是独立的对称元素。

※重要结论:

具有对称面、对称中心或者四次反轴的分子不是手性分子,而不存在以上对称元素的分子是手性分子。

※点群:

宏观物体或者微观分子(离子)中存在广泛的对称性,并且对称元素往往同时出现,相互之间存在关联,因此引入点群的概念,表示某一种对称类型。

※苯正六边形D6h点群

※硫酸根正四面体T d点群

※六氰根合铁酸根八面体O h点群

※水分子折线形(V字形) C2V点群

※二氧化碳直线形D∞h点群

二、晶体中特有的对称操作:

晶体中除了具有前述的点对称操作以外,由于晶体是无限重复的结构,还具有如下的对

称操作。

1、平移(translation):向点阵中邻近点方向移动,周期性的重复现象。

2、螺旋(screw):复合操作,先围绕一个轴旋转2π/n,同时沿着轴的方向平移一定m/n单位距离,如果能够和原来的物体完全重合,则称该晶体中具有n m螺旋轴,比如21螺旋轴,表明每旋转180度,并前进1/2单位距离,就可以和原晶体完全重合。

3、滑移反映(glide reflection):复合操作,先对应一个镜面进行反映操作,再沿着镜面中某个方向平移一定单位距离,如果能够和原来的晶体完全重合,则称该晶体中具有滑移面,根据滑移方向不同,记为a,b,c,n或d。

其中a,b,c滑移是指沿着a,b,c轴方向平移1/2单位距离,n是指沿某两个轴的中线方向平移1/2单位,而d是指沿着某两个轴的中线方向平移1/4单位。

※重要结论:

具有对称面(滑移面)、对称中心或者四次反轴的晶体不是手性晶体,而不存在以上对称元素的晶体具有手性。

2.3 晶胞参数

一、晶胞(Unit Cell)

在点阵中,任选一个等同点作为原点,连接三个其

他等同点,得到三个方向的单位矢量a,b和c(不能共平

面)。以这三个矢量为棱得到的平行六面体称为晶胞。每个

晶胞中包含的内容应该完全相同,这样沿着晶胞的三个矢

量方向进行平移,晶体能够周期性地重合,所以晶胞是分

析晶体结构的基本单元。

晶胞的选取是不唯一的,以二维空间的点阵选取晶胞为例

子。注意:此时晶胞是平行四边形!

※晶胞中只包含一个等同点(基元),称为初基晶胞或素晶胞(Primitive Cell),否则就称为非初基晶胞(复晶胞)。

二、晶胞参数(Unit cell parameters)

晶胞的大小和形状,由晶胞参数给出。

晶胞中三个单位矢量(不必相互垂直,但不能同平面),其长度为a,b,c,即平行六面体的棱

长。

三个矢量间的夹角称为α,β,γ,即相邻棱之间的夹角:

α = bΛc

β = aΛc

γ = aΛb

2.4 七大晶系

虽然晶胞的划分可以是任意的,但一般情况要遵循下列原则:

1.要尽可能体现点阵的对称性。

2.晶胞的体积要小,即包含的等同点要少。

根据晶胞参数和晶胞中内在对称性要素,可以将晶胞划分为七大晶系:

2.5 十四种布拉维点阵(格子)

以上七大晶系的素晶胞,再加上部分反映点阵对称性的复合晶胞,一共得到十四种布拉维点阵(Bravias lattices),代表了三维空间所有可能的点阵形式。

2.6 三十二种点群

若以晶胞作为对称性考察对象,得到晶体中的三十二种点群(point group),分属于七大晶系。 ※ 比如单斜晶系中有C 1和C i 点群(熊夫利斯符号),或1和1(国际符号)。前者没有任何对称元素,后者只有一个对称中心。

※ 再比如单斜中可能的点群有C 2,Cs 和C 2h (熊夫利斯符号) ,或称为2,m 和2/m (国

际符号)。因为单斜晶系必要的对称元素是2或者m,以上三种点群都符合要求。

※再比如正交晶系中可能的点群有D2,C2v和D2h(熊夫利斯符号),或称为222,mm2和mmm(国际符号)。因为正交晶系必要的对称元素是三个相互垂直的2次轴或者两个相互垂直的对称面,以上三种点群都符合要求。

2.7 二百三十种空间群

三十二点群是针对单个素晶胞而言的,但对于三维空间无限重复的晶体,还要考虑平移对称操作,即可以将旋转轴用螺旋轴代替,将镜面用滑移面代替,并且考虑复合晶胞在内,得到一共230种可能的晶体空间群(space group)。

※以单斜晶系的C2h(2/m)为例子,以21取代2得到空间群P21/m,以滑移面c取代m 得到P2/c,自然还会存在P21/c,再加上原来的P2/m;再考虑单斜晶系存在C格子,会出现C2/m和C2/c,共得到六种空间群。

※I222 正交晶系体心格子三个相互垂直的2次轴手性

※Pcca 正交晶系简单格子三个相互垂直的滑移面非手性

※Cccm 正交晶系底心格子三个相互垂直的面非手性

※F432 立方晶系面心格子

六个面上共三个四次轴,对角上共四个三次轴,棱上共六个二次轴手性

第三章X射线衍射技术

3.1 X射线的性质

X射线于1895年由德国科学家伦琴(W. C. R?ngtgen)发现,其结果发表在1896年的《Nature》上,并因此于1901年获得首届诺贝尔物理学奖。

X射线的实质是电磁波,其波长在0.01-100?之间,介于紫外线和γ射线之间。其能量对应于125,000,000-12,500 kJ·mol-1,或者1,300,000-130 eV。

一、X射线的产生:

高速运动的电子轰击靶材,能量转化为X射线。

二、X射线谱的特点:

产生了“白色”的连续谱,以及靶材的特征X射线谱。

前者来自于电子能量的损失,后者来自于靶材内层电子的跃迁。为了得到“单色”的X 射线,常用滤波片(如石墨晶体)。

X射线的能量较高,对应于电子内层跃迁。一般用的K α射线指的是从L层到K 层电子跃迁辐射出的X射线。由于对X射线衍射的波长要求在0.5 ~ 2.5?之间,应于从钒(Z= 23)到银(Z=47)之间的元素(发射特征X射线波长正比于原子序数平方的倒数)。X射线衍射最常用的两种波长如下:

Cu Kα=1.54187 ? Mo Kα=0.71073 ?

3.2 X 射线衍射原理

X 射线衍射 X-Ray Diffraction (XRD)

当电磁波的波长远远大于物体的尺寸,以反射和折射为主。

电磁波的波长远远小于物体的尺寸,以透射为主。

只有在电磁波的波长与物体的尺寸相近时,才会出现散射现象,相干散射波之间的相互作用称为衍射。

X 射线的波长有一部分处于0.5至2.5 ?之间,与晶体中点阵的尺寸相当。 描绘晶体对X 射线的衍射规律有劳厄Laue 方程和布拉格Bragg 方程。

※ 布拉格方程:

满足衍射条件的面间距d ,布拉格角θ和波长λ之间的关系

n λ=2d sin θ

n 为正整数,代表一级、二级……n 级衍射。

θ越大,对应的面间距d 越小。2θ表示入射和衍射线之间的夹角,称为衍射角。

※ 晶面指数(hkl )和晶面方向[hkl ] :

因为布拉格方程中d 表示的是面间距,因此规定不

同晶面的符号至关重要。

某一晶面在x,y,z 三轴上的截距ua ,vb,wc ,则将

1/u :1/v :1/w 化为互质整数之比h:k:l ,则称(hkl )为晶

面指数,代表一组平行的等间距平面,也可以用垂

直于该晶面的法线表示方向,记为[hkl ]。

※ 衍射指数hkl :

晶面指数(hkl )代表的是垂直于同一法线方向的一组

等距离平行晶面,而衍射指数hkl 代表这一方向上

等距离的平行面,其中的h,k,l 不要求互质。

比如立方晶系中(100)面代表的是垂直于a 轴方向的晶面,而面心和体心立方中还存在200面,其间距d 200=d 100/2。

即 d nh nk nl = d hkl

/n

布拉格方程示意图

因此布拉格方程nλ=2d sinθ可以简化为

λ=2d hkl sinθ

即固定X射线波长λ的情况下,布拉格角θ与hkl衍射面一一对应。

3.3 晶体结构解析原理

衍射点的衍射强度I 和相应的hkl指标,加上晶胞参数(a,b,c,α,β,γ),构成了晶体结构解析的基本数据。

我们知道,点阵中的等同点代表基元,如果基元只包含一个原子,则hkl方向上的衍射强度I hkl∝f 2其中f 称为该原子的散射因子。

散射因子f (scattering factor):代表原子核外电子对X射线的散射能量,大致与原子序数Z 成正比。

氢原子只包含一个电子,所以氢原子的散射很弱,在很多情况下,无法直接找到晶胞中氢原子的位置;另外外层电子的散射作用弱,因此中性原子和离子的散射能力比较接近,也就是说不能很好地区分原子的价态。

※重原子法和直接法:为了解决相角问题,求解电子密度分布的两种方法。

1.重原子法Patterson methods:

含有金属的化合物,比如配合物中,金属原子是重原子(排在碳后的原子),其原子散射因子f 明显较大,因此在多个原子的结构因子F hkl相加的过程中,可以先忽略其他轻原子的贡献,将重原子的相角α作为衍射点结构因子的相角αhkl,这样通过傅里叶合成,先求出最大电子密度峰(即重原子)的大致位置。再通过差值傅里叶合成,得到其他较小电子密度峰,即较轻原子的位置。

2.直接法(direct method):

选取若干强衍射点,赋予它们任意的相角作为起始套,再推导出其他衍射点的相角,只有接近正确的起始套,才能得到不自相矛盾的结果。一旦确定了这些强衍射点正确的相角,就可以推导出其他衍射点的相角,然后通过傅里叶合成得到电子密度图,根据化学知识来判断这一解法是否合理。否则再选取其他起始套方案。

该方法对计算速度要求高,比如选取20个衍射点,就有可能有多达106个起始套方案。所以对复杂的大分子,直接法的效果不太好,一般适用于最小不对称单元小于200~300个非氢原子的结构。

差值傅里叶合成(difference Fourier synthesis) :

即根据已经确定的原子的电子密度,计算出|Fc|与实测|Fo|之间差值,求出晶胞中剩余电子密度的分布,其中若干最大峰,就可能是还没有找到的原子的位置。

※总结:晶体解析中的基本策略

获得晶胞参数和衍射

数据:

a,b,c,α,β,γI

hkl 确定用重原

子法还是直

接法求解初

始相角方案

根据初始相角,傅

里叶合成得到晶胞

中电子密度分布

图,其中密度峰值

就是可能的原子位

置,根据化学知识

判断该方案是否合

理,否则回到上一

第四章单晶样品的制备与测试

一、单晶样品的制备

二、单晶样品的挑选与送样

三、单晶样品获得衍射数据a,b,c,α,β,γ;I hkl,σhkl

4.1 单晶样品的制备为什么样品需要单晶?

单晶是为同一个点阵贯穿的晶体,因此进行X射线衍射,能够揭示其内在结构规律。

※单晶的获得为什么比较困难?

虽然固体物质绝大多数都是晶体,但是晶体生长过程中,往往得到的是粉末晶体(powder crystal),或者多晶(polycrystalline)。

※比较容易获得单晶的是哪些物质?分子晶体和离子晶体最容易得到单晶。金属晶体和原子晶体最难得到单晶。

※单晶样品制备的原则:

缓慢的生长得到较大的质量较好的单晶。

※单晶制备的意义:

获得单晶,就得到彻底定量的结构解析。

※单晶制备的方法:

1、溶液生长法;

选取合适的溶剂,将样品溶解得到不饱和溶液,将溶液慢慢向饱和状态过渡,晶体就会长出。注意,向饱和过渡的速度越慢越好,这样长出的晶体就会数量少而尺寸大,否则就会得到大量的粉晶或者多晶。

最常用的方法就是溶液静置,在缓慢蒸发的过程中溶液逐渐达到饱和。

另外的一个方法就是制备热溶液,在冷却过程中使得溶液逐渐达到饱和。

对于有机化合物和盐类,找到合适的溶剂是解决问题的关键。溶解度不能太大,更不能太小。同时注意,溶剂分子常常会混入结晶。建议:选取大分子或者对称性差分子的溶剂会有助于解决问题!

2、扩散法;

实质也是让样品缓慢结晶。比如某物质溶解于A,而难溶于B,则让B缓慢扩散进入A,会使得结晶慢慢析出。

难溶解晶体的生长也可以用扩散法,比如A+B→C,可将A,B分别溶解在溶剂中,装入H型管,在接触的微孔陶瓷膜上A与B发生接触,缓慢生长出C的晶体。3、水热(hydrothermal)合成,溶剂热(solvothermal)合成:

得到难溶物质晶体常用的方法:无机-有机杂化材料,无机多孔材料,配位聚合物等。

在密闭的高压釜,放入反应原料和溶剂,在烘箱中加热,冷却后,就会有晶体长出。原理是加热时候产生高压,使得溶液溶解能力加大,溶剂的密度、黏度等都有较大变化,有利于合成在常温常压溶液中难以得到的单晶。

该方法往往可以通过调节原料的组份而调控产物,是分子设计或者晶体工程(Crystal engineering)中有力的手段方法。

4.2 样品的挑选与送样

※肉眼或者显微镜下选择质量好的单晶样品:

透明,没有内在的浑浊、气泡和裂缝,表面光滑。

※样品的尺寸不宜过大,也不能太小:一般在0.1~1mm

※可以用针、小刀对样品进行切割、分割,以期获得符合要求的样品。

※注意:样品的挑选一定要在溶液中进行!否则样品很容易被弹飞!

母液、石油醚和石蜡油都是可以选择的操作环境。

4.3 样品的测量单晶X射线衍射仪器:

※四圆衍射仪(four-circle diffractometer)

Enraf–Nonius CAD-4 diffractometer

※CCD面探测仪器(CCD area-detector)

Bruker SMART APEX CCD area-detector diffractometer

样品测试得到的文件

※四圆衍射仪(four-circle diffractometer):*.hkl *.lis

※CCD面探测仪器(CCD area-detector):*.raw *.p4p *._ls

其中*.hkl和*.raw文件包含hkl,I,σ(I)参数

*.lis和*.p4p包含晶胞参数

*._ls包含还原过程的记录文件

第五章晶体结构的初步解析

SHELXTL (Bruker, 2000)

目前解析晶体应用最广泛的软件,是Bruker SMART APEX CCD 衍射仪的配套软件。

包含的主要部分为:

XPREP 空间群确定

XS 直接法或者重原子法得到初解

XL 最小二乘法精修

XP分子图形显示

5.1 XPREP

※XPREP的主要功能:确定空间群

※XPREP的其他功能:吸收校正、晶胞参数变换等。

※XPREP的输入文件:a b c αβγ h k l I σ(I) *.hkl *.lis (四圆) *.raw *.p4p (CCD) ※XPREP的主要输出文件:

*.ins *.hkl 为XS解粗结构的输入文件

※XPREP的次要输出文件:

*.prp XPREP过程记录文件

*.pcf 部分测试参数,填写*.cif 时有用

XPREP中遇到的常见问题处理对策:

?程序会自动提供一系列参考选择,如没有特别把握,应该优先按照程序缺省选择进行(即按回车键)。

?选择晶胞时,如有多种选择,先选对称性高者。?选择空间群时,如有多种选择,先选CFOM(combined figure of merit)最小者。?如果按以上选择无法解出合理结果,再尝试其他选择。?Formula(化学式) Z(晶胞中包含化学式个数),如果无法确切知晓,起码将晶体中可能包含的元素种类都写入化学式。

?如果衍射数据发生了矩阵变换,最后输出的文件*.ins和*.hkl时,文件名要重新命名,最后输出*.hkl 文件时,要选择[Y] 。进行后续XS等操作时,要重新建立新项目名

5.2 XS

※XS的主要功能:尝试起始相角的选择,得到初结构

※XS的输入文件:

*.hkl *.ins

※XS的主要输出文件:

*.res 为XSHELL(XP+XL)解精结构的输入文件

※XS的次要输出文件:

*.lst XS过程记录文件

※*.ins 文件的解析

TITL 30629Bm in P2(1)/n

CELL 0.71073 9.7934 8.4835 20.5089 90.000 91.098 90.000

ZERR 5.00 0.0010 0.0009 0.0022 0.000 0.002 0.000

LATT 1

SYMM 0.5-X, 0.5+Y, 0.5-Z

SFAC C

UNIT 100

TREF

HKLF 4

END

?TREF 代表直接法,PATT代表重原子法

?TREF 1000 代表尝试1000种相角方案,缺省值为256种

?TREF-n,代表尝试第n种方案

※在XS过程中,有若干衍射点可能存在如下问题:

Number of Systematic Absence Violations: 指根据晶胞对称性不应该观察到的衍射点,如果超过10个,说明晶胞选择错误,程序自动中止。

Number of Bad (Inconsistent) Equivalents: 指根据晶胞对称性应该观察到相同强度的衍射点,给出R(int)来表示这一项的评判值。※R(int) 应小于0.10,否则要进行吸收校正。Rint=0,代表衍射数据收录不够充分!一般应比独立衍射点多收30 %以上数据(尤其是手性晶体)!

※R(sigma),评判衍射数据质量,即误差和强度的平均比值,一般应该小于0.10。

※CFOM(combined figure of merit),相角方案的综合优选评判值,系统自动选择最小者

5.3 XSHELL

XSHELL的主要功能:显示和精修结构

XSHELL的输入文件:

*.ins

XSHELL 的主要输出文件:

*.res

XSHELL 的次要输出文件:

*.lst XSHELL 过程记录文件

结构的精修需要多次进行,因此以下过程需要多次反复

*.ins → *.res

XSHELL 解结构和精修的主要过程

※ 找出重原子或者确定性大的原子

※ 找出其余非氢原子

※ 精修原子坐标

※ 精修各项异性参数

※ 找到氢原子(理论加氢或差值傅里叶图加氢)

※ 最后精修

※ 输出*.cif 文件

※ 结构和精修是否合理的评判指标:通过最小二乘法(LMS )进行精修(refine),使得|Fo|(观察值)与|Fc|(计算值)之间的差值最小化。

以下参数应该收敛

S(Goof) 应当趋向于1

Mean shift/esd and the maximum (shift/esd)应当趋向于0

残差因子(Residual factors) R1,wR2,也就是推导出的结构与实测数据之间的误差 一般要求:R1<0.06(0.08) wR2<0.16(0.18) 判断解析是否合理的主要判据

各向异性参数(anisotropic parameters)

实际上原子并不是完全固定在自己的坐标上,由于存在热振动,并且在各个方向上并不等同,所以引入了各向异性参数,也称为原子位移参数(atomic displacement parameters)或者原子温度因子(atomic temperature factors),表示离开原子平衡位置距离的距离。显然温度越高,这个值就越大。

通过各向异性参数的精修,可以进一步减少误差。

同时通过观察原子椭球(Thermal Ellipsoid)图,具有异常图像的椭球,往往是错误指认元素种类,或者其他一些需要进一步解决的问题,如无序(disorders)。一般说来,椭球偏大,说明该原子实际上是个较轻的原子,而反之则是较重的原子。

XSHELL 操作指南

Right Click on Background – Background Popup Menu – Operations that affect whole model. Right Click on Atom – Atom Popup Menu – Operations for just one atom.

Right Click on Bond – Bond Popup Menu – Operations for just one bond.

Shift-Left Drag – Produces Rectangle –

All Atoms in rectangle are Selected or Unselected

S key – Select or Unselect when mouse arrow over atom or bond.

K key –Delete Atom or Bond when mouse arrow over atom or bond, else delete all selected items.

Left Drag– Rotate around x- and y-axes

Ctrl-Left Drag– Pan when in Rotate or Pan mode.

Alt-Left Drag– Zoom in and out when in Rotate or Pan mode.

Insert Key– Rotate Clockwise around z-axis when in Rotate mode.

Delete Key– Rotate Counterclockwise around z-axis when in Rotate mode.

Up Arrow Key– Slow Negative Rotation about x-axis.

Down Arrow Key– Slow Positive Rotation about x-axis

Left Arrow Key– Slow Negative Rotation about y-axis.

Right Arrow Key– Slow Positive Rotation about y-axis.

XSHELL 各种视图

Wireframe

Ball and Stick

Thermal Ellipsoid

Pipes

Show cell

Grow

Pack

Trim

unUniq

FMOL

XSHELL下拉式菜单中常用的一些功能

File

Edit

Refine:Cycles Plan Ansio Acta

Select:Sort

Atom:Hybridize-All Calculate-hydrogens

View:Select / Hide

Preference:Atom –Preference-probability level

Label: Group Lable

Render:

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

晶体结构的分析与计算训练题

晶体结构的分析与计算训练题 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为1 3 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3 杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm -3 ,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×1 8= 1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3 ×d g·cm -3 ×N A ,则a =? ????2516.02×1023×d 1 3 cm =? ?? ??2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)? ?? ? ?2516.02×1023×d 1 3×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为______

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

几种典型晶体结构的特点分析(精)

几种典型晶体结构的特点分析 徐寿坤 有关晶体结构的知识是高中化学中的一个难点,它能很好地考查同学们的观察能力和三维想像能力,而且又很容易与数学、物理特别是立体几何知识相结合,是近年高考的热点之一。熟练掌握NaCl 、CsCl 、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解和掌握一些重要的分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个- Cl ,每个- Cl 紧邻6个+ Na (上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻的Na +-a ,每个Na +与12个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+? ,-Cl 数为44 1 121=?+,晶体中Na +数与Cl -数之比为1:1 2. 氯化铯晶体 每个Cs +紧邻8个-Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻 的Cs +与Cs +间的距离为 a 2 3 ,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812 164112818=+?+?+?,- Cl 在晶胞内其数目为8, 晶体中的+Cs 数与- Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。

3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的CO 2分子数为42 1 6818=?+? 。 4. 金刚石晶体 每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=?,拥有的C-C 键数为16 1 6=?,则C 原子数与C-C 键数之比为 2:11:2 1 =。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

浅谈有关晶体结构的分析和计算讲解学习

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体 结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C键的形成,碳原子与C-C键之比为1:2。 (2)二氧化硅晶体中微粒分布

①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子. 2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个 CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和 4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有 8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6

高中化学 晶体结构的分析与计算

晶体结构的分析与计算 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为13 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm - 3,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的 面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×18 =1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3×d g·cm - 3×N A ,则a =????2516.02×1023×d 13cm =??? ?2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)??? ?2516.02×1023×d 13×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材 料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为 ______ nm ,与K 紧邻的O 个数为_____。

晶体结构分析与计算

晶体结构分析与计算 湖南省浏阳市第一中学潘丹张水强410300 在2005年高考考纲中,在思维能力中增加了“对原子、分子、化学键等 微观结构有一定的三维想象能力”的要求。三维想象能力可能通过“晶体结构”试题来体现,而“晶体结构”这一知识点前几年是高考的热点之一(如 92年的金刚石、96年的SiO2 、97年的C60、98年的GBO、99年的NiO等等)。间隔了几年,笔者认为有必要引起广大考生足够的重视。本文从最常见的几 种晶体结构题型入手,分析晶体结构有关的问题,帮助同学们更好地掌握晶 体结构的内容,培养空间想象能力和形象思维能力。 一、常见的几种晶体结构分析 (一)、氯化钠晶体 1、NaCl晶体是一种简单立方结构——Na+和Cl-交替占据立 方体的顶点而向空间延伸。 2、在每个Na+周围最近且等距离(设边长为a)的Cl-有6 个,在每个Cl-周围最近且等距离的Na+有6个。 3、在每个Na+周围最近且等距离(平面对角线为2a)的Na+有12 个,在每个Cl-周围且最近等距离(平面对角线为2a)的Cl-有12 个。 (二)、氯化铯晶体 1、CsCl晶体是一种立方体心结构—— 每8个Cs+、8个Cl-各自构成立方体。 在每个立方体的中心有一个异种离子 (Cl-或Cs+)。 2、在每个Cs+周围最近且等距离的Cl- (设为3a/2)有8个。在每个Cl-周 围最近且等距离的Cs+有8个。 3、在每个Cs+周围最近且等距离(必为a)的Cs+有6个,在每个Cl-周围最近且等距离的Cl-有6个。 (三)、金刚石晶体 1、金刚石晶体是一种空间网状结构——每个C原子与另4个C原子以共价键结 合,前者位于正四面体中心,后者位于正四面体顶点。 2、晶体中所有C—C键键长相等(1.55×10-10m),键角 相等(均为109028'),晶体中最小碳环由6个C组成 且六者不在同一平面内。 3、晶体中每个C原子参与了4条C—C键的形成,而 在每条键中的贡献只有一半,故C原子个数与C—C键

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为, 并更名为文件; 对CCD收录的数据, 检查是否有同名的p4p和hkl(设为文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从 total reflections项中,记下总点数;从R merge项中,记下Rint=. % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRAVAIS和SYMM项中,记下BRAVAIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如,单击Project Open,最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP C)。(单位已设为

晶胞结构的分析与计算

晶胞结构的分析与计算 ——晶体结构与性质章复习(第2课时) 【学习目标】 1.能根据分摊法确定晶体的组成;提高抽象思维能力,提升宏观辨识与微观探析的发展水平。(重难点) 2.通过典型晶胞再认识,学会利用晶胞的基本特点分析晶体中微粒配位数。 3.建立解晶胞的一般观念、思维模型,能类比迁移相关知识解决新情境新问题;提升解决复杂问题的能力。(重难点) ,则晶胞中最邻近两个金属原子间的距离为? 最近发现一种由钛原子和碳原子构成的气态团簇分子,如 顶角和面心的原子是钛原子,棱的中心和体心的原子是碳原子, 它的化学式是? 分摊法能解决哪些问题?使用分摊法时应注意什么问题? 石英晶体的晶胞如图,确定其化学式的方法有哪些? 晶胞中,配位情况对比 CsCl晶胞数目NaCl晶胞数目CaF2晶胞数目 +Ca2+配位数

1.有下列某晶体的空间结构示意图。图中●和化学式中M分别代表阳离子,图中○和化学式中N分别 代表阴离子,则化学式为MN2的晶体结构为() A B C D 2.下列说法正确的是()(N A表示阿伏加德罗常数) A.1mol冰中含有氢键的个数为2 N A B.12g石墨中含有C-C键的个数为3N A C.二氧化硅晶体中存在四面体网状结构,O处于中心,Si处于4个顶点 D.密置层在三维空间堆积可得体心立方堆积和面心立方最密堆积 3.氮化碳结构如下图所示,其硬度超过金刚石,下列有关氮化碳的说法不正确的是() A.氮化碳属于原子晶体 B.氮化碳中碳显-4价,氮显+3价 C.氮化碳的化学式为C3N4 D.每个碳原子与四个氮原子相连,每个氮原子与三个碳原子相连 4.ZnS在荧光体、光导体材料、涂料、颜料等行业中应用广泛。立方ZnS晶体结构如下图所示,其晶胞边 长为540.0 pm.密度为(列式并计算),a位置S2-离子与b位置Zn2+离子之间的 距离为pm(列示表示) 5.晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置,下图为Ge单晶的晶胞,其中原子坐标参数A为(0, 0,0);B为(1/2,0,1/2);C为(1/2,1/2,0)。则D原子的坐标参数为_________。 ②晶胞参数,描述晶胞的大小和形状,已知Ge单晶的晶胞参数a=565.76 pm,其密度为____g·cm-3(列出计算式即可) 6.Na的密度小于Mg,从空间利用率角度如何解释?(提示:Na、Mg的空间利用率分别为68%、74%)

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分析和计算 摘 要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“ 2 1 氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子. 2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每个Na +周 围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和 4个Cl -。

几种常见晶体结构的特点分析

几种常见晶体结构的特点分析 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个-Cl ,每 个-Cl 紧邻6个+Na (上、下、左、右、前、后),这6个离子构 成一个正八面体。设紧邻的Na +与Cl -间的距离为a ,每个Na +与12 个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。 由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+? ,-Cl 数为44 1121=? +,晶体中Na +数与Cl -数之比为1:1,则此晶胞中含有4个NaCl 结构单元。 2. 氯化铯晶体 每个Cs +紧邻8个Cl -,每个Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻的Cs +与Cs +间的距离为 a 2 3,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812164112818=+?+?+?,-Cl 在晶胞内其数目为8,晶体中的+Cs 数与- Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。 3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的 CO 2分子数为4216818=?+?。 4. 金刚石晶体(晶体硅同)

每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=? ,拥有的C-C 键数为1616=?,则C 原子数与C-C 键数之比为2:11:2 1=。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的最小环为十二元环,其中有6个Si 原子和6个O 原子,含有12个Si-O 键;每个Si 原子被12个十二元环共有,每个O 原子被6个十二元环共有,每个Si-O 键被6个十二元环共有;每个十二元环所拥有的Si 原子数为211216=?,拥有的O 原子数为16 16=?,拥有的Si-O 键数为26 112=?,则Si 原子数与O 原子数之比为1:2。 6. 石墨晶体 在石墨晶体中,层与层之间是以分子间作用力结合,同层之间是C 原子与C 原子以共价键结合成的平面网状结构,故石墨为混合型晶体或过渡型晶体。在同层结构中,每个C 原子与3个C 原子紧邻成C-C 键,键角为?120,其中最小的环为六元环,每个C 原子被3个六元环共有,每个C-C 键被2个六元环共有;每个六元环拥有的C 原子数为2316=?,拥有的C-C 键数为32 16=?,则C 原子数与C-C 键数之比为2:3。

晶体晶胞结构讲解

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti 最后填入能级为3d 故为d区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F >N>O>C

例4、某元素的全部电离能(电子伏特)如下: I1 I2 I3 I4 I5 I6 I7 I8 23.6 35.1 54.9 77.4 113.9 138.1 739.1 871.1 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________ (2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O >N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有 些相似,被称为“对角线规则”如:锂和镁在空气中燃烧 的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN-- C22-互为等电子体 CO2 CS2 N2O SCN-- CNO-- N3- 互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。9、应用VSEPR理论判断下表中分子或离子的构型。 化学式σ键电子对数中心原子含有 孤对电子对数 VSEPR模型 分子立体构型杂化类型 ABn SO3

相关文档