文档库 最新最全的文档下载
当前位置:文档库 › 生命的进化 Word 文档

生命的进化 Word 文档

生命的进化 Word 文档
生命的进化 Word 文档

生物的进化

化石是生命进化过程的历史见证,目前最早的化石记录是30多亿年前地层中发现的原核生物化石。而在这以前最初的生命是非细胞形态的生命,当时生命所处的时代,是没有游离氧存在的,代谢方式只能是以周围环境的有机物为养料,依靠无氧呼吸的方式获取能量,为异养、厌氧型生物。以后,从非细胞形态的原始生命发展到原始细胞形态的生命,是生命发展历程中的新突破。标志着生命的进化已经从原始生命阶段发展到了原始的原核生物阶段。当地球早期积累的有机物随异养生物的消耗而减少时,突变和自然选择的结果,逐渐演化出自养型的生物——蓝藻类的原核生物。蓝藻通过光合作用合成有机物,是一个划时代的飞跃,标志着生物减少了对外界环境的依赖性,增强了自身的独立性。光合作用消耗大量二氧化碳,同时释放分子氧。地球大约在20亿年前出现氧气,且氧气含量达到了现在大气中氧含量的1%。氧含量的增加,为需氧型生物的产生创造了条件。这时的生物由异养生活过渡到自养生活,并从异养生物中分化出了自养生物,由无氧生活过渡到有氧生活,从厌氧生物中分化出好氧生物,使得新陈代谢的水平加强。

在我国河北距今13亿年前的地层中发现了保存相当好的红藻化石。

在澳大利亚10亿年前形成的地层中发现了单细胞绿藻化石,从这些化石上已经极其清楚地显示出细胞具有细胞核,已是真核细胞。虽然对真核细胞的起源,尚未有统一的学说,但是真核细胞的出现在生物进化历史上具有重要的意义。

其意义首先表现在:真核细胞在结构和机能上的复杂化,是生物类型多样化的基础。其次,由于有性生殖过程中的减数分裂是一种特殊形式的有丝分裂,所以说真核细胞的有丝分裂为有性生殖的产生奠定了基础。

从化石资料的事实表明,有性生殖的生物出现以后,生物进化的步伐确实大大加快了。而现存的生物绝大多数都是进行有性生殖的。

生物的进化经历了漫长的岁月,随着生存环境的演变,低等生物逐渐向高等生物进化。从下表中我们可以较为清晰地看出生物进化的方向是:低等→高等;水生→陆生。

时间环境环境状况生物种类

6亿年前海洋种类繁多的藻类植物和低等无脊椎动物

陆地几乎没有生命,一片寂静

4亿年前海洋缩小鱼类兴旺

陆地扩大出现原始蕨类植物,原始两栖类

3亿年前陆地气候温暖潮湿蕨类植物繁盛,其中一些种类进化成裸子植物;两栖类兴旺,其中一些种类进化成爬行动物

248万年陆地高大山脉隆起、气候寒冷、干燥原始哺乳动物。鸟类陆续出现,并极大发展,厥类植物大量死亡,被子植物出现并空前发展

生物的种类繁多;到目前为止,已经发现的生物大约有二百万种,早在1735年,瑞典博物学家林奈将生物界分为植物界和动物界。

植物动物

运动不能运动能够运动

营养光合作用自养型摄取有机物异养型

按照林奈的两界说,像裸藻这样既可以借助于鞭毛的摆动运动,又可以通过叶绿体进行光合作用制造养料的生物,在分类系统中属于哪一界呢?显然,两界说不能将生物进行合理的分类。随着人们对不同类群生物的认识不断加深,目前,被广泛认同的是1969年美国学者魏泰克提出的五界说,五界说是依据真菌和植物在营养方式和结构上的差异,在生物分类的基础上创立的。

如何做系统进化树

大家好: 我在此介绍几个进化树分析及其相关软件的使用和应用范围。这几个软件分别是PHYLIP、PUZZLE、PAUP、TREEVIEW、CLUSTALX和PHYLO-WIN (LINUX)。 在介绍软件之前,我先简要地叙述一下有关进化树分析的一些方法学问题。进化树也称种系树,英文名叫“Phyligenetic tree”。对于一个完整的进化树分析需要以下几个步骤:⑴要对所分析的多序列目标进行排列(To align sequences)。做ALIGNMENT的软件很多,最经常使用的有CLUSTALX和CLUSTALW,前者是在WINDOW下的而后者是在DOS下的。⑵要构建一个进化树(To reconstrut phyligenetic tree)。构建进化树的算法主要分为两类:独立元素法(discrete character methods)和距离依靠法(distance methods)。所谓独立元素法是指进化树的拓扑形状是由序列上的每个碱基/氨基酸的状态决定的(例如:一个序列上可能包含很多的酶切位点,而每个酶切位点的存在与否是由几个碱基的状态决定的,也就是说一个序列碱基的状态决定着它的酶切位点状态,当多个序列进行进化树分析时,进化树的拓扑形状也就由这些碱基的状态决定了)。而距离依靠法是指进化树的拓扑形状由两两序列的进化距离决定的。进化树枝条的长度代表着进化距离。独立元素法包括最大简约性法(Maximum Parsimony methods)和最大可能性法(Maximum Likelihood methods);距离依靠法包括除权配对法(UPGMAM)和邻位相连法(Neighbor-joining)。⑶对进化树进行评估。主要采用Bootstraping法。进化树的构建是一个统计学问题。我们所构建出来的进化树只是对真实的进化关系的评估或者模拟。如果我们采用了一个适当的方法,那么所构建的进化树就会接近真实的“进化树”。模拟的进化树需要一种数学方法来对其进行评估。不同的算法有不同的适用目标。一般来说,最大简约性法适用于符合以下条件的多序列:i 所要比较的序列的碱基差别小,ii 对于序列上的每一个碱基有近似相等的变异率,iii 没有过多的颠换/转换的倾向,iv 所检验的序列的碱基数目较多(大于几千个碱基);用最大可能性法分析序列则不需以上的诸多条件,但是此种方法计算极其耗时。如果分析的序列较多,有可能要花上几天的时间才能计算完毕。UPGMAM(Unweighted pair group method with arithmetic mean)假设在进化过程中所有核苷酸/氨基酸都有相同的变异率,也就

乳酸菌系统进化树

Lactobacillus.plantarum 204Lactobacillus.pentosus Lactobacillus.paraplantarum 575Lactobacillus.collinoides Lactobacillus.brevis Lactobacillus.farciminis Lactobacillus.alimentarius Lactobacillus.paralimentarius Lactobacillus.kimchii Lactobacillus.sanfranciscensis Lactobacillus.lindneri Lactobacillus.fructivorans Lactobacillus.hilgardii Lactobacillus.parakefiri Lactobacillus.buchneri Lactobacillus.parabuchneri Lactobacillus.kefiri Lactobacillus.kunkeei P.selangorensis Lactobacillus.perolens Lactobacillus.algidus Lactobacillus.mali Lactobacillus.nagelii Lactobacillus.murinus Lactobacillus.animalis Lactobacillus.ruminus Lactobacillus.equi Lactobacillus.agilis Lactobacillus.cypricasei Lactobacillus.acidipiscis Lactobacillus.salivarius Lactobacillus.salicinius Lactobacillus.aviarius Lactobacillus.araffinosus Lactobacillus.coryniformis Lactobacillus.bifermentans Lactobacillus.sakei Lactobacillus.curvatus Lactobacillus.sharpeae Lactobacillus.manihotivorans Lactobacillus.rhamnosus Lactobacillus.zeae Lactobacillus.casei Lactobacillus.panis Lactobacillus.frumenti Lactobacillus.oris Lactobacillus.vaginalis Lactobacillus.pontis Lactobacillus.reuteri Lactobacillus.colehominis Lactobacillus.mucosae Lactobacillus.fermentum Lactobacillus.amylophilus Lactobacillus.johnsonii Lactobacillus.gasseri Lactobacillus.iners Lactobacillus.jensenii Lactobacillus.fornicalis Lactobacillus.psittaci https://www.wendangku.net/doc/2f10527287.html,ctis Lactobacillus.delbrueckii Lactobacillus.bulgaricus Lactobacillus.acetotolerans Lactobacillus.hamsteri Lactobacillus.amylolyticus Lactobacillus.intestinalis Lactobacillus.gallinarum Lactobacillus.helveticus Lactobacillus.acidophilus Lactobacillus.crispatus Lactobacillus.amylovorus Lactobacillus.fructosus B.subtilis 99579999 99 704924 98 90 79 999999859996949999 9955 99 85746473999985 999445 404332 67 89 7599 998475999972 6599 5799 52 4798 92 97 91853836481621 59 49 3943 358829 37 12 16 0.01

运用mega5构建系统发生进化树.

1.准备序列文件 准备fasta格式序列文件(fasta格式:大于号>后紧跟序列名,换行后是序列。举例如下)。每条序列可以单独为一个文件,也可以把所有序列放在同一文件内。 核酸序列: >sequence1_name CCTGGCTCAGGATGAACGCT 氨基酸序列: >sequence2_name MQSPINSFKKALAEGRTQIGF 2.多序列比对 打开MEGA 5,点击Align,选择Edit/Build Alignment,选择Create a new alignment,点击OK。

这时需要选择序列类型,核酸(DNA)或氨基酸(Protein)。 选择之后,在弹出的窗口中直接Ctrl + V粘贴序列(如果所有序列在同一个文件中,即可全选序列,复制)。也可以:点击Edit,选择Insert Sequence From File,选择序列文件(可多选)。

序列文件加载之后,呈蓝色背景(为选中状态)。点击按钮,选择Align DNA (如果是氨基酸序列,则会出现Align Protein)。弹出的窗口中设置比对参数,一般都是采用默认参数即可。点击OK,开始多序列比对。

比对完成后,呈现以下状态。 这时需要截齐两端含有---的序列:选中含有---的序列,按键Delete删除(注意:两端都需要截齐)。截齐之后,保存文件为:filename.mas

3.构建系统进化树 多序列比对窗口,点击Data,选择Phylogenetic Analysis,弹出窗口询问:所用序列是否编码蛋白质,根据实际情况选择Yes或No。此时,多序列比对文件就激活了,可以返回MEGA 5主界面建树了。

MEGA构建系统进化树的步骤(以MEGA7为例)

MEGA构建系统进化树的步骤(以MEGA7为例) 本文是看中国慕课山东大学生物信息学课程总结出来的 分子进化的研究对象是核酸和蛋白质序列。研究某个基因的进化,是用它的DNA序列,还是翻译后的蛋白质序列呢?序列的选取要遵循以下原则:1)如果DNA序列的两两间的一致度≥70%,选用DNA 序列。因为,如果DNA序列都如此相似,它的蛋白质会相似到看不出区别,这对构建系统发生树是不利的。所以这种情况下应该选用DNA序列,而不选蛋白质序列。2)如果DNA序列的两两间的一致度≤70%,DNA序列和蛋白质序列都可以选用。 1. 将要用于构建系统进化树的所有序列合并到同一个fasta格式文件,注意:所有序列的方向都要保持一致( 5’-3’)。 想要做系统发生树先要做多序列比对,然后把多序列比对的结果提交给建树软件进行建树,所以在用MEGA建树时可以输入一个已经比对好的多序列比对,也可以输入一条原始序列,让MEGA先来做多序列比对,再建树(一般我们都是原始序列)。所以我们以后者为例。 2.打开MEGA软件,选择主窗口的”File”→“Open A File”→找到并打开fasta文件,这时会询问以何种方式打开,我们是原始序列,需要先进行多序列比对,所以选择“Align”。如果是比对好的多序列比对可以直接选择“Analyze”。 3.在打开的Alignment Explorer窗口中选择”Alignment”-“Align by ClustalW”进行多序列比对(MEGA提供了ClustalW和Muscle两种多序列比对方法,这里选择熟悉的ClustalW),弹出窗口询问“Nothing selected for alignment,Select all?”选择“OK”。 4. 之后,弹出多序列比对参数设置窗口。这个窗口和EMBL在线多序列比对一样,可以设置替换记分矩阵、不同的空位罚分(罚分填写的是正数,计算时按负数计算)等参数。MEGA的所有默认参数都是经过反复考量设置的,这保证了MEGA傻瓜机全自动档的品质,所以当你无从下手,或者没有什么特别要求的时候,直接点击“OK”,接受这些默认参数,开始多序列比对。

构建系统进化树的方法步骤

构建系统进化树的方法步骤 1. 建树前的准备工作 1.1 相似序列的获得——BLAST BLAST是目前常用的数据库搜索程序,它是Basic Local Alignment Search Tool的缩写,意为“基本局部相似性比对搜索工具”(Altschul et al.,1990[62];1997[63])。国际著名生物信息中心都提供基于Web的BLAST服务器。BLAST算法的基本思路是首先找出检测序列和目标序列之间相似性程度最高的片段,并作为内核向两端延伸,以找出尽可能长的相似序列片段。 首先登录到提供BLAST服务的常用网站,比如国内的CBI、美国的NCBI、欧洲的EBI和日本的DDBJ。这些网站提供的BLAST服务在界面上差不多,但所用的程序有所差异。它们都有一个大的文本框,用于粘贴需要搜索的序列。把序列以FASTA格式(即第一行为说明行,以“>”符号开始,后面是序列的名称、说明等,其中“>”是必需的,名称及说明等可以是任意形式,换行之后是序列)粘贴到那个大的文本框,选择合适的BLAST程序和数据库,就可以开始搜索了。如果是DNA序列,一般选择BLASTN搜索DNA数据库。 这里以NCBI为例。登录NCBI主页-点击BLAST-点击Nucleotide-nucleotide BLAST (blastn)-在Search文本框中粘贴检测序列-点击BLAST!-点击Format-得到result of BLAST。 BLASTN结果如何分析(参数意义): >gi|28171832|gb|AY155203.1| Nocardia sp. ATCC 49872 16S ribosomal RNA gene, complete sequence Score = 2020 bits (1019), Expect = 0.0 Identities = 1382/1497 (92%), Gaps = 8/1497 (0%) Strand = Plus / Plus Query: 1 gacgaacgctggcggcgtgcttaacacatgcaagtcgagcggaaaggccctttcgggggt 60 |||||||||||||||||||||||||||||||||||||||||| ||||||||| ||||| Sbjct: 1 gacgaacgctggcggcgtgcttaacacatgcaagtcgagcggtaaggcccttc--ggggt 58 Query: 61 actcgagcggcgaacgggtgagtaacacgtgggtaacctgccttcagctctgggataagc 120 || ||||||||||||||||||||||||||||||| | |||||| ||||||||||||| Sbjct: 59 acacgagcggcgaacgggtgagtaacacgtgggtgatctgcctcgtactctgggataagc 118 Score :指的是提交的序列和搜索出的序列之间的分值,越高说明越相似;

MEGA构建系统进化树的步骤(以MEGA7为例)教学文案

M E G A构建系统进化树的步骤(以M E G A7为 例)

MEGA构建系统进化树的步骤(以MEGA7为例) 本文是看中国慕课山东大学生物信息学课程总结出来的 分子进化的研究对象是核酸和蛋白质序列。研究某个基因的进化,是用它的DNA序列,还是翻译后的蛋白质序列呢?序列的选取要遵循以下原则:1)如果DNA序列的两两间的一致度≥70%,选用DNA序列。因为,如果DNA序列都如此相似,它的蛋白质会相似到看不出区别,这对构建系统发生树是不利的。所以这种情况下应该选用DNA序列,而不选蛋白质序列。2)如果DNA 序列的两两间的一致度≤70%,DNA序列和蛋白质序列都可以选用。 1. 将要用于构建系统进化树的所有序列合并到同一个fasta格式文件,注意:所有序列的方向都要保持一致 ( 5’-3’)。 想要做系统发生树先要做多序列比对,然后把多序列比对的结果提交给建树软件进行建树,所以在用MEGA建树时可以输入一个已经比对好的多序列比对,也可以输入一条原始序列,让MEGA先来做多序列比对,再建树(一般我们都是原始序列)。所以我们以后者为例。 2.打开MEGA软件,选择主窗口的”File”→“Open A File”→找到并打开fasta文件,这时会询问以何种方式打开,我们是原始序列,需要先进行多序列比对,所以选择“Align”。如果是比对好的多序列比对可以直接选择“Analyze”。 3.在打开的Alignment Explorer窗口中选择”Alignment”-“Align by ClustalW”进行多序列比对(MEGA提供了ClustalW和Muscle两种多序列比对方法,这

一步一步教你如何做系统进化树

一步一步教你如何做系统进化树 在此介绍几个进化树分析及其相关软件的使用和应用范围。这几个软件分别是PHYLIP 、PUZZLE 、PAUP 、TREEVIEW 、CLUSTALX 和PHYLO-WIN (LINUX )。 在介绍软件之前,我先简要地叙述一下有关进化树分析的一些方法学问题。 进化树也称种系树,英文名叫“Phyligenetic tree ”。对于一个完整的进化树分析需要以下几个步骤:⑴ 要对所分析的多序列目标进行排列(To align sequences )。做ALIGNMENT 的软件很多,最经常使用的有CLUSTALX 和CLUSTALW ,前者是在WINDOW 下的而后者是在DOS 下的。⑵ 要构建一个进化树(To reconstrut phyligenetic tree )。构建进化树的算法主要分为两类:独立元素法(discrete character methods )和距离依靠法(distance methods )。所谓独立元素法是指进化树的拓扑形状是由序列上的每个碱基/氨基酸的状态决定的(例如:一个序列上可能包含很多的酶切位点,而每个酶切位点的存在与否是由几个碱基的状态决定的,也就是说一个序列碱基的状态决定着它的酶切位点状态,当多个序列进行进化树分析时,进化树的拓扑形状也就由这些碱基的状态决定了)。而距离依靠法是指进化树的拓扑形状由两两序列的进化距离决定的。进化树枝条的长度代表着进化距离。独立元素法包括最大简约性法(Maximum Parsimony methods )和最大可能性法(Maximum Likelihood methods );距离依靠法包括除权配对法(UPGMAM )和邻位相连法(Neighbor-joining )。⑶ 对进化树进行评估。主要采用Bootstraping 法。进化树的构建是一个统计学问题。我们所构建出来的进化树只是对真实的进化关系的评估或者模拟。如果我们采用了一个适当的方法,那么所构建的进化树就会接近真实的“进化树”。模拟的进化树需要一种数学方法来对其进行评估。不同的算法有不同的适用目标。一般来说,最大简约性法适用于符合以下条件的多序列:i 所要比较的序列的碱基差别小,ii 对于序列上的每一个碱基有近似相等的变异率,iii 没有过多的颠换/转换的倾向,iv 所检验的序列的碱基数目较多(大于几千个碱基);用最大可能性法分析序列则不需以上的诸多条件,但是此种方法计算极其耗时。如果分析的序列较多,有可能要花上几天的时间才能计算完毕。UPGMAM (Unweighted pair group method with arithmetic mean )假设在进化过程中所有核苷酸/氨基酸都有相同的变异率,也就是存在着一个分子钟。这种算法得到的进化树相对来说不是很准确,现在已经很少使用。邻位相连法是一个经常被使用的算法,它构建的进化树相对准确,而且计算快捷。其缺点是序列上的所有位点都被同等对待,而且,所分析的序列的进化距离不能太大。另外,需要特别指出的是对于一些特定多序列对象来说可能没有任何一个现存算法非常适合它。最好是我们来发展一个更好的算法来解决它。但无疑这是非常难的。我想如果有人能建立这样一个算法的话,那他(她)完全可以在 生 物秀-专心做生物 w w w .b b i o o .c o m

构建系统进化树的详细步骤

构建系统进化树的详细步骤 1. 建树前的准备工作 1.1 相似序列的获得——BLAST BLAST是目前常用的数据库搜索程序,它是Basic Local Alignment Search Tool 的缩写,意 为“基本局部相似性比对搜索工具”(Altschul et al.,1990[62];1997[63])。国际著名生物信息中心 都提供基于Web的BLAST服务器。BLAST算法的基本思路是首先找出检测序列和目标序 列之间相似性程度最高的片段,并作为核向两端延伸,以找出尽可能长的相似序列片段。 首先登录到提供BLAST服务的常用,比如国的CBI、美国的NCBI、欧洲的EBI和日本的DDBJ。这些提供的BLAST服务在界面上差不多,但所用的程序有所差异。它 们都有一个大的文本框,用于粘贴需要搜索的序列。把序列以FASTA格式(即第一行为说明 行,以“>”符号开始,后面是序列的名称、说明等,其中“>”是必需的,名称及说明等可以是 任意形式,换行之后是序列)粘贴到那个大的文本框,选择合适的BLAST程序和数据库,就 可以开始搜索了。如果是DNA序列,一般选择BLASTN搜索DNA数据库。 这里以NCBI为例。登录NCBI主页-点击BLAST-点击Nucleotide-nucleotide BLAST (blastn)-在Search文本框中粘贴检测序列-点击BLAST!-点击Format-得到result of BLAST。 BLASTN结果如何分析(参数意义): >gi|28171832|gb|AY155203.1| Nocardia sp. ATCC 49872 16S ribosomal RNA gene, complete sequence Score = 2020 bits (1019), Expect = 0.0 Identities = 1382/1497 (92%), Gaps = 8/1497 (0%) Strand = Plus / Plus

系统进化树视频教程-多序列比对教程等

所有视频内容和编号: 001-1系统进化树构建序列文件格式说明(1080P) 001-2 MEGA软件构建邻接树(NJ树) (1080P) 001-3 MEGA软件构建最大简约树(MP树) (1080P) 001-4 MEGA软件构建最大似然树(ML树) (1080P) 001-5 MEGA软件构建UPGMA树(1080P) 001-6 MEGA软件计算遗传距离和导出Excel(1080P) 001-7 MEGA软件分析序列特征-信息位点变异位点等(1080P) 001-8 MEGA软件对序列饱和性检验和作图(1080P) 001-9 MEGA软件最序列分组并计算组间和组内遗传距离(1080P) 001-10 MEGA软件对树图置根修改字体和字号等(1080P) 002-1 贝叶斯法Mrbayes构建系统进化树教程视频(1080P) 002-2 PAUP软件构建最大似然(ML)树教程 002-3 Mrbayes贝叶斯建树(MrMTgui模型计算)视频教程(1080P) 002-4 贝叶斯不收敛问题的解决办法(1080P) 002-5 PAUP软件构建最大似然(ML)树教程(1080P) 002-6 PAUP软件构建简约树(MP)树教程(1080P) 002-7 PAUP软件构建邻接树(NJ)树教程(1080P) 003-1 MAFFT多序列比对教程 003-2 Jmodeltest模型计算方法与说明 003-3 primer5引物设计 003-4 Photoshop图片排版(期刊格式) 003-4 primer5引物设计(加酶切位点)(1080P) 004-1 多基因序列快速联合(拼接)与格式转换-软件SequenceMatrix(1080P) 004-2 多基因序列快速联合(拼接)详细版-SequenceMatrix(1080P) 004-3 贝叶斯多基因片段联合分区建树(分区设定模型)(1080P) 005-1 MEGA软件美化树图置根等内容补充 005-2 如何编辑贝叶斯或PAUP(ML)树图(PDF格式)的名称、字体、分枝等并输出图片格式 005-3 MEGA软件修改树图标尺显示分枝长度自举值显示方式等设置(1080P)

系统进化树的这些知识

系统进化树的这些知识,你都Get了吗? 系统进化树(Phylogenetic tree,又称为系统发生树/系统发育树/系统演化树/进化树等),是用来表示物种间亲缘关系远近的树状结构图。在系统进化树中,物种按照亲缘关系远近被安放在树状结构的不同位置,因而,进化树可以简单地表示生物的进化过程和亲缘关系。 自达尔文时期,很多生物学家就希望用一棵树的形式描述地球上所有生命的进化历程。早期的系统发育研究主要基于生物的表型特征,通过表型比较来研究物种之间的进化关系,然而,利用表型特征进行系统发育分析存在很大的局限性,1965[1]年,Linus Pauling等提出了分子进化理论,基于分子特性(DNA、RNA和蛋白质分子),推断物种之间的系统发生关系,由于核苷酸和氨基酸序列中含有生物进化历史的全部信息,因此利用该方法构建的系统进化树更为准确。 图1 系统进化树 理论上,一个DNA序列在物种形成或者基因复制时,会分成两个子序列,因而系统进化树是一般是二叉树,由许多节点和分支构成。根据位置的不同,节点分为外部节点和内部节点,外部节点代表最终分类,可以是物种、群体,或者DNA、RAN、蛋白质等,内部节点表示该分支可能的祖先节点,不同节点间的连线则称为分支。 根据是否指定根节点,将系统发育树分为有根树和无根树。有根树绘制过程中需要引入外群,因而具有一个根节点,作为树中所有物种(样本)的共同祖先节点,可以判断演化方向,反映分类单元间的进化关系,外群与进化树中其他物种(样本)的亲缘关系不宜太近,也不能太远,一般构建种内不同品种/亚种间的进化树,外群应选择同属内其他物种,构建属内不同种间的进化树,外群应选择科内其他属物种。无根树绘制过程中并未引入外群,因而没有根节点,无法判断演化方向,只能表明不同单元之间的分类关系。

相关文档