文档库 最新最全的文档下载
当前位置:文档库 › 胶体电池与AGM电池的对比

胶体电池与AGM电池的对比

胶体电池与AGM电池的对比
胶体电池与AGM电池的对比

胶体电池与AGM电池的对比的一些总结

阀控式密封铅蓄电池有两类,即分别采用玻璃纤维隔板(AGM)和硅凝胶(GEL)二种不同方式来“固定”硫酸电解液。它们都是利用阴极吸收原理使电池得以密封的。

一、胶体电池发展和概述

胶体电池属于目前最广泛使用的铅酸蓄电池。是阀控式密封铅酸蓄电池的一类。

铅酸蓄电池从问世到如今,一直是军用民用领域中使用最广泛的化学电源。早期的铅酸电池使用的电解液是“富液式”的(电解液是流动的),由于它使用电解液是游离态的,运输过程中常会有酸液流出,充电时也会有酸雾析出来,对环境和设备造成损害,人们就试图将电解液“固定”起来,将电池“密封”起来,于是使用胶体电解液的铅酸蓄电池应运而生。

初期的胶体铅蓄电池使用的胶体电解液是由水玻璃制成的,然后直接加到干态铅蓄电池中。这样虽然达到了“固定”电解液或减少酸雾析出的目的,但却使电池的容量较原来使用自由电解液时的电池容量要低20%左右,因而没有被人们所接受。

胶体电池的鼻祖德国阳光公司早在60年代就第一次开发密封铅蓄电池用胶体电解质技术。目前已将该技术成功用于各种用途的密封电池(后备电源用,循环用,太阳能用等)。我国在50年代也开展了初期胶体电池的研制工作,到60年代末也就基本上停止了,60-70年代发展缓慢。80年代,德国阳光公司的胶体密封铅蓄电池产品进入中国市场,多年来使用效果表明它的性能确实不同于以前的胶体铅蓄电池。这就迫使人们要重新认识胶体铅蓄电池。然而70年代后期至目前,国内知名厂家所生产的胶体电池基本上都是模仿德国阳光的技术,多数厂家也仅仅是能作出外表相识的胶体电池,而没有真正掌握核心的技术和成熟的生产工艺。以此,生产出来的胶体电池与国外产品存在明显差距。经过一段时间的“热销”和市场“热捧”后,用户反映不好,未能达到厂家所宣称的水平。经过一番折腾,国内的生产企业才深刻认识到仅仅模仿别人是没有长远发展的,不进行核心技术的研究和配套材料、生产设备等的改进,是不能作出好的“胶体电池”来的。

几乎在研制胶体电池的同时,采用玻璃纤维隔膜的阴极吸收式密封铅蓄电池却诞生了,它不但使铅蓄电池消除了酸雾,而且还表现出内阻小、大电流放电特性好的优点。因而在国民经济中,尤其是原来使用固定型铅蓄电池的场合。尤其是其生产工艺简单,成本低,得到了迅速的推广和应用。目前市场上使用的密封蓄电池里面,采用玻璃纤维隔膜(AGM)的阴极吸收式密封铅蓄电池仍占有绝对优势。

将近年来的两种阀控式密封铅蓄电池的研制、生产和使用效果对它们进行比较,可以总结出胶体电池的明显优势:

○1电解液被完全固化,因此其运输、使用时安全性更高,可以作为非危险品运输(可以空运),而AGM的铅蓄电池是作为危险品运输的。

○2电解液量增加15~25%(相对AGM),因此充电时的水损失对寿命的影响可忽略,电池寿命大幅提高,一般大密电池的寿命可达12~15年,有的甚至达到20年。而普通AGM式电池多数3~年。

○3热容高,使用时几乎无“热失控”发生,而“热失控”是多数AGM式电池寿命失效方式和引发事故的原因。目前仍然没有解决该问题。

○4具有优良的深放电后容量回复能力,可到95%,而AGM式电池一般在75%。

○5自放电小,因此其贮存时间是AGM的3~4倍(20℃下可以24个月不用补充电)。

○6由于其热容大,电解液多,充电接收能力好,因此,其耐过充能力很强。特别使用环境恶劣的工作场合。

2 电池的工作原理

不论是采用玻璃纤维隔膜的阀控式密封铅蓄电池(以下简称AGM密封铅蓄电池)还是采用胶体电解液的阀控式密封铅蓄电池(以下简称胶体密封铅蓄电池),它们都是利用阴极吸收原理使电池得以密封的。

电池充电时,正极会析出氧气,负极会析出氢气。正极析氧是在正极充电量达到70%时就开始了。析出的氧到达负极,跟负极起下述反应,达到阴极吸收的目的。

2Pb十O2=2PbO

2PbO十2H2SO4:2PbS04+2H20

负极析氢则要在充电到90%时开始,再加上氧在负极上的还原作用及负极本身氢过电位的提高,从而避免了大量析氢反应。

对AGM密封铅蓄电池而言,AGM隔膜中虽然保持了电池的大部分电解液,但必须使10%的隔膜孔隙中不进入电解液。正极生成的氧就是通过这部分孔隙到达负极而被负极吸收的。

对胶体密封铅蓄电池而言,电池内的硅凝胶是以SiO2质点作为骨架构成的三维多孔网状结构,它将电解液包藏在里边。电池灌注的硅溶胶变成凝胶后,骨架要进一步收缩,使凝胶出现裂缝贯穿于正负极板之间,给正极析出的氧提供了到达负极的通道。

由此看出,两种电池的密封工作原理是相同的,其区别就在于电解液的“固定”方式和提供氧气到达负极通道的方式有所不同。

二、电池结构和工艺上的主要差异

AGM密封铅蓄电池使用纯的硫酸水溶液作电解液,其密度为1.29—1.32g/cm3。除了极板内部吸有一部分电解液外,其大部分存在于玻璃纤维膜之中。为了给正极析出的氧提供向负极的通道,必须使隔膜保持有10%的孔隙不被电解液占有,即贫液式设计。为了使极板充分接触电解液,极群采用紧装配的方式。

另外,为了保证电池有足够的寿命,极板应设计得较厚,正板栅合金采用Pb-Ca-Sn--A1四元合金。并普遍采用压铸工艺提高合金的耐腐蚀性,设计寿命在20年以上,比普通AGM提高50%。

胶体密封铅蓄电池的电解液是由硅溶胶和硫酸配成的,因为电解液量增加15~20%,跟富液式电池相当。硫酸溶液的浓度比AGM式电池要低,通常为1.26~1.28g/cm3。这种电解质以胶体状态存在,充满在隔膜中及正负极之间,硫酸电解液由凝胶包围着,电池外壳即使有裂缝,电液不会流出电池。

由于这种电池采用的是富液式非紧装配结构,正极板栅材料采用低锑合金或与AGM电池相似的Pb-Ca合金,大型电池一般采用管状正极板。同时,为了提高电池容量而又不减少电池寿命,极板可以做得薄一些。电池槽内部空间也可以扩大一些。

普通AGM电池的电液灌注一般都是采用普通加酸机定量灌注,工艺上简便快捷。胶体电池的胶体灌注则困难很多,除了对使用的硅胶要求较高外(纳米级SiO2),如何配制和灌注均匀成为关键。这两个问题解决不好均会导致实际使用中常见的质量问题,比如漏液和胶体水化,寿命大幅降低。

目前国内厂家都是简单的真空灌注,效果欠佳,上下部很难分布均匀。研究合理的灌注工艺和设备已经显得非常必要。

三、性能对比和说明

1 电池放电性能

初期的胶体蓄电池的放电容量只有富液式电池的85%左右,这是由于使用性能较差的胶体电解液直接灌人未加改动的富液式电池之中,电池的内阻较大,电解质中离子迁移困难引起的。

近来的研究工作表明,改进胶体电解液配方,控制胶粒大小,掺人亲水性高分子添加剂,降低胶液浓度提高渗透性和对极板的亲合力,采用真空灌装工艺,用复合隔板或AGM隔板取代橡胶隔板,提高电池吸液性;取消电池的沉淀槽,适度增大极板面积活性物质的含量,结果可使胶体密封电池的放电容量达到或接近富液铅蓄电池的水平。

AGM式密封铅蓄电池电解液量少,极板的厚度较厚,活性物质利用率低于开口式电池,因而电池的放电容量比开口式电池要低10%左右。与当今的胶体密封电池相比,其放电容量要小一些。主要是“贫液式”电液设计限制了极板容量。

2 电池内阻及大电流放电能力

铅蓄电池的内阻是由欧姆内阻、浓差极化内阻、电化学极化内阻组成的。前者包括极板、铅零件、电解液、隔极电阻。AGM密封铅蓄电池所用的玻璃纤维隔板具有90%的孔率,硫酸吸附其内,且电池采用紧装配形式,离子在隔板内扩散和电迁移受到的阻碍很小,所以AGM密封铅蓄电池具有低内阻特性,大电流快速放电能力很强。这也是AGM电池相对于胶体电池最为明显的优势之一。然而试验结果表明胶体密封铅蓄电池的大电流放电性能仍然很好,完全满足有关标准中对密封电池大电流放电性能的要求。这可能是由于多孔电极内部及极板附近液层中的酸和其他有关离子的浓度在大电流放电时起到关键性的作用。随着胶体电池结构设计和先进材料的运用,胶体的大电流放电水平已经大幅提升,阳光公司已经成功开发出由于启动用的胶体电池。

胶体密封铅蓄电池的电解液是硅凝胶,虽然离子在凝胶中的扩散速度接近在水溶液中的扩散速度,但离子的迁移和扩散要受到凝胶结构的影响,离子在凝胶中扩散的途径越弯曲,结构中孔隙越狭窄,所受到的阻碍也越大。因而胶体密封铅蓄电池内阻要比AGM密封铅蓄电池要大。

3 热失控

热失控指的是:电池在充电后期(或浮充状态)由于没有及时调整充电电压,使电池的充电电流和温度发生一种累积性的相互增强作用,此时电池的温度急剧上升,从而导致电池槽膨胀变形,失水速度加大,甚至电池损坏。

上述现象是AGM密封铅蓄电池在使用不当时和寿命中后期.而出现的一种具有很大破坏性的现象。这是由于AGM密封铅蓄电池采用了贫液式紧装配设计,隔板中必须保持10%的孔隙不准电解液进入,因而电池内部的导热性差,热容量小。充电时正极产生的氧到达负极和负极铅反应时会产生热量,如不及时导走,则会使电池温度升高;如若没有及时降低充电电压,则充电电流就会加大,析氧速度增大,又反过来使电池温度升高。如此恶性循环下去,就会引起热失控现象。

胶体密封铅蓄电池的电解液量用得和开口式铅蓄电池相当,极群周围及与槽体之间充满凝胶电解质,有较大的热容量和散热性,不会产生热量积累现象。因此,胶体电池几乎不发生“热失控”现象。

德国阳光公司的胶体密封铅蓄电池进入中国市场已有二十余年,几家代理商反馈均说没有听到用户反映电池有热失控现象。

4 使用寿命

影响阀控式密封铅蓄电池使用寿命的因素很多,既有电池设计和制造方面的因素,又有用户使用和维护条件方面的因素。就前者而言,正极板栅耐腐蚀性能和电池的水损耗速度乃是两个最主要的因素。由于正板栅的厚度加大,采用Pb—Ca—Sn--A1四元耐蚀合金,则根据板栅腐蚀速度推算,电池的使用寿命可达10~15年。然而从电池使用结果来看,水损耗速度却成为影响密封电池使用寿命的最关键性因素(一般3~5年)。

对于AGM密封铅蓄电池而言,由于采用贫液式设计,电池容量对电解液量极为敏感。电池失水10%,容量将降低20%;损失25%水份,电池寿命结束。然而胶体密封铅蓄电池采用了富液式设计,电解液密度比AGM密封铅蓄电池低,降低了板栅合金腐蚀速度;电解液量也比后者多15%~20%,对失水的敏感性较低。这些措施均有利于延长电池使用寿命。根据德国阳光公司提供的资料,胶体电解液所含的水量足以使电池运行12~14年。电池投入运行的第一年,水损耗4%—5%,随后

逐年减少,4年之后总的水耗损只有2%。OP2V型密封电池在2.27V/单体条件下浮充运行10年后,其容量还有90%。从国内一些邮电通信部门的反映来看,虽然阳光公司的胶体密封铅蓄电池售价较高,但其使用寿命却长于国产的AGM密封铅蓄电池。

5 复合效率

复合效率是指充电时正极产生的氧气被负极吸收复合的比率。充电电流、电池温度、负极特性和氧气到达负极的速度等因素,均会影响密封电池的气体复合效率。

根据德国阳光公司提供的胶体密封铅蓄电池产品说明书介绍,胶体密封铅蓄电池产品使用初期,氧复合效率较低,但运行3个月之后,复合效率可达95%以上。这种现象也可以从电池的失水速度得到验证,胶体密封铅蓄电池运行第一年失水速度较大,达到4%~5%,以后逐渐减少。造成上述特性的主要原因,看来胶体电解质在形成初期,内部没有或极少有裂缝,没有给正极析出的氧提供足够的通道。随着胶体的逐渐收缩,则会形成越来越多的通道,那么氧气的复合效率必然逐渐提高,水损耗也必然减少。

AGM式密封铅蓄电池隔膜中有不饱和空隙,提供了大量的氧气通道,因而其氧气复合效率很高,新电池可以达到98%以上。

高中化学复习知识点:燃料电池原理及优点

高中化学复习知识点:燃料电池原理及优点 一、单选题 1.甲醇-空气燃料电池的反应为2CH3OH+3O2+4KOH=2K2CO3+6H2O,下列有关说法正确的是() A.甲醇-空气燃料电池的负极反应为CH3OH-6e-+8OH-=CO32-+6H2O B.一定温度下,反应2H2(g)+CO(g)=CH3OH(g)能自发进行,该反应的ΔH>0 C.根据共价键的键能可以准确计算CO2(g)+3H2(g)=CH3OH(g)+H2O(l)的ΔH D.标准状况下,甲醇-空气燃料电池放电时消耗5.6LO2,转移电子的数目约为3.01×1023 2.氢氧燃料电池已用于航天飞机,它是以铂作电极,KOH溶液作电解质,下列叙述不正确的是() A.H2在负极发生氧化反应B.燃料电池的能量转化率可达100% C.是一种高效、环保的发电装置D.供电的总反应为:2H2 + O2= 2H2O 3.为了强化安全管理,某油库引进一台测空气中汽油含量的测量仪,其工作原理如图所示(用强酸性溶液作电解质溶液)。下列说法不正确的是 A.石墨电极作正极,发生还原反应 B.铂电极的电极反应式:C8H18+16H2O-50e-===8CO2↑+50H+ C.H+由质子交换膜左侧向右侧迁移 D.每消耗5.6 L O2,电路中通过1 mol 电子 4.一种以肼(N2H4)为燃料的新型环保电池的工作原理如图所示。下列说法正确的是

A.电极A的电势比电极B的低 B.电极A的电极反应式为N2H4-4e-+4OH-=N2+4H2O C.电极B发生氧化反应 D.每消耗11.2L的O2,转移的电子数为2N A 5.“直接煤燃料电池”能够将煤中的化学能高效、清洁地转化为电能,如图是用固体氧化物作“直接煤燃料电池”的电解质。下列有关说法正确的是( ) A.电极b为电池的负极B.电子由电极a沿导线流向b C.电池反应为C+CO2===2CO D.煤燃料电池比煤直接燃烧发电能量利用率低 6.一种新型固氮燃料电池装置如图所示。下列说法正确的是 A.通入H2的电极上发生还原反应 B.正极反应方程式为N2+6e-+8H+=2NH4+ C.放电时溶液中Cl-移向电源正极 D.放电时负极附近溶液的pH增大 7.如图为纳米二氧化锰燃料电池,其电解质溶液呈酸性,已知(CH2O)n中碳的化合价为0价,有关该电池的说法正确的是() A.放电过程中左侧溶液的pH降低 B.当产生22gCO2时,理论上迁移质子的物质的量为4mol

蓄电池的基本知识大全

铅酸蓄电池基本常识 1、什么是放电效率? 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 2、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A?h)的倍率关系表示。 3、何为电池的小时率放电? 按一定输出电流放完额定容量所需的小时数数,称为放电时率。 4、何为电池的能量密度? 指电池的单位体积所含的电能。 5、铅酸电池使用什么标准? 电池标准分国家标准、行业标准、企业标准三个级别。目前车用电池执行的是编号为JB/T 10262——2001的行业标准。 6、电动车铅酸电池是如何命名的? 车用铅酸电池名称叫做6-DZM-X,其中的X为后缀,X可以是8、10、12,代表电池的容量。6DZM代表6组单格电池组合成一块12V电压的电动车专用阀控密封免维护电池,如果是胶体电池,其标示方法为6-DJM-X。 7、铅酸蓄电池容量标示方法是什么? 应当以C2为准,即以0.5C2电流放电,当电压达到该电池的放电终止电压时的放电时间和电流的乘积应等于或接近额定容量值。比如:一块12V、12Ah 的电池,以5A电流放电,放电终止电压达到10.5V时,时间不能少于140min;

同样,一块12V、10Ah的电池,以5A电流放电到电压达到终止电压10.5V时,时间不能少于120min。其误差为0.1Ah 实际上行业标准规定:10Ah的电池,以5A电流放电到终止电压时间不得小于120min。企业产品实际达到的为130~137min。 8、什么是电池的过充电能力? 行业标准规定,铅酸蓄电池以1.2A电流连续充电48h,实际容量不得低于额定容量的95%。 9、什么是电池的过放电能力? 行业标准规定,铅酸蓄电池开始放电电流为12A±1.2A、以定阻抗方式连续放电2.0h,实际容量不得低于75% 10、什么是电池的低温保存特性? 行业标准规定,铅酸蓄电池在-10℃±0.1℃的环境条件下存放10h,实际容量不能低于70%。 11、如何评价铅酸蓄电池的寿命? 以容量75%的深度放电,寿命不应低于350次。 12、铅酸电池有那些优缺点? (1)优点——价格低廉:铅酸电池的价格为其余类型电池价格的1/4~1/6。一次投资比较低,大多数用户能够承受。 (2)缺点——重量大、体积大、能量质量比低,娇气,对充放电要求严格。 13、为什么电池要储存一段时间后才能包装出货? 电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的

氢氧燃料电池基础知识集锦

氢氧燃料电池基础知识集锦 氢氧燃料电池是很有发展前途的新的动力电源,一般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作为负极,用空气中的氧作为正极.和一般电池的主要区别在于一般电池的活性物质是预先放在入的,因而电池容量取决于贮存的活性物质的量;而燃料电池的活性物质(燃料和氧化剂)是在反应的同时源源不断地输入的,因此,这类电池实际上只是一个能量转换装置。 一:氢氧燃料电池特点 这类电池具有转换效率高、容量大、比能量高、功率范围广、不用充电等优点,但由于成本高,系统比较复杂,仅限于一些特殊用途,如飞船、潜艇、军事、电视中转站、灯塔和浮标等方面。 二:氢氧燃料电池的分类 目前氢氧燃料电池可分为离子膜、培根型和石棉膜三类。 1.离子膜氢氧燃料电池:用阳离子交换膜作电解质的酸性燃料电池,现代采用全氟磺酸膜。电池放电时,在氧电极处生成水,通过灯芯将水吸出。这种电池在常温下工作、结构紧凑、重量轻,但离子交换膜内阻较大,放电电流密度小。

2.培根型燃料电池:属碱性电池。氢、氧电极都是双层多孔镍电极(内外层孔径不同),加铂作催化剂。电解质为80%~85%的苛性钾溶液,室温下是固体,在电池工作温度(204~260°C)下为液体。这种电池能量利用率较高,但自耗电大,起动和停机需较长的时间(起动需24小时,停机17小时)。 3.石棉膜燃料电池:也属碱性电池。氢电极由多孔镍片加铂、钯催化剂制成,氧电极是多孔银极片,两电极夹有含35%苛性钾溶液的石棉膜,再以有槽镍片紧压在两极板上作为集流器,构成气室,封装成单体电池。放电时在氢电极一边生成水,可以用循环氢的办法排出,亦可用静态排水法。这种电池的起动时间仅15分钟,并可瞬时停机。比磷酸铁锂电池要更环保。 三:氢氧燃料电池的原理 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电

燃料电池的基本工作原理及主要用途

简述燃料电池的基本工作原理及主要用途 1.燃料电池的工作原理 燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。 以磷酸型燃料电池为例,其反应式为: 燃料极(阳极) H2→2H++2e- 空气极(阴极) 1/2O2+2H++2e-→H2O 综合反应式H2+1/2O2→H2O 以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。 2. 燃料电池的应用 2.1能源发电 燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。各国工业界人士普遍对于燃料电池在发电站的应用前景看好。 2.2汽车动力 目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。 2.3家庭用能源 天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑等办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,并可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。 2.4其它方面的应用 碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。 总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。

胶体免维护蓄电池说明书0

胶体免维护蓄电池说明书 一、标准: 胶体免维护蓄电池符合如下标准: 1、JIS C 8707-1992 阴极吸收式密封固定型铅酸蓄电池标准 2、JB/T 8451-96 中华人民共和国机械行业标准 3、YD/T 799-2002 中华人民共和国通信行业标准 4、DL/T 637-1997 中华人民共和国电力行业标准 二、应用范围: ⑴电话交换机⑼办公自动化系统 ⑵电器设备、医疗设备及仪器仪表⑽无线电通讯系统 ⑶计算机不间断电源⑾应急照明 ⑷输变电站、开关控制和事故照明⑿便携式电器及采矿系统 ⑸消防、安全及报警监测⒀交通及航标信号灯 ⑹通信用备用电源⒁发电厂、水电站直流电源 ⑺变电站开关控制⒂铁路用直流电源 ⑻胶体、风能系统⒃移动机站 三、主要特点; ⑴寿命长 采用耐腐蚀性好的特殊铅钙合金制成的极板,可以具有较长的浮充寿命; 采用特殊胶体电液,增加电池酸量,防止电液分层,阻止极板支晶短路,确保电池使用寿命长。 胶体电池是在阀控式密封铅酸蓄电池技术的基础上实现了长寿命化。所以12V系列胶体电池设计寿命为6~8年(25℃);2V系列胶体电池设计寿命为10~15年(25℃)。 ⑵自放电少 使用特殊铅钙合金制成的板栅,将自放电量限制到最小,可长期保存。 ⑶维护容易 由于浮充电时,电池内部产生的氧气大部分被阴极板吸收还原成电解液,基本上没有电解液的减少,所以完全不必象一般蓄电池那样测量电解液的比重和补水。 ⑷安装简单 电池立式、侧卧安装使用均可,无电液渗漏之患,而且在正常充电过程中电池不会产生酸雾。因此可将电池安装在办公室或配套设备房内,而无需另建专用电池房,降低工程造价。 ⑸安全性高 为预防产生过多的气体,电池装有安全阀。另外,还装有防爆过滤器,在构造上即使有火花接近,亦能防止引火至电池内部。 ⑹使用方便 电池出厂时已经完全充电,用户拿到电池后即可安装投入使用。 四、胶体电池外形尺寸及其重量参数

铅酸蓄电池原理和种类

铅酸蓄电池原理和种类 储能电池及器件是太阳能光伏发电系统不可缺少的存储能电能的部件,其主要功能是存储光伏发电系统的电能,并在日照量不足,夜间以及应急状态下为负载供电。常用的储能电池有铅酸蓄电池、碱性蓄电池、锂电池、超级电容,它们分别应用于不同场合或者产品中。目前应用最广是铅酸蓄电池,从19世纪50年代开发出来至今,已经有160余年的历史,目前衍生出很多种类,如富液铅酸电池、阀控密封铅酸电池、胶体电池,铅碳电池等。 一、工作原理及基本结构 铅酸电池是用铅和二氧化铅作为电池负极和正极活性物质,以稀硫酸为电解质的化学储能装置,具有电能转换效率高、循环寿命长、端电压高、安全性强、性价比高、安装维护简单等特点,目前是各类储能、应急供电、启动装置中首选的化学电源。铅酸电池的主要构成包括: 1.极板:正负极板均是以特殊的合金板栅涂敷上活性物质所得,极板在充放电时存储和释放能量,确保电池的容量和性能可靠。 2.隔板:是置放于电池正负极中间的一个隔离介质,防止电池正负极直接接触而短路的装置,不同类型的铅酸电池隔板材质不同,阀控类电池主要以AGM、PE、PVC 为主。 3.电解液:铅酸电池的电解液是用蒸馏水配制的稀硫酸,电解液在充放电时起到在正负极间传输离子的作用,因而电解液必须要没有杂质。 4.容器(电池壳盖):电池包覆的容器,电解液和极板均在容器内,主要起支撑作用,同时防止内部物质外溢,外部物质进入内部结构污染电池。 二、种类及优势 铅酸电池的工作原理就是通过电化学反应,电能和化学能之间相互转化,电极主要由铅及其氧化物制成,电解液是硫酸溶液的一种蓄电池。英语:Lead-acid battery 。 放电状态下,正极主要成分为二氧化铅,负极主要成分为铅。 充电状态下,正负极的主要成分均为硫酸铅。 铅酸蓄电池种类较多,应用在光伏储能系统中,比较多的有三种,富液型铅酸蓄电池、阀控式密封铅酸蓄电池、铅碳蓄电池等等。 2.1 富液型铅酸蓄电池

燃料电池习题

原电池很简单哦,掌握基本原理就融会贯通了哦 §2-2 化学能与电能学案与练习 一、课堂练习 二、重点基础知识 【预备知识】 一、原电池 1、定义:原电池是把转化成的装置。 ① 2、原电池形成的条件:② ③ 3、原电池的工作原理 ①粒子流向电流电子阴离子阳离子 ②发生反应负极反应:反应类型,发生反应 正极反应:反应类型,发生反应 总反应:反应类型,发生反应 【基础知识】 二、化学电源 1、一次电池 2、二次电池(以铅蓄电池为例) 放电时负极反应:充电时阴极反应 正极反应:阳极反应 总反应:总反应 做二次电池习题时,一定要看好充电方向还是放电方向,放电方向就是原电池的工作原理3、燃料电池 总反应: 正极反应:酸性碱性 负极反应: k 第 1 页共5 页

原电池很简单哦,掌握基本原理就融会贯通了哦 第 2 页 共 5 页 总反应化学方程式 总反应离子方程式 负极反应 正极反应 总反应化学方程式 总反应离子方程式 负极反应 正极反应 总反应化学方程式 总反应离子方程式 负极反应 正极反应 总反应化学方程式 总反应离子方程式 负极反应 正极反应 总反应化学方程式 总反应离子方程式 负极反应 正极反应 总反应化学方程式 总反应离子方程式 负极反应 正极反应 总反应化学方程式 总反应离子方程式 负极反应 正极反应 总反应化学方程式 总反应离子方程式 负极反应 正极反应 O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2 CH 4 CH 4 H 2 H 2 C 2H 6O C 2H 6O C 2H 4 C 2H 4 KOH H 2SO 4 H 2SO 4 H 2SO 4 H 2SO 4 KOH KOH KOH

胶体电池制胶及使用方法

胶体电池*制胶及使用方法 如果胶体电解液不添加额外的添加剂,是可以看作是简单的SiO2--H2SO4--水的三相体系。 一样品鉴别 1 清液是溶解剂,产品编号601,用于把二氧化硅溶解成真正的溶液,这种二氧化硅溶液称为A胶。 2浊液是A胶再与另一种编号101的原料(加工后简称B胶,编号103)混合的AB胶。 3AB胶是A胶更高一级的产品,均优胜于常规二氧化硅分散胶。 二A胶的制造方法 1按601溶解剂:二氧化硅:纯水=100ml:4—5g:10mL的比例混合后是通常的混悬液,俗称二氧化硅浊液。 2将二氧化硅浊液放容器中水浴或电炉加热至70——85度,加热过程搅拌(100+-50转/分)10——30分钟,可看到二氧化硅浊液神奇的变为透明清液,这种清液就是二氧化硅溶解胶A。 3自然冷却后作硫酸液的添加剂用,将硫酸液改变为胶体电解质。 对比:用水,酸,碱液加温,不可能使浊液变为透明清液。 三AB混合胶的制造方法 1工序准备:将油相101胶过滤环氧树脂处理,调节PH值备用。 2将经处理的101胶(d=1.12)放在容器2中加热至75正负10度,加热过程搅拌(150+-50转/分)稳定5——10分钟,得出中间原料胶B。 在同温(75+-10度)条件下按一定比例混合AB得出混合胶,常规混合比例在2:8或8:2之间选取。混合时需注意同温(75+-10度)混合,搅拌5——10分钟。自然冷却后作硫酸液的添加剂用,将硫酸液改变为胶体电解质。 四A胶和AB混合胶的使用方法 在得电池的硫酸液中,灌装前将A胶或AB混合胶按4—6%直接添加入硫酸液,人工搅匀即可,灌装电池及充电方式完全相同。充电工艺完成后,胶液自然变为胶体。 五制造AB混合胶的配方范围 1 常规用的AB混合胶的配方:A胶:B胶=1:1, 2 耐高温型AB混合胶的配方:A胶:B胶=1:4 胶体电解质密度与配胶关系一览表

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

胶体电池与AGM电池的对比

胶体电池与AGM电池的对比的一些总结 阀控式密封铅蓄电池有两类,即分别采用玻璃纤维隔板(AGM)和硅凝胶(GEL)二种不同方式来“固定”硫酸电解液。它们都是利用阴极吸收原理使电池得以密封的。 一、胶体电池发展和概述 胶体电池属于目前最广泛使用的铅酸蓄电池。是阀控式密封铅酸蓄电池的一类。 铅酸蓄电池从问世到如今,一直是军用民用领域中使用最广泛的化学电源。早期的铅酸电池使用的电解液是“富液式”的(电解液是流动的),由于它使用电解液是游离态的,运输过程中常会有酸液流出,充电时也会有酸雾析出来,对环境和设备造成损害,人们就试图将电解液“固定”起来,将电池“密封”起来,于是使用胶体电解液的铅酸蓄电池应运而生。 初期的胶体铅蓄电池使用的胶体电解液是由水玻璃制成的,然后直接加到干态铅蓄电池中。这样虽然达到了“固定”电解液或减少酸雾析出的目的,但却使电池的容量较原来使用自由电解液时的电池容量要低20%左右,因而没有被人们所接受。 胶体电池的鼻祖德国阳光公司早在60年代就第一次开发密封铅蓄电池用胶体电解质技术。目前已将该技术成功用于各种用途的密封电池(后备电源用,循环用,太阳能用等)。我国在50年代也开展了初期胶体电池的研制工作,到60年代末也就基本上停止了,60-70年代发展缓慢。80年代,德国阳光公司的胶体密封铅蓄电池产品进入中国市场,多年来使用效果表明它的性能确实不同于以前的胶体铅蓄电池。这就迫使人们要重新认识胶体铅蓄电池。然而70年代后期至目前,国内知名厂家所生产的胶体电池基本上都是模仿德国阳光的技术,多数厂家也仅仅是能作出外表相识的胶体电池,而没有真正掌握核心的技术和成熟的生产工艺。以此,生产出来的胶体电池与国外产品存在明显差距。经过一段时间的“热销”和市场“热捧”后,用户反映不好,未能达到厂家所宣称的水平。经过一番折腾,国内的生产企业才深刻认识到仅仅模仿别人是没有长远发展的,不进行核心技术的研究和配套材料、生产设备等的改进,是不能作出好的“胶体电池”来的。 几乎在研制胶体电池的同时,采用玻璃纤维隔膜的阴极吸收式密封铅蓄电池却诞生了,它不但使铅蓄电池消除了酸雾,而且还表现出内阻小、大电流放电特性好的优点。因而在国民经济中,尤其是原来使用固定型铅蓄电池的场合。尤其是其生产工艺简单,成本低,得到了迅速的推广和应用。目前市场上使用的密封蓄电池里面,采用玻璃纤维隔膜(AGM)的阴极吸收式密封铅蓄电池仍占有绝对优势。 将近年来的两种阀控式密封铅蓄电池的研制、生产和使用效果对它们进行比较,可以总结出胶体电池的明显优势: ○1电解液被完全固化,因此其运输、使用时安全性更高,可以作为非危险品运输(可以空运),而AGM的铅蓄电池是作为危险品运输的。 ○2电解液量增加15~25%(相对AGM),因此充电时的水损失对寿命的影响可忽略,电池寿命大幅提高,一般大密电池的寿命可达12~15年,有的甚至达到20年。而普通AGM式电池多数3~年。 ○3热容高,使用时几乎无“热失控”发生,而“热失控”是多数AGM式电池寿命失效方式和引发事故的原因。目前仍然没有解决该问题。 ○4具有优良的深放电后容量回复能力,可到95%,而AGM式电池一般在75%。 ○5自放电小,因此其贮存时间是AGM的3~4倍(20℃下可以24个月不用补充电)。 ○6由于其热容大,电解液多,充电接收能力好,因此,其耐过充能力很强。特别使用环境恶劣的工作场合。 2 电池的工作原理

燃料电池导学案

发展中的化学电源 ——燃料电池导学案 课程学习目标 1、认识燃料电池的结构及工作原理 2、掌握氢氧燃料电池的电极反应和书写方法 3、了解甲烷燃料电池的电极反应和书写方法 知识重、难点 氢氧燃料电池电极反应的书写 甲烷燃料电池电极反应的书写 第一部分知识体系梳理(课前完成) 燃料电池 (1)燃料电池是一种高效、环保的发电装置,产物对环境的污染较小。以H 2为燃料时,产物为 ,以CH 为燃料时,产物是。 4 (2)燃料电池的反应物不是储存在电池内部,而是由外设装置提供燃料和氧化剂分别在两个电极上反应,将化学能转化为电能。因此,燃料电池起着类似于试管、烧杯等反应器的作用 (3)氢氧燃料电池中,负极通入的是氢气,正极通入的是氧气,电解质是硫酸或氢氧化钾,该电池的总反应式为。 (4)甲烷燃料电池中,负极通入的是,正极通入的是,当电解质为硫酸时,电池总反应为,当电解质是氢氧化钾时,电池总反应为 第二部分重、难点探究(课堂完成) 【知识基础】原电池电极反应书写规则 负极:氧化反应还原剂 - ne- →氧化产物 正极:还原反应氧化剂 + ne- →还原产物 正极反应式+负极反应式=电池的总反应式 1、氢氧燃料电池 (1)请结合【知识基础】以及氢氧燃料电池构造示意图,试分析H2-O2-H2SO4燃料电池的电极反应 负极: 正极: 总反应:

(2)将氢氧燃料电池中电解质溶液改为氢氧化钾溶液,即:H2-O2-KOH则电极反应与(1)中是否一样,若不一样,该怎么写? 负极: 正极: 总反应: 【探究与思考1】对照(1)和(2)的电极反应思考如下问题: ①两电池的正、负极电极反应式一样吗?为什么?总反应式相同吗? ②结合两个燃料电池的正极反应,说说以氧气做氧化剂的燃料电池的正极反应有什么特点? 2、甲烷燃料电池 【实践探究】请结合氢氧燃料电池电极反应的书写,用类推的方法完成下面的电极反应(可考虑先写正极反应,负极反应式=总反应式-正极反应式) (1)CH4-O2-H2SO4 负极: 正极: 总反应: (2)CH4-O2-KOH 负极: 正极: 总反应: 【探究与思考2】 ①从以上四个原电池的电极总反应来看,你认为燃料电池的反应实质是什么?

胶体电池胶体配方资料

胶体电池胶体配方资料 气相二氧化硅的分散: 气相二氧化硅原生粒径为纳米级,故需要在高速搅拌速度下方能使其原子间氢键打开,水与二氧化硅混合后建议在2000转/分以上分散设备中将其彻底搅拌均匀;(分散时间至少半个小时)建议采用母液法配制胶体(水与二氧化硅的经高速搅拌后的混合体为母液),一般母液中气相二氧化硅含量不低于10%,具体添加量应生产需求而定。 胶体电解液主要添加剂及其含量: 1.胶体分散后(即气相二氧化硅与水分散后),可添加万分之一的中性(无极性) 聚丙烯酰胺(80万到100万单位的),可进一步提高胶体的触变性和增稠效果; 2.在胶体中:相对气相二氧化硅的质量添加2%的NaOH,,对配制时可减少分 散的压力并对凝胶带来一些好处; 3.相对气相二氧化硅的质量添加1~2%的LiOH,不仅可较少分散的压力,也起 到比较好的凝胶效果,同时锂离子可渗透到活性物质内部起到各离子间的传递,还对电池寿命有一些提高。 (附注:若分散彻底且不知如何配比前提下应尽量避免添加任何添加剂) 电池其他材料对气相二氧化硅添加量的相互影响: 1.使用PVC或PE隔板胶体电池的胶体电解液可以在硫酸溶液中添加6~8%的 气相二氧化硅; 2.使用AGM隔板的松装配电池可添加4~6%的气相二氧化硅,紧装配电池可添 加2~4%的气相二氧化硅; 3.所有的胶体灌注都要采用真空灌注,电池效果才会显著,同时也可以在正极 铅膏里添加1%的SiO2,在和膏时加入可以提高电池寿命和大电池性能; 气相二氧化硅在胶体蓄电池中的作用及其注意事项: 在铅酸蓄电池中加入二氧化硅可起到增稠、凝胶的作用,同时可提高电池寿命,降低活性物质软化速度,因此在一般主要添加二氧化硅来提高电池性能,其他添加剂尽量少加,但如果要使凝胶效果等提高,可辅助其他少量添加剂,但应该在未加入硫酸之前添加并分散。例如:聚丙烯酰胺可大大提高凝胶性能和触变性能,但高分子的PAM在酸中会很快凝聚,不利于操作。 (附注:此配方仅为工程师手写记录,需实验验证后方可用于实际生产操作)

胶体电池和铅酸电池区别

较项目dryfit胶体结构AGM玻璃棉吸附式结构电池结 构 电解液固定方式电解液由气体二氧化硅及多种添 加剂以胶体形式固定.注入时为 液态,可充满电池内的所有空间。 电解液被吸附在多孔的玻璃棉隔 板内,而且必须是不饱和状态。 电解液量与富液式电池相同比富液式或胶体蓄电池的储液量 少 电解液比 重与富液式相同,平均1.42g/1,对 极板腐蚀较轻,电池寿命长。 比富液式胶体电池电解液比重要 高平均1.28-1.31g/1,对极板腐蚀较 重,电池寿命短。 正极板结 构 可制成管式或涂膏式只能制成涂膏式 极柱密封 方式多层耐酸橡胶圈滑动式密封,保 证了使用寿命后期极群生长时的 密封,阳光公司专利技术。 迷宫式树脂灌注密封无法满足后 期极群生长时的极柱密封,甚至导 致电池损坏。 板栅合金铅钙锡无锑多元合金,管式正极 板管芯可采用高压压铸工艺生 产,晶格细小均匀,耐腐蚀性好, 电池的使用寿命长。 有的公司采用含镉含锑合金,锑可 以改进极板强度,延长电池的循环 寿命,但电池的自放电率较高,镉 合金的循环回收对环境污染严重。 气阀独有的伞式低压灵敏气阀本森式高压气阀,灵敏度差。性能差 别 浮充性能由于电解液比重低,浮充电压相 对也比较低另外胶体的散热性也 远优于玻璃棉,绝无热失控事故, 浮充寿命长。 浮充电压相对较高,浮充电流大, 快速的氧再化合反应产生大量的 热量,玻璃棉隔板的热消散能力 差,热失控故障时有发生。 循环性能特殊的含磷酸胶体和含锡正极板 合金,电池的循环性能和深放电 恢复能力优越。 由于玻璃隔板微孔孔径较大,深放 电时电解液比重降低,硫酸铅溶解 度增大,沉积在微孔中的活物质会 形成枝晶短路,进而导致电池寿命 的终止。 自放电由于选用的材料纯度高,电解液 比重低,电池的自放电率为 0.05-0.06%/天,电池常温下可储 存二年无须补充充电。 每月3-5%,存放期超过6个月需补 充充电。 氧再化合 效率使用初期再化合效率较低,但运 行数月后,再化合效率可达95% 以上。 由于隔板的不饱和和空隙提供了 大量的氧扩散通道,再化合效率较 高,但其浮充电流和产生的热量也

铅酸蓄电池常识解释及表示方法

1、什么是一次电池和二次电池? 一次电池是普通的干电池,只能使用一次, 二次电池又叫可充电池。二次电池中的动力型电池(或称牵引电池)是电动车目前主要电源。 2、一次电池和二次电池有什么区别? 电池内部的电化学性决定了该类型的电池是否可充,根据它们的电化学成分和电极的结构可知,真正的可充电电池的内部结构之间所发生反应是可逆的。理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极体积和结构上引起可逆的变化,那么可充电电池的内部设计必须支持这种变化,既然,一次电池仅做一次放电,它内部结构简单得多且不需要支持这种变化,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济,如果需要反复使用,应选择真正的循环次数在350次左右的充电电池,这种电池也可称为二次电池或蓄电池。 另一明显的区别就是它们能量和负载能力,以及自放电率,二次电池能量远比一次电池高,然而他们的负载能力相对要小。 3、充电电池是怎样实现它的能量转换? 每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能,就二次电池(也叫蓄电池)而言(另一术语也称可充电使携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上。 4、电动自行车用蓄电池的特点是什么? 电动自行车用蓄电池是动力型电池,它的特点是能够在一定时间内大电流放电,供车用电机运行,并能维持一定时间运行一定里程。 车用动力电池与固定电池,如仪表电池,电力,通讯系统电池,起动电池等从结构到性能都不相同,其充电和放电方式也不相同,因此不能通用。 5、电动自行车用电池是如何分类的? 从大的方面讲,电池分一次电池(电动车用它做电源已经成为历史) 、二次电池和燃料电池。车用电池按电解液性质分为酸性和碱性,按外形分为方形和圆柱形,按使用性质分为移动式和固定式,按用途分为动力型、起动型和普通型,按结构分为开敞式和密封式。其中:铅酸电池又有不同形式,如从外形用结构又分为高型和矮型;按酸性电解液的状态分为富液型、贫液型和胶体电解液三种,按极板的结构分为板式、卷式和管式。 目前电动车常规电池主要为铅酸电池、镍氢电池、镍锌电池,其中又以铅酸电池最普及,其余两种乃是仍然较少。主要原因是市场动作没有展开,没有形成适合电动车对路产品的规模产量,价格不未能被广大用户所接受,但很快就会进入热潮。技术成功的其他三种电池——锂离子电池、锌空气电池是继镍氢、镍锌电池之后的升级产品;燃料电池价格仍高不可攀,主要原因是质子交换膜制备成本高,催化金属属于贵重物,某些技术仍然需要提高,未能大规模进入生产领域,仍需6~8年的时间才能普及。 6、什么是铅酸电池(Pb-A)? 铅酸电池,电极主要由铅制成,电解液是硫酸溶液的一种蓄电池。 铅酸电池的代表符号为Pb-A或L-A,其中:Pb是元素周期表中铅的代号,L是铅的英文名称Leed的字头,A是酸的英文名称Acid的字头,上述两种写法均代表铅酸电池。 L-A电池品种很多,如水平极板的,卷极圆柱形等。 铅酸电池在我国是技术最成熟、各领域用量最大、市场销售最多使用时间最久的一种电源。电动自行车使用的铅酸电池属于贫液式、矮型阀控密封式、方形动力酸电池, 7、何为铅晶电池? 应用专有技术和独特生产工艺研制的非液非胶电解质,特殊板栅结构及材料配方制成的

亚胶体蓄电池简介

亚胶体蓄电池简介 1、什么是亚胶体蓄电池 亚胶体铅酸蓄电池是对液态电解质的普通铅酸蓄电池的改进,用亚胶体电解液代换了硫酸电解液,在安全性、蓄电量、放电性能和使用寿命等方面较普通电池有所改善。亚胶体铅酸蓄电池采用凝胶状电解质,内部无游离液体存在,在同等体积下电解质容量大,热容量大,热消散能力强,能避免一般蓄电池易产生热失控现象;电解质浓度低,对极板的腐蚀作用弱;浓度均匀,不存在电解液分层现象。 2、亚胶体蓄电池工作原理 亚胶体铅酸蓄电池的性能优于阀控密封铅酸蓄电池,目前用于电动自行车的国产亚胶体铅酸蓄电池是在AGM隔板中通过真空灌注,把硅胶和硫酸溶液灌到蓄电池正、负极板之间。亚胶体电池与常规铅酸电池得区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质得反应利用率。亚胶体铅酸蓄电池接近于密封工作,失水很少。当电池被充电时,由于电解质中的硫酸浓度增加使之“增稠”并伴有裂隙产生,充电后期的“电解水”反应使正极产生的氧气通过这无数的裂隙被负极所吸收,并进一步还原成水,从而实现蓄电池密封循环反应,大大延长电池寿命,提高电池化学反应应用率。 3、亚胶体蓄电池特点 用较小的工业代价,沿已有 150 年历史的铅酸电池工业路子制造并改良形成的亚胶体蓄电池具有以下特点: ①使用性能可靠,性能稳定; ②放电曲线平直,拐点高,能承受长时间放电能力、循环放电能力;; ③能量、功率要比常规铅酸电池大 20 %以上; ④使用寿命一般也比常规铅酸电池长一倍左右; ⑤在高温50℃、低温-35℃环境温度下亦能正常工作; ⑥深度放电使用性能好,深放电恢复能力及大电流放电能力远远高于铅酸 蓄电池。 ⑦有过充电及过放电自我保护能力,真正的免维护电池。

燃料电池电极反应式的书写27641知识讲解

燃料电池电极反应式的书写 燃料电池电极反应式的书写是中学化学教学的难点,也是高考化学的常考考点之一,在书写时学生往往易错。参加北大附中课堂教学培训,感悟最深的是桑老师对燃料电池电极反应式的复习的处理,其复习教学设计如下: 一、首先分清原电池的正、负极均为惰性电极,电极均不参与反应。 二、正极发生还原反应,通入的气体一般是氧气,氧气得到电子首先变为氧离子,根据电解质的不同,其负极电极反应式书写分以下几种情况: (1)在酸性溶液中生成的氧离子与氢离子结合生成水,其电极反应式为: O2 + 4e- + H+== 4H2O (2)在碱性溶液中,氧离子与氢氧根离子不能结合,只能与水结合生成氢氧根离子,其电极反应式为: O2 + 4e -+ 2H2O== 4OH- (3)在熔融碳酸盐中,氧离子与碳酸根离子不能结合,只能与二氧化碳结合生成碳酸根离子,其电极反应式为:O2+2CO2-+4e-==2 CO32-(4)在熔融氧化物介质中,氧气得到电子转化为氧离子,其电极反应式为: O2 + 4e- == 2O2- 三、负极发生氧化反应,负极生成的离子一般与正极产场结合,有以下几种情况: (1)若负极通入的气体是氢气,则 ①酸性液中 H2 - 2e- == 2H+

②碱性溶液中 H2 - 2e- + 2OH- == 2H2O ③熔融氧化物中 H2 - 2e- + O2- == H2O (2) 若负极通入的气体为含碳的化合物CO、CH4、CH3OH等,碳元素均转化为正四价碳的化合物、在酸性溶液中生成二氧化物气体、在碱性溶液中生成碳酸根离子,熔融碳酸盐中生成二氧化碳,熔融氧化物中生成碳酸根离子。含有氢元素的化合物最终都有水生成。 如CH3OH燃料电池: 酸性溶液中负极反应式为::CH3OH - 6e- + H2O == CO2↑ + 6H+碱性溶浚中负极反应式为:CH3OH - 8e- + 10OH- == CO32-+ 7H2O 氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入 O2, 总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2– 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以:负极的电极反应式为:H2– 2e- + 2OH- === 2H2O;

铅酸蓄电池知识大总结

铅酸蓄电池知识大总结 《铅酸蓄电池原理大总结》 1 1 11铅酸蓄电池的硫化与修复原理 虽然目前的科学技术飞速发展近年铅酸蓄电池的发展也比较快基本上以大型阀控密封式铅酸蓄电池代 替了防算酸隔爆型电池就是大型阀控密封式铅酸蓄电池近些年也在发展但是大容量的固定电池还是以 铅酸蓄电池为唯一的选择如何延长铅酸蓄电池的正常使用寿命一直是业内人士探讨的主要问题 相同的电池在不同的设备条件不同的使用条件和不同维护条件下使用寿命相差很大这就需要在设备 条件使用条件和维护条件上寻找其差异而电池失效的的几个主要现象是 a.正极板软化

b.正极板板栅腐蚀 c.负极板硫化 d.失水 e.少数电池出现热失控包括电池鼓胀 下面就以电池失效模式来探讨设备条件使用条件和维护条件对电池失效的影响及其应对方法 一电池的失效模式及其原因 1电池的正极板软化 电池的正极板是由板栅和活性物质组成的其中活性物质的有效成分就是二氧化铅放电的时候二氧 化铅转为硫酸铅充电的时候硫酸铅转为二氧化铅二氧化铅是由α二氧化铅和β二氧化铅组成的在2 种二氧化铅中以其中α二氧化铅荷电能力小但是体积大比为β二氧化铅坚硬主要起支撑作用β二氧

化铅恰好相反荷电能力大但是体积小比为β二氧化铅软主要起荷电作用α二氧化铅是在碱性环境 中生成的在电池内部一旦出现参与放电以后在充电只能够生产β二氧化铅正极板的活性物质是多孔 结构的就与电解液硫酸的接触面积来说多孔结构是平面的数十倍如果α二氧化铅参与放电以后 重新充电以后只能够生成β二氧化铅这样就失去了支撑不仅仅会产生正极板活性物质脱落而且脱落 的活性物质还会堵塞正极板的微孔导致正极板参与反应的真实面积下降形成电池容量的下降后备电 源的电池使用年限要求比较严格对电池的比容要求比较宽因此后备电源使用的电池的后备电源的电池 α二氧化铅和β二氧化铅比例比深循环的动力型电池大一些为了减少α二氧化铅参与放电一般控制放 电深度仅仅为40%随着电池的使用时间的增加电池的容量下降新电池放电40%的电量对于旧电池 来说必然上超过40%的所以旧电池就相当于放电深度深电池的正极板软化

蓄电池知识大全

汽车蓄电池相信大家都不陌生,但是提及蓄电池的维护使用以及更换问题,可能还未到更换时间的车主都不会去关注,又或者说我的电瓶是免维护型的,平时不需要去“捣鼓”。确实,蓄电池在日常行车中大多车主都不会特意去维护,等到要更换的时候,就直接去了4S店。其实你是否知道,蓄电池的更换是非常简单的,你只需要买到正规产品,并不一定要去4S店换,自己更换或者在外面更换可省不少钱。这里花了两天功夫总结了一篇史上最全的蓄电池知识普及(包括基础知识、更换需知、原厂品牌调查以及主流品牌价格),如果你有蓄电池方面的知识需要查询,也不需要问度娘了,这里就有。 一、蓄电池的定义: 蓄电池,也就是我们平时所称的电瓶,它的工作原理就是把化学能转化为电能。当车辆准备启动时,蓄电池会供给发动机用电,然后由发动机带动飞轮、曲轴的转动。如果出现发动机供电不足或者当发动机处于怠速时,蓄电池可以协助发电机向用电设备供电提供电源,而当发动机开始正常供电,蓄电池又可以储存电能,相当于一个大容量电容器,可以保护汽车的用电器。 二、蓄电池2个性能参数的意义 这里介绍的有关蓄电池的两个性能参数,一个是电池容量(单位为Ah),一个是低温启动电流。(CCA缩写)。如果蓄电池容量太小,车内电器在熄火状态下的用点时间会变短,如果低温启动电流过小,一般来讲因为车辆启动时所需的电流量一般是恒定的,只要保证车辆能够正常启动,蓄电池低温启动电流参数大小并不十分重要,但如果额外增加了电器后,使得车辆所需电流量增大,此时低温启动电流参数过低的蓄电池则无法正常启动发动机。 1、蓄电池容量:单位为Ah(Ampere Hour),表示在特定条件下,蓄电池的放电能力。例如:一个45Ah容量的蓄电池,以恒定1A的电流放电,能持续放电45小时。 2、低温启动电流:一般用缩写CCA(Cold Cranking Ampere)表示,指在规定的某一低温状态下(通常是℃),蓄电池在电压降至极限馈电电压前,连续30秒释放出的电流量。 三、蓄电池型号详解

铅酸蓄电池基本知识

铅酸蓄电池基本知识 电池:通过化学反应提供直流电能的电化学装置 电池是一种能量转化与储存的装置,它主要通过化学反应将化学能或物理能转化为电能。它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供电能。 Cell 和Battery的区别: ① Cell 是指一般的小型和单个电池,更强调单个单元; ② Battery是指蓄电池和电池组,更强调系统或者组; ③ Battery 运用得更加广泛,是电池的通用名称,包括锂电池、镍氢电池、蓄电池、干电池等等。 一次电池与二次电池的异同点: 一次电池只能放电一次,二次电池(也叫可充电电池),可反复充放电循环使用,可充电电池在放电时电极体积和结构之间发生可逆变化,一次电池的质量比容量和体积比容量均大于一般充电电池,但内阻远比二次电池大,因此负载能力较低,另外,一次电池的自放电远小于二次电池。 电池种类 一次电池:不可充电,如锌锰、碱性、锂电池 二次电池:可充电,如铅酸、镍氢、锂离子电池 高级电池:结构特殊,性能卓越,如锌空电池,以空气做正极,体积很小,用于助听器。 燃料电池:Fuel Cell, FC, 将存在于燃料(氢气)和氧化剂(氧气)中的化学能转化为电能的装置,不是蓄电池,是发电机,1839年由英国的Grove发明。 太阳能电池:物理电源,通过光电效应或光化学效应直接把光能转化为电能的装置,1883年Charles发明首块太阳能电池,前景广阔,目前成本高,限制了应用。 电池由外壳、正极、负极、端子、隔膜等组成 外壳:一般是塑料或金属材质 正极:电流的流出端 负极:电流的流入端 端子:内部与活性物质相连,外接用电器 隔膜:防止正、负极短路,并提供电子的内部传递通道 蓄电池: 蓄电池(Storage Battery),也称二次电池,是通过充电将电能转换为化学能贮存起来,使用时再将化学能转换为电能释放出来的化学电源装置。

相关文档
相关文档 最新文档