文档库 最新最全的文档下载
当前位置:文档库 › 第13章.电流和磁场补充题

第13章.电流和磁场补充题

第13章.电流和磁场补充题
第13章.电流和磁场补充题

第13章 电流和磁场补充题

一 选择题

1. 如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度[ E ] (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外.

(C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a .

(E) 为零. 2. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:[

D ] (A) B P > B Q > B O . (B) B Q

> B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .

3. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的

磁感强度为[ D ]

(A) R 140πμ. (B) R

1

20πμ.

(C) 0. (D) R

1

40μ.

4. 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为[ B ] (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A)

5. 若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对

称性,则该磁场分布 [ D ] (A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出.

(C) 只能用毕奥-萨伐尔定律求出. (D) 可以用安培环路定理和磁感强度的叠加原理求出.

6. 磁场由沿空心长圆筒形导体的均匀分布的电流产生,

圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系? [ B ]

B

x O

R

(D) B

x O R

(C) B

x

O

R (E)

二 填空题

1. 一条无限长载流导线折成如图示形状,导线上通有电流

I= 10 A .P 点在cd 的延长线上,它到折点的距离a = 2 cm , 则P 点的磁感强度B

=

(μ0 = 4π×10-7

N ·A -2

)

2. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中心处的磁感强度的大小为________________.

3. 在真空中,将一根无限长载流导线在一平面内弯成如图所示的半圆形状,并通以电流I ,则圆心O 点的磁感强度B 的值 为___________,方向_____________.

4. 电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 处的磁感强度

的大小为_____________.

5. 电流由长直导线1沿切向经a 点流入一由电阻均匀的导线

构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为_____________.

6. 如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一

边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通 量与通过面积为S 2的矩形回路的磁通量之比为____________.

7. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.

8. 有一长直金属圆筒,沿长度方向有横截面上均匀分布的

稳恒电流I 流通.筒内空腔各处的磁感强度为______________,筒外空间中离轴线r 处的磁感强度为______________.

第13章 电流和磁场补充题参考答案

一、 选择题

1、E ;

2、D ;

3、D ;

4、B ;

5、D

6、B

二、填空题

1、错误!未找到引用源。;

2、错误!未找到引用源。

3、

错误!未找到引用源。垂直于纸面向里4、0

5、错误!未找到引用源。

6、错误!未找到引用源。

7、错误!

未找到引用源。8、0,错误!未找到引用源。

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

11稳恒电流和稳恒磁场习题解答

第十一章 稳恒电流和稳恒磁场 一 选择题 1. 两根截面大小相同的直铁丝和直铜丝串联后接入一直流电路,铁丝和铜丝内的电流密度和电场强度分别为J 1,E 1和J 2,E 2,则:( ) A. J 1=J 2,E 1=E 2 B. J 1>J 2,E 1=E 2 C. J 1=J 2,E 1E 2 解:直铁丝和直铜丝串联,所以两者电流强度相等21I I =,由???=S J d I ,两者截面积相等,则21J J =,因为E J γ=,又铜铁γγ<,则E 1>E 2 所以选(D ) 2. 如图所示的电路中,R L 为可变电阻,当R L 为何值时R L 将有最大功率消耗: ( ) A. 18Ω B. 6Ω C. 4Ω D. 12Ω 解:L L R R R +=1212ab , L L R R R R U 3122006ab ab ab +=+?=∴ε 22ab 31240000)R (R R U P L L L L +==,求0d d =L L R P ,可得当Ω=4L R 时将有最大功率消耗。 所以选(C ) 3. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感应强度B 的大小为( ) A. l I μπ420 B. l I μπ20 C . l I μπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应 强度由 )cos (cos π4210θθμ-=d I B ,可得 l I l I B BC π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 l I l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 L 选择题2图 选择题3图

磁场的研究实验报告

实验题目: 磁场的研究 实验目的: 1、研究载流圆线圈轴线上各点的磁感应强度,把测量的磁感应强度与理论计算值比较, 加深对毕奥-萨伐尔 定律的理解; 2、在固定电流下,分别测量单个线圈(线圈a 和线圈b )在轴线上产生的磁感应强度B (a )和B(b),与亥姆 霍兹线圈产生的磁场B(a+b )进行比较, 3、测量亥姆霍兹线圈在间距d=R /2、 d=2R 和d=2R, (R 为线圈半径),轴线上的磁场的分布,并进行比较, 进一步证明磁场的叠加原理; 4、描绘载流圆线圈及亥姆霍兹线圈的磁场分布。 实验仪器: (1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离1.0cm 间隔的网格线; (2)高灵敏度三位半数字式毫特斯拉计、三位半数字式电流表及直流稳流电源组合仪一台; (3)传感器探头是由2只配对的95A 型集成霍尔传感器(传感器面积4mmx 3mmx 2mm)与探头盒(与台面接触面 实验原理: (1)根据毕奥一萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: 232220)(2x R N R I B +=μ (5-1) 式中μ0为真空磁导率,R 为线圈的平均半径,x 为圆心O A 到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度B 0 为: R IN B 20μ= (5-2) 轴线外的磁场分布计算公式较为复杂,这里简略。 (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。 设:z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: ????????????????????? ??-++??????????? ??++='--23222322202221z R R z R R NIR B μ(5-3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 0′为 .毫特斯拉计 .电流表 .直流电流源 .电流调节旋钮 .调零旋钮 .传感器插头 .固定架 .霍尔传感器 .大理石 .线圈 ABCD 为接线柱

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场2 32220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220?=R I B 电荷转动形成的电流:π ω ωπ22q q T q I = == 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) ) 2(0b a I +πμ. 解法: 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

磁感应强度B与磁场强度H的区别和联系

磁感应强度B与磁场强度H的区别和联系 给B和H的关系正名,希望读者耐心看完。设想你暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。有一天,你用电流做实验。你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。进一步,你通过力学(如平行电流线,扭转力矩等)的测量,你发现1.长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同2.距离不同的点,“磁场”强度随着距离成反比。这样,你便想要通过力学测量和电流强度定义一个物理量H,2*pi*r*H=I。对形状稍稍推广,你就得到了安培环路定理的一般积分形式。注意这时候不需要用到真空磁导率μ0,因为你只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。现在,你有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。你心满意足,转移了研究兴趣,开始研究带电粒子的受力。对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,你可以测出粒子受的力。你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。这个公式多了个外加因子,不好看。现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。你开始管这个磁导率叫μ,并且定义μ=B/H。其中H是(通过电流)外来的,B是使得粒子偏转的响应。这样,磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。此外,你发现,粒子处于真空中的时候,这个μ是一个与任何你能想到的物理量都无关的常数,这正是真空磁导率。目前你已经很有成就了:你通过得到了一个外磁场H,并在真空环境下,把这个磁场作用于带q电荷的粒子,你测量粒子受力F= qvⅹB,并且把测量力F和速度v得到的B值与测量电流I得到的H值相除,你便得到了真空磁导率。现在你已经知道了,H与B单位的不同,仅仅是由于你最开始研究力学用的单位,和开始研究电荷、电流的单位的不同,导致的一种单位换算。H从I得来,B从F得来,所以看到的是“施H”与“受B”的关系。(实际过程还要复杂些,因为先研究的是电场的情形,然后导出了磁场下的情况,所以你看到的μ0是个漂亮的严格值,而真空介电常数作为另一种线性响应确是一个长长的实验数字)。既然知道了B与H单位不同只是由于电流和牛顿力学导致的,现在你为了简化,将二者单位化为相同单位:B=H;这样你就得到了电磁学里更常用的高斯单位制。如果需要换算,随时添加磁导率即可。你开始进一步研究了。你已经研究了电流产生磁场的效应,以及单个粒子在磁场中的运动。那么,有着大量粒子的各种材料介质,从铁块,到石墨,到玻璃,它们对于磁场的相应是如何呢?现在你通过电流I,把磁场H加到某种材料当中,你所要研究的粒子,不再活在真空,而在材料里活动,它可以是金属里本身自带的电子,也可以是通过外界射束打入的。这都无妨,只需记住现在你要研究的粒子不再在真空,而在介质里。一个粒子受到的力学上的响应,当然是与这个点的总磁场有关。因此,B的意义就变得丰富了,它代表在该点处的总磁场。为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。我们管产生的额外磁场大小叫做M。与磁导

第13章电磁场与麦克斯韦方程组

第13章 电磁场与麦克斯韦方程组 一、基本要求 1.掌握电磁感应定律和楞次定律; 2.掌握简单情况下动生电动势及感生电动势的求解; 3.了解自感和互感,并会计算自感系数和互感系数。 二、基本内容 (一)本章重点和难点: 重点:计算动生电动势及感生电动势。 难点:法拉第电磁感应定律的理解和应用。 (二)知识网络结构图: ???? ??? ????? ???? ? ???? ????????? ?自感与互感计算方法产生原因动生电动势计算方法产生原因感生电动势感应电动势的分类楞次定律法拉第电磁感应定律感应电动势的计算 (三)容易混淆的概念: 1.动生电动势和感生电动势 动生电动势由导体切割磁场线运动引起,受到洛仑兹力即非静电力的作用。当导体做匀 速直线运动洛仑兹力和静电力平衡,就得到了非静电场强公式B v E k ?=,再由电动势定 义式就可得动生电动势计算公式()l d B v l ??= ?ε;感生电动势产生的原因是感生电场(涡

旋电场),变化的磁场激发感生电场,并引起回路中磁通量发生变化,于是得到感生电动势计算公式dt d N m φε-=。 2.自感和互感 自感现象是指当一个线圈中电流发生变化时,其激发的变化磁场引起线圈自身回路的磁通量发生变化,从而在线圈自身产生感应电动势;互感是指空间存在两个相邻线圈,当一个线圈中的电流发生变化时,在周围空间产生变化磁场,从而在另一线圈中产生感应电动势。 (四)主要内容: 1.法拉第电磁感应定律: dt d i φε- = 或:dt d i ψε-= (Ψ为磁通匝或磁链) 2.楞次定律: 当穿过闭合回路所围面积磁通量发生变化时,回路的感应电流产生的磁通量要抵偿引起电磁感应的磁通量的变化;或回路中感应电流总是要使它建立的磁场反抗任何引起电磁感应的变化。楞次定律可以确定感应电流方向。 3.动生电动势和感生电动势: (1)非静电场和动生电动势 非静电场:B v E k ?= 动生电动势:()l d B v l ??=?ε,(沿从低电势到高电势的方向,B v ?) (2)感生电场和感生电动势 变化磁场在周围空间激发感生电场 感生电动势:dt d N m φε-=(感生电场不是保守场,是涡旋电场) 4.自感与互感: (1)自感:线圈中由于自身电流变化而产生感应电动势。 dt dI L L -=ε (其中I L ψ = 为自感系数,仅与回路形状及周围介质有关,与电流无关。) (2)互感:相邻两线圈,一线圈电流变化引起邻近线圈中产生感应电动势。

电磁场HFSS实验报告

实验一 T形波导的内场分析 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。实验仪器 1、装有windows 系统的PC 一台 2、HFSS15.0 或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导

实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。。 2、创建T形波导模型: 创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。 复制长方体:展开绘图历史树的Model\Vacuum\Tee节点,右键

第十三章电磁感应与电磁波初步

第十三章电磁感应与电磁波初步 1.磁场磁感线 练习与应用 1. 音箱中的扬声器、电话、磁盘、磁卡等生活中的许多器具都利用了磁体的磁性。请选择一个你最熟悉的器具,简述它是怎样利用磁体的磁性来工作的。 2. 日常生活中,磁的应用给我们带来方便。例如:在柜门上安装“门吸”能方便地把柜门关紧;把螺丝刀做成磁性刀头,可以像手一样抓住需要安装的铁螺钉,还能把掉在狭缝中的铁螺钉取出来。请你关注自己的生活,看看还有哪些地方如果应用磁性可以带来方便。写出你的创意,并画出你设计的示意图。 3. 磁的应用非常广泛,不同的人对磁应用的分类也许有不同的方法。请你对磁的应用分类,并每类举一个例子。 4. 通电直导线附近的小磁针如图13.1-13所示,标出导线中的电流方向。 5. 如图13.1-14,当导线环中沿逆时针方向通过电流时,说出小磁针最后静止时N 极的指向。 6. 通电螺线管内部与管口外相比,哪里的磁场比较强?你是根据什么判断的? 7. 为解释地球的磁性,19 世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。在图13.1-15 中,正确表示安培假设中环形电流方向的是哪一个?请简述理由。

2.磁感应强度磁通量 练习与应用 1. 有人根据B =IlF 提出:磁场中某点的磁感应强度B 与通电导线在磁场中所受的磁场力F 成正比,与电流I 和导线长度l 的乘积成反比。这种说法有什么问题? 2. 在匀强磁场中,一根长0.4 m 的通电导线中的电流为20 A,这条导线与磁场方向垂直时,所受的磁场力为0.015 N,求磁感应强度的大小。 3. 如图13.2-8,匀强磁场的磁感应强度B为0.2 T,方向沿x轴的正方向,且线段MN、DC相等,长度为0.4 m,线段NC、EF、MD、NE、CF相等,长度为0.3 m,通过面积SMNCD、SNEFC、SMEFD的磁通量Φ1、Φ2、Φ3 各是多少? 4. 在磁场中放置一条直导线,导线的方向与磁场方向垂直。先后在导线中通入不同的电流,导线所受的力也不一样。图13.2-9中的图像表现的是导线受力的大小F与通过导线的电流I 的关系。A、B各代表一组F、I 的数据。在甲、乙、丙、丁四幅图中,正确的是哪一幅或哪几幅?说明道理 3.电磁感应现象及应用 练习与应用 1. 图13.3-7 所示的匀强磁场中有一个矩形闭合导线框。在下列几种情况下,线框中是否产生感应电流?(1)保持线框平面始终与磁感线垂直,线框在磁场中上下运动(图13.3-7 甲)。 (2)保持线框平面始终与磁感线垂直,线框在磁场中左右运动(图13.3-7 乙)。 (3)线框绕轴线转动(图13.3-7 丙)。

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

第13章.电流和磁场补充题

第13章 电流和磁场补充题 一 选择题 1. 如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度[ E ] (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. 2. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:[ D ] (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . 3. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的 磁感强度为[ D ] (A) R 140πμ. (B) R 1 20πμ. (C) 0. (D) R 1 40μ. 4. 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为[ B ] (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) 5. 若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对 称性,则该磁场分布 [ D ] (A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出. (D) 可以用安培环路定理和磁感强度的叠加原理求出. 6. 磁场由沿空心长圆筒形导体的均匀分布的电流产生, 圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系? [ B ] B x O R (D) B x O R (C) B x O R (E)

第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。 (1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。 解:(1)如图11-2所示,中心O 点到每一边的距离为13 OP h =,BC 边上的电流产生的磁场在O 处的磁感应 强度的大小为 012(cos cos )4πBC I B d μββ=- 00(cos30cos150)4π/3 4πI I h h μ??= -= 方向垂直于纸面向外。 另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即 0033 4π4πBC I I B B h h === 方向垂直于纸面向外。 (2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式 012(cos cos )4πI B d μββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为 01(cos0cos30)4cos60) I B R μ= ?-? π(0(12πI R μ= 031(cos150cos180)4πcos60 I B B R μ?== ?- ?0(12πI R μ= I B 图11–2 图11–1 (a ) A E (b )

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

电流系统的磁能与磁场的能量

§5-5 电流系统的磁能与磁场的能量 一、N 个载流线圈系统的磁能 1、元过程: 忽略所有线圈的电阻,各线圈0=i I 时记为零能态,各线圈自感和彼此间的互感分别为ij i M L 和。 当第i 个线圈的电流由0渐增到i I 时,感应电动势为 ∑≠--=i k k ik i i i dt dI M dt dI L ε (1) 电源反抗i ε作功 ∑≠+=-='i k k i ik i i i i i i dI I M dI I L dt I A d ε (2) 对N 个线圈,电源作总元功 ∑∑≠+='N i k k i k i ik N i i i i dI I M dI I L A d , (3) )(.k i ik i k ki k i ik ki ik I I d M dI I M dI I M M M =+∴= (),N N i i i ik i k i i k k i dA L I dI M d I I <'=+∑∑ (4) 2、系统静磁能 定义电源所作总功为系统的静磁能,则 ∑∑≠+='=N i k k i k i ik N i i i m I I M I L A W ,22121 (5) 其中首项是N 个线圈的自感磁能,次项是互感磁能。 讨论: (1)上式中指标i 、k 对称,可见W m 与各线圈电流的建立过程无关。 (2)若令i ii L M =,则形式更简洁: ∑=N k i k i ik m I I M W ,21 (6) (3)设k ik k ki m I M I M ==Φ表示第k 个线圈电流的磁场通过第i 个线圈的磁通,

再令 k N k ik N k ki i I M ∑∑=Φ=Φ表示所有线圈通过第i 个线圈的总磁通,则 ∑Φ=N i i i m I W 21 (7) 二、载流线圈在外磁场中的磁能 1、二载流线圈情形: 总磁能: 21122222112 121I I M I L I L W m ++= (8) 互能: 2122112I I I M W m Φ== (9) (9)式的第三项,已将线圈1看作外磁场源。 2、定义:载流线圈在外磁场中的磁能,定义为该线圈与产生外磁场的线圈之间的互能。 3、均匀外磁场中载流线圈和非均匀外磁场中的小载流线圈的磁能: 2m W I =?=?B S m B (10) (与电偶极子在外电场中的静电能W =-?p E 相比,差一负号,为什么?) 4、N 个载流线圈在外磁场中的磁能: ()k m k k k S W I =?∑??B r dS (11) 当外场均匀时,上式简化为: m k k W I ??=?=? ??? ∑B S m B (12) 其中m 是N 个线圈的总磁矩。 三、磁场的能量与能量密度 1、螺绕环磁能: 设螺绕环的横截面为S ,体积为V ,环内磁介质的磁导率为μ,线圈匝数为N ,单位长度匝数为n ,则环内nI B 0μμ=, VI n nI NS m 200μμμμ==Φ,所以自感系数V n L 20μμ=。 螺绕环的磁能)(2121212202nI H VBH V I n LI W m ====μμ

第11章稳恒磁场

第十一章 稳恒磁场习题 (一) 教材外习题 一、选择题: 1.如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向 (A )向外转90? (B )向里转90? (C )保持图示位置不动 (D )旋转180? (E )不能确定。 ( ) 2 i 的大小相等,其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零? (A )仅在象限Ⅰ (B )仅在象限Ⅱ (C )仅在象限Ⅰ、Ⅲ (D )仅在象限Ⅰ、Ⅳ (E )仅在象限Ⅱ、Ⅳ ( ) 3.哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O ) ( ) (A ) (B ) (C ) (D ) (E ) 4q 的点电荷。此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为: (A )B 1=B 2 (B )B 1=2B 2 (C )B 1= 2 1B 2 (D )B 1=B 2/4 ( ) x B x x B x B x B q q C

5.电源由长直导线1沿平行bc 边方向经过a 点流入一电阻均匀分布的正三角形线框,再由b 点沿cb 方向流出,经长直导线2返回电源(如图),已知直导线上的电流为I ,三角框的 每一边长为l 。若载流导线1、2和三角框在三角框中心O 点产生的磁感应强度分别用1B 、2B 和3B 表示,则O 点的磁感应强度大小 (A )B =0,因为B 1=B 2, B 3=0 (B )B =0,因为021=+B B ,B 3=0 (C )B ≠0,因为虽然021=+B B ,但B 3≠0。 (D )B ≠0,因为虽然B 3=0,但021≠+B B 。 ( ) 6.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )~(E )哪一条曲线表示B -x 的关系? ( ) (A ) (B ) (C ) (D ) (E ) 7.A 、B A 电子的速率是B 电子速率的两倍。设R A 、R B 分别为A 电子与B 电子的轨道半径;T A 、T B 分别为它们各自的 周期。则: (A )R A ∶R B =2, T A ∶T B =2。 (B )R A ∶R B = 2 1 , T A ∶T B =1。 (C )R A ∶R B =1, T A ∶T B = 2 1 。 (D )R A ∶R B =2, T A ∶T B =1。 8.把轻的正方形线圈用细线挂在截流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动。当正方形线圈通以如图所示的电流时线圈将 (A )不动 c x B B x x B x B x B 电流

磁悬浮实验报告67796

实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭________ 成绩:__________________ 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、观察自稳定的磁悬浮物理现象; 2、了解磁悬浮的作用机理及其理论分析的基础知识; 3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。 二、实验内容 1、观察自稳定的磁悬浮物理现象 2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 实验原理 专业: 姓名: 学号: 日期: 地点:

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图2-6所示。该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 Hz正弦交变磁场作用下,铝质导板中将产生感应涡流,涡流所产生的去磁效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝质导板应被看作为完纯导体,但事实上当激磁频率为50 Hz时,铝质导板仅近似地满足这一要求。为此,在本实验装置的构造中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d(b )。换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。

试析“电流、磁场、安培力”三者之间的关系

试析“电流、磁场、安培力”三者之间的关系 发表时间:2015-04-16T13:23:36.670Z 来源:《教育学文摘》2015年2月总第147期供稿作者:宋黎明[导读] 电荷的定向移动形成电流,也就是说电流只是一种现象,指的是电荷做有序运动时的宏观状态,并非客体。宋黎明河南省南阳市宛东中专河南南阳473000 摘要:电磁学知识抽象难学,师生理解片面,且不少学生滋生了畏难情绪。为了使学生掌握好电磁学知识,本文结合笔者的教学经验,简述了电流、磁场、安培力的关系,以供参考。 关键词:电流磁场安培力 在电磁学中,有人认为:“电生磁,磁也能生电,电和磁可以相互演变、交互衍生。”也有人说:“静电和静磁是彼此独立的,只有在电磁感应现象中才能把电和磁紧密地联系在一起。”诚然,在各类物理教育教学文献中很少见到电磁关系的专题论述,以至于在中等物理教学中许多师生理解片面,致使物理图景模糊,感到电磁学知识抽象难学,不少学生滋生了畏难情绪。本文尝试着就“电流、磁场、安培力”的关系,阐述一下笔者的观点。 一、电流的磁效应 在人教版物理教材选修3-1中,介绍了奥斯特的实验研究并非一帆风顺。当时人们见到的力都是沿着物体连线的方向,即都是所谓的“纵向力”。受到这种观念的局限,奥斯特总是把磁针放在导线的延长线上,实验均以失败而告终。1820年4月,在一次演讲中,他偶然地在电流“横向”上发现了磁针的转动,不久,就宣布了电流的磁效应,首次揭示了电和磁的联系。电荷的定向移动形成电流,也就是说电流只是一种现象,指的是电荷做有序运动时的宏观状态,并非客体。根据物质不灭的哲学思想,电流周围存在的磁场是客体,它不可能是电流产生的,磁场只能是电荷处在电流状态时必然存在的一种物质形态,绝不能类同于“物”与“影”的关系。定向移动的电荷与磁场的共同存在,更像孪生的“龙凤胎”,说明二者联系紧密、互相依存。电现象和磁现象作为客观存在,不是因果,亦非衍生。当然,电流和磁场确实存在紧要的关系,以通电的直导线周围的磁场为例,磁场的强弱不仅与到直线电流的距离成反比,也与电流的大小成正比。这种量与量的关系,不能颠倒客体与属性的位置。正如食物充足的地区便于生物的生存和繁衍,但不能说是食物产生了生物。如果说“电流的磁场”这种表述不够确切,那么,说电流产生了磁场就绝对是错误的。 二、安培力 高中物理教材给出安培力的定义是“通电导体在磁场中受到的力就叫安培力”,它没有说是磁场对电流的作用力是安培力。通常讲电流之间的作用,应该表述为通电导体周围的磁场对另一通电导体的作用力,等离子体形成的电流在磁场中就不受安培力。在研究受安培力作用下的平衡问题和运动问题时,它的研究对象永远指的是通电导体,而不是一般意义上的电流,电流毕竟不是客体。在探究磁场的强弱,定义磁感应强度B时,选定的对象“电流元”,是很短的一段通电导体。所以,当我们说电流之间存在着相互作用时,究其实是通电导体与磁场之间的相互作用。一对平行的通电直导线,当它们的电流方向相同时相互吸引,方向相反时相互排斥,作用力与反作用力大小相等、方向相反,作用在一条直线上。这是一种近似简化的表述方式。根据牛顿第三定律,作用力与反作用力是发生在两个物体之间,电流的意义是电荷定向移动时的状态,不是物质客体,不能描述成施力物体和受力物体。所谓“电流之间的相互作用力”实质就是安培力,即磁场对通电导体的作用力。安培力的施力物体是磁场。我们平常一般不这样说,除了习惯上的原因外,还是对磁场的理解问题。磁场作为一种物质形态,不是通常的实物粒子,看不见,很抽象,中学生总有陌生感。无独有偶,物理上的光压问题,极少有人涉及施力物体和受力物体,只要不影响问题的研究,表达方式也许不需要百分之百的准确。物理上的“模型法”是一种理想化的方法,立足现实又超越现实,但毕竟是一种十分有效的方法。类比的方法是某些方面的类比,或一定程度的类比,学习新知识不能总拿老知识去衡量。实物粒子和磁场既然是两种不同的物质形态,对于某些物理概念就不要处处用一把尺子去衡量。 在教材科学漫步栏目,介绍了自然界中有趣的右旋与左旋,它在深层次反映了自然规律的某些性质。安培力的方向由左手定则判定,这是十分有趣的。安培力的方向垂直于磁感应强度B与通电导体所决定的平面,这个判定法的学习让学生感到了自然的神奇。电场对电荷的作用力是无条件的,只要电荷处在电场中,就一定受电场力的作用。磁场对通电导体的作用力是有条件的,即有方向的选择。当磁场方向与电流方向平行时,通电导体不受安培力;一旦离开平行状态,就有安培力,并且当磁场方向与电流方向垂直时,安培力最大。定义磁感应强度B时采用的比值定义法就是针对这种垂直状态下的磁场力而言。通电导体在磁场中的运动过程,安培力做的功是电能转化为其它形式能的量度,这种能量转化是通过磁场得以实现。电动机的工作原理就是这样,磁场是这种能量转化的媒介物。综上所述,定向移动的电荷周围存在着磁场,通电导体在磁场中受到安培力作用,三者不是传导和转移的关系。任何力只能发生在两个物体之间,安培力不是电流之间的作用力,只能是磁场对通电导体的作用力,磁场的基本特点就是对其中的通电导体产生力的作用。参考文献 [1]邹祖莉电磁学解题点窍[J].贵州教育学院学报,2007年,04期。 [2]秦阳浅析物理电磁学中的“广义安培定则”[J].中国教师,2011年,S1期。

相关文档
相关文档 最新文档