文档库 最新最全的文档下载
当前位置:文档库 › 函数奇偶性与单调性

函数奇偶性与单调性

函数奇偶性与单调性
函数奇偶性与单调性

一、函数的奇偶性

奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,则称函数()y f x =为偶函数;

()()f x f x =--,则称函数()y x =为奇函数.

性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言;

(2)由()()()()()f x f x f x f x =-=--知,若,x D ∈则x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分)

(3)若0D ∈,则()00f =是()f x 为奇函数的必要条件(非充分)

(4)常数函数()()f x c x R =∈一定()0f x =是偶函数;若0c =则()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数?()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集) (5)奇偶函数的图像特征:函数()f x 是奇函数?函数()f x 图像关于原点对称; 函数()f x 是偶函数?函数()f x 图像关于y 轴对称.

(6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D =则在D 上有:

(7)多项式函数()230123n n f x a a x a x a x a x =++++为奇函数?偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++为偶函数?奇次项系数全为0.

二、函数的单调性

单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 若()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 若()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间.

性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有若干个增减性不同的单调区间;若函数()f x 在整个定义域上单调,则称()f x 为单调函数. (2)函数单调性二个等价形式:

()()

()121200f x f x x x ->

()()()()121200x x f x f x -->

(3)若()f x 在R 上单调递增,则()()f a f b a b >?>;若()f x 在R 上单调递减,则________. (4)设12,,x x D ∈则()()()()1212(0)x x f x f x f x -->

(5)单调性与奇偶性:若奇函数()f x 在区间[],a b 上单调递增(减),则()f x 在区间[],b a --上单调递增(减);若偶函数()f x 在区间[],a b 上单调递增(减),则()f x 在区间[],b a --上单调递减(增);

(6)复合函数单调性:两个单调函数()f x 与()g x 复合,不论复合结果是()f g x ????还是()g f x ????,有如下性质:若()f x 与()g x 单调性相同,同增或同减,则复合结果为增;若()f x 与()g x 单调性相反,一个增一个减,则复合结果为减;以上性质可记为一句口诀:“同增异减”.

单调区间的书写要求:若函数在区间的端点有定义,常常写成闭区间,当然写成开区间也是可以的.但是若函数在区间的端点处没有定义,则必须写成开区间.另外,若函数()f x 在其定义内的两个区间A 、

B 上都是单调增(减)函数,一般不能认简单地认为()f x 在区间A

B 上是增(减)函数.例如1

()f x x

=

在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞上是减函数.事实上,若取1211x x =-<=,有(1)11(1)f f -=-<<.

一、函数的奇偶性

题型一 判断并证明函数的奇偶性 方法:

(1)定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; (2)图象法:观察图像是否符合奇、偶函数的对称性. 说明:

(1)分段函数的奇偶性的判定和分类讨论思想密切相关,要注意自变量在不同情况下表达式的不同形式以及它们之间的相互利用;

(2)判断函数的奇偶性,首先要考查定义域是否对称; (3)若判断函数不具备奇偶性,只需举出一个反例即可;

(4)函数就奇、偶性来划分可以分成奇函数、偶函数、非奇非偶函数、既是奇函数也是偶函数. 例1.判断下列函数的奇偶性:

(1)x x

x x f ++=1)(2; (2)()(1f x x =-(2)()0f x = (4) ()?

??≤+>+-=)0()

0(22x x x x x x x f

(5)()2

212-+-=x x x f

(6)已知函数)(x f 满足:),)(()(2)()(R y x y f x f y x f y x f ∈=-++,且0)0(≠f ,则函数)(x f 的奇偶性为________.

题型二 利用奇偶性求函数式或函数值 例2.完成下列各题:

1.设函数)(x f 为定义域为R 上奇函数,又当0>x 时2()23f x x x =--,试求)(x f 的解析式.

3.设函数()f x 是定义域R 上的奇函数,(2)()f x f x +=-,当01x <≤时,()f x x =,求(7.5)f 的值.

4.设()f x 在R 上是偶函数,在区间(,0)-∞上递增,且有22(21)(321)f a a f a a ++<-+,求a 的取值范围.

5.已知函数53()4f x ax bx =++,若(2)0f -=,求(2)f 的值.

6.若函数()f x 是偶函数,则=--+)2

11

(

)21(f f ________. 7.已知()f x 是偶函数,()g x 是奇函数,且()()1

1

f x

g x x +=-,试求()()f x g x 与的表达式.

题型三 逆用函数奇偶性求参数的值

例3.1.若函数43()(2)(22)f x x m n x m n x mn =+-++-+为偶函数,求实数,m n 的值。

2.若函数()ln(f x x =是R 上的奇函数,则实数k =________.

3.已知函数()1

21

x

f x a =-+,若()f x 为奇函数,求实数a 的取值。

题型四 奇偶函数的图象关系及其运用

1.若奇函数)(x f 在区间]7,3[上是增函数且最小值为5,则)(x f 在区间[7,3]--上是( ) A.增函数且最小值为5-; B.增函数且最大值为5-;

2.已知函数)(x f 在)2,0(上是增函数,又函数)2(+x f 是偶函数,则( )

A.57(1)()()22f f f <<;

B.75

()(1)()22f f f <<;

C.75

()()(1)22

f f f <<;

D.57

()(1)()22

f f f <<

3.设()f x 是定义在R 上的偶函数,且在(,0)-∞上是增函,已知12120,0,()()x x f x f x ><<,那么一定有( )

A.120x x +<;

B.120x x +>;

C.12()()f x f x ->-;

D.12()()0f x f x --<

4.定义在区间),(+∞-∞的奇函数)(x f 为增函数;偶函数)(x g 在区间),0[+∞上的图象与)(x f 的图象重合,设0>>b a ,给出下列不等式:

①)()()()(b g a g a f b f -->--; ②)()()()(b g a g a f b f --<--; ③)()()()(a g b g b f a f -->--; ④)()()()(a g b g b f a f --<-- 其中正确的不等式个数为( ) A.1;

B.2;

C.3;

D.4

5.若函数()f x 是定义在R 上的奇函数,且()f x 在(0,)+∞上是增函数,又(2)0f =,则不等式()0f x ≤的解集是________.

6.设奇函数()f x 在(0,)+∞上为增函数,且(1)0f =,则不等式()0xf x >的解集为( ) A.(1,0)(1,)-+∞

B.(,1)(0,1)-∞-;

C.(,1)(1,)-∞-+∞

D.(1,0)(0,1)-

7.设(),()f x g x 都是R 上的奇函数,{|()0}(4,10),{|()0}(2,5)x f x x g x >=>=,则集合{|()()0}x f x g x >=( ) A.(2,10)

B.(10,2)(2,10)--

C.(4,5)

D.(5,4)(4,5)--

8.设()x f y =的定义域是R ,对于任意y x ,都有()()()0,>+=+x y f x f y x f 时()()12,0-=

二、函数的单调性

题型一 判断并证明函数的单调性

例1.用定义法证明函数()()2

1,1x f x x +=

-+∞+在上是减函数. 证明:原函数可变形为()1

11

f x x =++,设()1212,1,x x x x ∈-+∞<且,则

()()12f x f x -=12111111x x +

--

++()()

211211x x x x -=++21210x x x x >∴->

121,10,20x x x >-∴+>+>()()120f x f x ∴->()()12f x f x ∴>

∴()()2

1,1

x f x x +=

-+∞+在上是减函数. 题型二 求函数的单调性区间 准确画出函数的图象是求函数单调区间的重要方法之一,特别是以下几种函数:

1.对号函数,俗称“双勾函数”(或者“耐克函数”)(0)a

y x a x

=+>

2.“V 函数”y a x h k =-+(类似二次函数抛物线)

3.双曲线型函数ax b

y cx d

-=- 4.()y f x = 5.()y f x =等

例2.求下列函数的单调区间

6(1)y x x =+

1

(2)122

y x =+- 2(3)23y x x =--

题型三 复合函数的单调性的求法 复合函数的单调性的求法可分以下几步: 1.求复合函数的定义域;

2.将复合函数分解为两个基本函数,即(),()y f u u g x ==

3.分别求两个基本函数的单调性,利用“同增异减”原理求得原函数的单调性.

例3.(1)求函数22log (23)y x x =+-的单调区间;(2)求函数232

12x x y -+??

= ?

??的单调区间.

题型四 已知函数的单调性,求参数的取值范围 处理该题型的基本方法是:主要方法是利用图像,结合函数的性质求解;也可利用函数的单调性定义法求解.

例4.(1)已知2()21f x x ax =++在[)3,+∞单调递增,求a 的范围________; (2)已知1

2

ax y x +=

+在[)2,-+∞单调递增,求a 的范围________; (3)已知log (2)a y ax =-在[]0,1上是减函数,则a 的范围是________; (4)已知()f x =是(),-∞+∞上的增函数,那么a 的取值范围是________; (5)

已知函数()(1)1

f x a a =

≠-,若()f x 在区间(]0,1上是减函数,则实数a 的取值范围为________; (6)设函数()2f x a x b =-+在[)0,+∞上是增函数,则,a b 的范围分别为________.

题型五 单调性的应用 单调性的应用主要分为三个方面:1.比较大小;2.求值域;3.解不等式. 例5(1)已知定义域为R 的函数()f x 在()8,+∞上为减函数,且满足(8)y f x =+为偶函数,则( )

.(6)(7)A f f > .(6)(9)B f f > .(7)(9)C f f > .(7)(10)D f f >

(2)比较2

32555

322,,555a b c ??????

=== ? ? ???????的大小________.

(3)比较1

133

3124

log ,log ,log 23

3a b c ===的大小________. 例6.(1)求6

()f x x x

=+

在[]1,5上的值域________;(2)求2()22f x x x =-+在[]1,4-上的值域________. 例7.(1)()f x 定义域为()0,+∞,且对于一切0,0x y >>,都有()()()x

f f x f y y =-,当1x >时,()0f x >

(i)求(1)f (ii)判断()f x 单调性并证明;(iii)若(6)1f =,解不等式1

(5)()2f x f x

+-<

(2)已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数.

(i)_______,_______a b ==;

(ii)若对于任意t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.

(一)函数奇偶性

1.判断下列函数的奇偶性.

()()

()1

1

1

x x

f x

x

-

=

-

(非奇非偶) ()()

2

1

2f x x

x

=+(非奇非偶)

()3()()

3

1

4

f x x x

=+(奇函数) ()4()

f x=奇函数)

()()

5f x=非奇非偶) ()6()

f x=既奇又偶)

()()

7|3||3|

f x x x

=++-(偶函数) ()()

8f x=奇函数)

2.若函数()

y f x

=是奇函数,则下列各点中,函数()

y f x

=图像上的点是()D

()()

()

,

A a f a()()

()

,

B a f a

-()()

()

,

C a f a

---()()

()

,

D a f a

--

3.设()

1

3

31

f x ax bx

=++,且()20

f=,那么()2

f-=2.

4.设()

f x是偶函数,那么(1f f-=0.

5.若函数()1

21

x

f x a

=+

-

为奇函数,则a=

1

2

.

6.若函数()

y f x

=(()

f x不恒等于0)与()

y f x

=-的图像关于原点对称,则考察()

f x的奇偶性,可得()

f x是偶函数.

7.若函数()()()

22

112

f x m x m x n

=-+-++为奇且不是偶函数,则m=1-,n=2

-.

8.已知奇函数(),

y f x

=则其图像与x轴可能有几个交点?所有交点的横坐标之和是多少?其图像与直线y ax

=可能有几个交点?所有交点的横坐标之和是多少?

若在0

x=处有定义,则有奇数个交点,若没有定义,则有偶数个交点,所有横坐标之和是0

9.设函数()

f x的定义域为R,且()()(),

f x y f x f y

+=-则()

f x是()B

()C 偶函数 ()D 既非奇函数又非偶函数

10.若函数2x

y =可以表示成一个奇函数()f x 与一个偶函数的和,则奇函数()f x 可以是222

x x

--.

11.函数()f x 为偶函数,()g x 为奇函数,且()()1

,1

f x

g x x +=

-求()f x 和()g x 解析式. ()()()()2211,1,1,111

x

f x x x

g x x x x x =

≠≠-=≠≠---且且 12.函数()f x 是定义在R 上的奇函数,当0x <时,()1,f x x =+求()f x 的解析式.

()1,0,0,0,1,0x x f x x x x ->??

==??+

13.设()f x 是任意一个函数,且定义域关于原点对称,则函数()()()1

2G x f x f x =--???

?的奇偶性为奇函数.

14.已知函数()f x 对一切,x y R ∈都有()()().f x y f x f y +=+求证:()f x 是奇函数. 提示:先推出()00,f =再证()()()00f x f x f +-==

(二)函数单调性

1.函数()11k

y k x

-=

≠在(),0-∞和()0,+∞都单调递增,则实数k 的取值范围是()1,+∞. 2.讨论函数()()21

20,f x x x

=++∞在上的单调性,并证明.()0,1上单调递减,在()1,+∞上单调递减

3.函数()f x x b

x a

+=-在[1,)+∞上是增函数的一个充分不必要条件是()D

()()()()1,31,1

1,12,2

A a b

B a b

C a b

D a b <>>->>>-<-<

4.已知函数()()314,1

,1a x a x f x x a x -+≤??=?-+>??在R 上单调递减,求实数a 的取值范围.1[0,)3a ∈

5.已知函数()2a

f x x x =+在[2,)+∞上单调递增,求实数a 的取值范围.(,16]a ∈-∞

6.若函数()1

a f x x x

+=+在(0,2]上是减函数,则实数a 的取值范围是[3,)+∞

7.若二次函数()211f x x x =++、()22f x ax bx c =++使()()12f x f x -在[]0,1上单调递减且在[]0,1上的最大值为2,最大值为1,写出一个满足条件的()2f x .()2221f x x x =+-

8.试写出一个不是分段函数形式的函数解析式,使该函数在区间()2,1--和()0,1上单调递减,且在区间

9.若奇函数()y f x =在区间()0,+∞上是增函数,且满足()0f π-=,

()1求出一个满足条件的函数()y f x =的图像;()2求不等式()0xf x <的解集.

例如:(),00,

0,0x x y f x x x x ππ->??

===??+

,()(),00,x ππ∈-

10.设函数()f x 的定义域为R +,且有:①112f ??

= ???

,②对任意正实数,x y ,都有()()(),

f x y f x f y ?=+③()f x 为减函数.

(1)求:()()()11,,1,2,448

f f f f f ????

? ???

??

;(2

3

12)--答案

(2)求证:当[1,)x ∈+∞时,()0f x ≤;略

(3)求证:当,x y R +∈时,都有()()x f f x f y y ??

=- ???;略

(4)解不等式:()()3 2.f x f x -+-≥-[1,0)-

11.设()f x 是定义在R 上的函数,对任意实数,m n ,都有()()()f m f n f m n ?=+,且当0x <时,

()()1,00f x f >≠ (1)求()0f 的值;1

(2)求证:()f x 是R 上的减函数;

(3)如果对任意实数,x y ,()()()22f x f y f axy ?≤恒成立,求实数a 的取值范围.[]2,2-

(三)综合题

1.若定义域为R 的偶函数()f x 的一个单调递增区间是()2,6,则函数()2f x -的一个单调递增区间是

()4,8.

2.已知奇函数()f x 在R 上单调递减,且有1223310,0,0,x x x x x x +>+>+>则以下结论不正确的是()D .

()()()()()()12230 0A f x f x B f x f x +<+< ()()()()()()()131230

0C f x f x D f x f x f x +<++>

3.已知函数()3f x x x =--,且123,,x x x 均为实数,1223310,0,0x x x x x x +>+>+>,则()()()123f x f x f x ++

(A)一定大于零;(B)一定小于零;(C)一定等于零;(D)可能大于零,也可能小于零

4.定义在[]2,2-上的偶函数()f x 在[]0,2上递减,且()()1f m f m -<,则实数m 的取值范围为1[1,)2

-

5.若奇函数()f x 在()0,+∞上单调递增,且()10,f =则不等式

()()

0f x f x x

--<的解集为

()()1,00,1-

6.已知()f x 在R 上是偶函数,且在(),0-∞上为减函数,则不等式()()3f x f ≤的解集为[]3,3-

7.若奇函数()f x 是定义在()1,1-上的减函数,且()()2110f a f a -+-<,则实数a 的取值范围是

()0,1.

8.设()y f x =是定义在[]1,1-上的奇函数,且对任意,a b []1,1∈-在0a b +≠时,都有

()()

0f a f b a b

+>+.若

a b >,试比较()f a 和()f b 的大小.()()f a f b >

9.已知()2

1

x a

f x x bx -=

++是奇函数,求函数()f x 的单调区间.()[]1,1f x -在单调递增,在(),1-∞-和()1,+∞上单调递减.

10.有下列命题:

(1)若()f x 为奇函数,则必有()00f =;

(2)若()()sin F x f x =是奇函数,则()f x 一定为奇函数; (3)若()f x 为偶函数,则()1f x -一定不是偶函数. 其中真命题的人数为(A)(A)0;(B)1;(C)2;(D)3 *11.判断函数的奇偶性:()1sin cos 1sin cos x x

f x x x

+-=

++非奇非偶

*12.设()(

)

lg 101x

f x ax =++是偶,()()

42312x

x

b g x

c x -=-≤≤是奇函数,求a b c +-的值.12- *13.函数()212

log 2y x x =--+的单调增区间为 12,2??--

???. *14.已知()212

log 35y x ax =-+在[)1,-+∞上是减函数,求实数a 的取值范围.(]8,6--

*15.若函数()[]()log 20,1a y ax x =-∈是减函数,则a 的取值范围是()1,2. 16.已知函数()f x 满足()()()()()2,f x y f x y f x f y x R y R ++-=∈∈,且()01f ≠. (1)求证:()f x 是奇函数;

*(2)设()()tan F x f x =,求证:方程()0F x =至少有一个实根;若方程()0F x =在,22ππ??-

???

上有n 个实根,

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性 一、知识点归纳 函数的单调性 (1)定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数),区间D 为函数y =f (x )的增区间(减区间)概括起来,即 12 12121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ??<>????? <>???? ? ?<>??? ???>

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

最新函数的奇偶性和单调性综合训练及答案

一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数1()(1)1x f x x x +=--是偶函数 C .函数2()1f x x x =+ -是非奇非偶函数 D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3.函数11y x x = +--的值域为( ) A .( ]2,∞- B .(] 2,0 C .[ ) +∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2 ()2f x ax bx =++与x 轴没有交点,则2 80b a -<且0a >;(3) 223y x x =--的 递增区间为[)1,+∞;(4) 1y x =+和2(1)y x = +表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

函数的单调性奇偶性单元测试题

函数的单调性与奇偶性 1.若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 A.))(,(a f a -- B. ))(,(a f a - C. ))(,(a f a - D. ))(,(a f a --- 2.下列函数中,在区间(0,1)上是增函数的是 A. x y = B. x y -=3 C. x y 1= 42+-=x y 3.下列判断中正确的是 A .2)()(x x f =是偶函数 B .2)()(x x f =是奇函数 C .1)(2-=x x f 在[-5,3]上是偶函数 D .23)(x x f -=是偶函数 4.若函数)0()(2≠++=a c bx ax x f 是偶函数,则cx bx ax x g ++=23)(是 A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数 5.已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)|<1的解集是 A .(-1,2) B .(1,4) C .(-∞,-1]∪[4,+ ∞) D .(-∞,-1]∪[2,+ ∞) 6.已知函数)(x f y =为奇函数,且当0>x 时32)(2+-=x x x f ,则当0,021>+x x ,则)(1x f ,)(2x f 的大小是 A 、)()(21x f x f > B 、)()(21x f x f >- C 、)()(21x f x f -< D 、与1x ,2x 的取值有关 8.奇函数()f x 在区间[,]a b 上是减函数且有最小值m ,那么()f x 在[,]b a --上是 A 、减函数且有最大值m - B 、减函数且有最小值m - C 、增函数且有最大值m - D 、增函数且有最小值m - 9.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 10.函数f (x )= 2 1++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 11.函数y=2 x -2ax+1,若它的增区间是[2,+)∞,则a 的取值是__ _____;若它在区间[2,+)∞ 上递增,则a 的取值范围是_ __. 12.已知f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x 取值范围是_ __. 13.若f(x)是定义在R 上的偶函数,且当x ≥0时为增函数,那么使f(π)

函数奇偶性与单调性

一、函数的奇偶性 奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,则称函数()y f x =为偶函数; ()()f x f x =--,则称函数()y x =为奇函数. 性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言; (2)由()()()()()f x f x f x f x =-=--知,若,x D ∈则x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分) (3)若0D ∈,则()00f =是()f x 为奇函数的必要条件(非充分) (4)常数函数()()f x c x R =∈一定()0f x =是偶函数;若0c =则()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数?()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集) (5)奇偶函数的图像特征:函数()f x 是奇函数?函数()f x 图像关于原点对称; 函数()f x 是偶函数?函数()f x 图像关于y 轴对称. (6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D =则在D 上有:

(7)多项式函数()230123n n f x a a x a x a x a x =++++为奇函数?偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++为偶函数?奇次项系数全为0. 二、函数的单调性 单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 若()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 若()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间. 性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有若干个增减性不同的单调区间;若函数()f x 在整个定义域上单调,则称()f x 为单调函数. (2)函数单调性二个等价形式: ① ()() ()121200f x f x x x ->?>;若()f x 在R 上单调递减,则________. (4)设12,,x x D ∈则()()()()1212(0)x x f x f x f x -->

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

(整理)函数的奇偶性与单调性76929

函数的奇偶性与单调性 一.知识总结 1.函数的奇偶性(首先定义域必须关于原点对称) (1)为奇函数;为偶函数; (2)奇函数在原点有定义 (3)任一个定义域关于原点对称的函数一定可以表示成一个奇函数和一个偶函数之和 即(奇)(偶). 2.函数的单调性(注:①先确定定义域;②单调性证明一定要用定义) (1)定义:区间上任意两个值,若时有,称为 上增函数,若时有,称为上减函数. (2)奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则. 3.周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段.求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|.

二.例题精讲 【例1】已知定义域为的函数是奇函数. (Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的 取值范围. 解析:(Ⅰ)因为是奇函数,所以=0, 即 又由f(1)= -f(-1)知 (Ⅱ)由(Ⅰ)知.又由题设条件得: , 即:, 整理得 上式对一切均成立,

从而判别式 【例2】设函数在处取得极值-2,试用表示和,并求的单调区间. 解:依题意有而 故解得 从而。 令,得或。 由于在处取得极值, 故,即。 (1)若,即,则当时,; (2)当时,;当时,; 从而的单调增区间为; 单调减区间为

若,即,同上可得, 的单调增区间为;单调减区间为 【例3】(理)设函数,若对所有的,都有 成立,求实数的取值范围. (文)讨论函数的单调性 (理)解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a 令g′(x)=0,解得x=e a-1-1, (i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax. (ii)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)是减函数, 又g(0)=0,所以对0<x<e a-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上,a的取值范围是(-∞,1]. 解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立. 对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=e a

函数单调性、奇偶性、对称性、周期性解析

函数单调性、奇偶性、对称性、周期性解析 一、函数的单调性 1.单调函数与严格单调函数 设()f x 为定义在I 上的函数,若对任何12,x x I ∈,当12x x <时,总有 (ⅰ) )()(21x x f f ≤,则称()f x 为I 上的增函数,特别当且仅当严格不等式12()()f x f x <成立时称()f x 为I 上的严格单调递增函数。 (ⅱ) )()(21x x f f ≥,则称()f x 为I 上的减函数,特别当且仅当严格不等式12()()f x f x >成立时称()f x 为I 上的严格单调递减函数。 2.函数单调的充要条件 ★若()f x 为区间I 上的单调递增函数,1x 、2x 为区间内两任意值,那么有: 1212 ()() 0f f x x x x ->-或1212)[()()]0f f x x x x -->( ★若()f x 为区间I 上的单调递减函数,1x 、2x 为区间内两任意值,那么有: 121 2 ()() 0f f x x x x -<-或1212)[()()]0f f x x x x --<( 3.函数单调性的判断(证明) (1)作差法(定义法) (2)作商法 4复合函数的单调性的判定 对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当 (),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数 (())y f g x =在区间(),a b 具有单调性。 5.由单调函数的四则运算所得到的函数的单调性的判断 对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ?≠?: (1)当()f x 和()g x 具有相同的增减性时,函数1()()()F x f x g x =+、2()()()F x f x g x =?的增减性与()f x (或()g x )相同,3()()()F x f x g x =-、4() ()(()0)() f x F x g x g x = ≠的增减性

奇偶性与单调性及典型例题

奇偶性与单调性及典型例题 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明:f(x)在(0,+∞)上是增函数. 案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)3a2-2a+1.解之,得0

函数的单调性和奇偶性练习题

—函数的单调性和奇偶性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21 ++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 2 1 ,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1]∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞

函数的单调性和奇偶性教案(学生版)

函数的单调性和奇偶性 一、目标认知 学习目标: 1.理解函数的单调性、奇偶性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性; 4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点: 1.对于函数单调性的理解; 2.函数性质的应用. 二、知识要点梳理 1.函数的单调性 (1)增函数、减函数的概念 一般地,设函数f(x)的定义域为A,区间 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间M上是增函数; 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间M上是减函数. 如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间. 要点诠释: [1]“任意”和“都”; [2]单调区间与定义域的关系----局部性质; [3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; [4]不能随意合并两个单调区间. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 2.函数的奇偶性 偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: [1]奇偶性是整体性质; [2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; [3]f(-x)=f(x)的等价形式为:, f(-x)=-f(x)的等价形式为:;

函数的单调性、奇偶性的综合问题

函数的单调性、奇偶性综合运用 【学习目标】 1.进一步掌握函数的单调性与奇偶性综合问题; 2.利用单调性、奇偶性来解决相关问题。 【学习过程】 一.复习回顾: 1.函数单调性、奇偶性的定义 2.设()x f 为定义在()+∞∞-,上的偶函数,且()x f 在[)+∞,0上为增函数,则()2-f ,()π-f ,()3f 的大小顺序是 二.例题精讲: 题型一:知单调性求参数的范围 1.若()x f 是偶函数,其定义域为(),-∞+∞,且在 [)+∞,0上是减函数 则)43(-f ,)1(2+-a a f 的大小关系是 。 2.已知()x f 是定义在()1,1-上的奇函数,且在定义域上为增函数,若2(2)(4)0f a f a -+-<,求 a 的取值范围. 【变式】 已知()x f 是定义在()1,1-上的偶函数,且在()1,0上为增函数,若 )4()2(2a f a f -<-,求 a 的取值范围。

题型二:单调性的判断与证明: 3.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,则f (x ) 在(-∞,0)上的单调性,并证明你的结论 4.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x )<0对一切R x ∈成立,试判断) (1x f -在(-∞,0)上的单调性,并证明你的结论. 【课堂巩固】 1.设()x f 是偶函数,且当[)+∞∈,0x 时, 1)(-=x x f , 则0)1(<-x f 的解是 . 2. 定义R 在的偶函数()x f 在()0,∞-上是单调递增的,若()122++a a f < ()1232+-a a f ,求a 的取值范围. 3.若奇函数)(x f 是定义域()1,1-上的减函数,且0)1()1(2<-+-m f m f 求实数 m 的取值范围 4.已知f (x )是R 上的奇函数,且在(0,+ ∞)上单调递减,则f (x) 在(-∞,0)上的单调性,并证明你的结论

函数奇偶性与单调性

有关函数单调性、奇偶性的综合应用 函数的单调性是对于函数定义域内某个子区间而言的“局部”性质,它反映了函数()f x 在区间上函数值的变化趋势;函数的奇偶性是相对于函数的定义域来说的“整体”性质,主要讨论的是函数的对称性.作为函数的两个最重要的性质,我们往往将二者结合起来研究.本文将针对这一方面的综合应用举例说明. 例1 已知()y f x =是奇函数,它在(0,)+∞上是增函数,且()0f x <,试问1()() F x f x =在(,0)-∞上是增函数还是减函数?证明你的结论. 【分析】根据函数的单调性的定义,可以设210x x x ?=-<,进而判断21()()Y F x F x ?=-2111()()f x f x =-=1212()()()() f x f x f x f x -的正负号. 【解析】任取12(,0)x x ∈-∞、,且210x x x ?=-< ,则有21()()0x x x -?=--->. ()y f x =在(0,)+∞上是增函数,且()0f x < , ∴ 12()()0f x f x ---<, 又()y f x =是奇函数,∴()()f x f x -=- 所以12()()0f x f x ->. 于是21()()Y F x F x ?=-2111()()f x f x =-=1212()()()() f x f x f x f x -0>, ∴1()() F x f x =在(,0)-∞上是减函数. 【评析】本题最容易发生的错误是一开始就在(0,)+∞内任取21x x <,展开证明,这样就不能保证12,x x --在(,0)-∞内的任意性而导致错误. 例2 已知函数()y f x =,(1,1)x ∈-,即是偶函数又是减函数,解不等式(1)(23)0f x f x -+-<. 【解析】先求(1)(23)f x f x -+-的定义域:

相关文档
相关文档 最新文档