文档库 最新最全的文档下载
当前位置:文档库 › 药物相互作用的定性和争论

药物相互作用的定性和争论

药物相互作用的定性和争论
药物相互作用的定性和争论

药物相互作用的定性和争论

张马忠王珊娟杭燕南

上海交通大学医学院附属仁济医院(上海200001) 药效学相互作用是指两种药物合用时,一种药物对另一药物的血药浓度无明显影响,但可改变后者的药理效应。包括:①改变组织或受体的敏感性:一种药物可使组织或受体对另一种药物的敏感性增加;②对受体以外部位的影响:这类相互作用可能与受体无关,如麻醉性镇痛药、乙醇、抗组胺药、抗忧郁药、抗惊厥药可加强催眠药的作用,利尿药、麻醉药、中枢神经系统抑制剂和心得安能增强抗高血压药物的降压作用;③改变体液和电解质的平衡:多发生在作用于心肌、神经肌肉突触传递及肾脏的药物,例如注射琥珀胆碱突然释出的钾可使合用强心甙的病人产生窦性心律失常等。

一、研究药物相互作用的意义

鉴于下列原因,研究药物相互作用具有相当重要的意义:

1.临床应用药物联合治疗的效果优于单一药物。肿瘤和严重感染时,联合用药可提高患者的生存率,常用组合可包括多达4~6种以上的药物。单一用药时,儿童急性淋巴细胞白血病的缓解率为40%~50%,三种以上药物联用时,缓解率可增加到94%~95%;而抗生素联合应用时,如在体外研究中证实药物间具有协同作用,能大大提高患者的治愈率;心力衰竭、严重高血压、心肌梗塞等疾病的治疗亦常需要2~3种或以上的药物。

2.大部分患者同时使用多种药物,其初衷并非出于利用药物间相互作用的有益之处,而是由于存在多种药物的适应症。上世纪70年代的统计表明,综合性医院的住院病人平均使用7.9种以上的药物,另外的统计发现,在使用抗生素治疗的患者,同时尚收到平均13种以上的额外药物治疗,时至今日,同时使用的药物应该不会减少。这种现象不仅局限于住院病人,20%(最近上升到50%)的老年人同时服用三种或以上的药物。显然以上联合用药治疗并非获得有益的药物间作用,更多情况下产生的相互作用可能是有害的,例如氨基甙类抗生素与先锋类或利尿酸合用,肾毒性和耳毒性增加,华法令的抗凝效果可因同时使用西米替丁增加,三环类抗抑郁药可消除胍乙啶的抗高血压作用,等等不易而足。May等发现,50%使用16~20种以上药物的住院病人将会出现需要治疗的不良反应或改变治疗方案,其中的20%可能来源于药物不良的相互作用,在17%~20%的老年非住院病人使用的药物可能产生不良反应。然而,对此类联合用药的性质已知的研究较少。

3.在制定环境污染的政策法规方面,最常参照的是单一污染物在空气或环境中的最低浓度,实际上很少考虑多种污染物之间相互作用在产生有害物质方面的作用。然而有证据表明,如此的相互作用确实发生而且对人类和环境产生重要的影响。

4.许多生理和病理过程可能受生物学介质(例如生长因子、干扰素、激素、炎性介质、凝血因子等等)间相互作用的控制。这些过程包括细胞增殖、分化和合成,胚胎诱导,血小板激活和血栓形成,急性炎症,休克,免疫反应,激素释放和效应,肾脏的水钠分泌,肌肉分解代谢,气管收缩,血管扩张和血压调节。如此广泛的相互作用对生理和病理效应具有相当重要的意义,发生协同相互作用时,多种因素间的协作导致最大效应,而拮抗相互作用的发生则有助于限制这些病理生理过程的效应范围,这些有益于正常生理活动的调节。

二、药效学相互作用的定义

同时或相继使用两个或两个以上药物时,其中一个药物作用的大小、持续时间甚至性质受另一药物的影响而发生明显改变,药效发生改变的药物称为目标药(object drug),引起这种改变的药物称为相互作用药(interacting drug);药效互相影响的两个药物互为目标药和相互作用药。相互作用通常可描述为协同(synergism)和拮抗(antagonism),广义地说,协同即是共

同协力产生某种作用(working together),而拮抗则相反(working against each other),以上概念提示必然有一种中间状态(称为相加作用或零相互作用)的存在。

1.相加作用:是指两药合并的效应等于组成药物作用的预期效应。

2.协同作用:则是指两药合并的效应(通常通过不同的作用机制)大于相加作用;

3.拮抗作用:则是指两药合并的效应小于相加作用。可见协同作用和拮抗作用的定义建立在相加作用的定义基础之上。因而问题的关键是“如何定义预期的相加效应”?

前面解释了相加、协同和拮抗的定义,但仍有许多值得商榷之处。在联合使用的各组成药物均能产生某种效应的情况下,人们通常预期产生的效应超过任何一种组成药物的效应,但如何区分这种预期的效应增加和真实的相互作用迄今尚无统一意见。戴体俊认为:联合用药后,是某一药物还是所有合用药物作用的增强(减弱)称为协同(拮抗)?由于各药物的效应未必相等,就会出现难以定论的情况。如两种药物A和B,单独应用时E A=10,E B=5,显然合用后E AB>15则为协同,E AB=15则为相加,而E AB<15则为拮抗,但对于E AB=8或E AB=13则迄今仍未有统一的标准。如果是三种或三种以上的药物合用则情况更为复杂。

三、相加作用(零相互作用)模型

如前所述,相加作用是定义是药物间相互作用究竟是协同还是拮抗的关键。长期以来关于如何确定相加作用一直存有争论,至今尚未有统一的标准。

1.以作用机制为基础的相加作用模型

这是个很自然的选择,药物相互作用的本质可能通过分析药物的作用机制决定,并在此基础上计算合并用药后的“预期效应”。例如通过了解药物A、B是否作用于同样的受体、受体数目以及药物与受体结合是否可逆等,可建立药物的量效关系数学等式并计算预期的合并效应,当观察效应等于预期效应时即为相加作用。依赖于药物作用机制的相加作用模型,相互作用的定性依赖于对药物作用机制的了解,随着对药物作用机制的理解变化,药物间的相互作用可能在一段时间内被认为是协同,某一天又会判定为拮抗或相加。

2.经验性的相加作用模型

很显然基于作用机制的相加作用模型不是判定药物相互作用性质的有效方法,人们预期在作用机制未知的情况下,仅通过药物效应的测定去判断药物间相互作用的性质,因为测量的药物效应并不会因为对药物作用机制了解的变化而变化,而且通过测量效应确定相互作用的性质甚至适用于作用机制完全未知的药物。这种情况下,相互作用的性质可通过药物合并使用后产生的效应与组成药物个体的量效关系的差异性决定,也就是说,根据组成药物的量效关系曲线建立一个通用的、经验性的相加作用(零相互作用)模型,并藉此确定药物间相互作用的性质。

建议的方法和数学模型至少达10数种之多,包括等效线法、效应相加法、包络线法、剂量相加法等等,其中获得较多关注和支持者的相加作用经验模型(零相互作用数学模型,null reference model)包括Loewe相加模型(Loewe additivity)和Bliss独立模型(Bliss independence),Chou T-C提出的质量浓度模型(Law of mass action)尽管可归于基于作用机制的相加模型,但在应用于作用机制不明的药物间相互作用定性研究时也得到了较多的准确性验证。

毫无疑问,不同的相加作用模型应用于同样的研究数据,可能得出不同的结论,而且每种方法都有积极的倡导者,因而多年来定性药物相互作用的性质时,方法学得选择多取决于研究这个人的偏好、对方法学得熟悉程度,或者纯粹考虑统计学的便利性。在撰写文献综述时,多数作者也仅仅罗列了方法而对模型适用的环境描述甚少,也有研究者将不同的模型用于同样的数据,认为即使模型不确定,如果不同模型分析的结果相同则得出的结论可能是正确的。

(a)Loewe相加模型

第二章 药物的理化相互作用

第二章药物的理化相互作用 第一节作用类型 一、范德华力 (1)取向力(dipole-dipole attraction):因极性分子取向产生的分子间作用力 (2)诱导力(induction force):极性分子的永久偶极和非极性分子的瞬间诱导偶极之间产生的静电相互作用力 (3)色散力(despersion force):瞬间偶极和瞬间诱导偶极间相互作用力二、氢键(hydrogen bond): 定义:氢原子与其他电负性大的原子形成一种较强的、具饱和性和方向性的范德华力键 分类:1、分子间氢键2、分子内氢键 三、传荷络合作用(charge transfer complex) 定义:两个电性差异大的分子接触时,电子多的向电子少的转移部分电子形成稳定的络合物。 四、离子键(ionic bond) 定义:阴、阳离子接触到一定距离时,引力与斥力达到平衡形成稳定的化学键离子型药物+极性溶剂=离子-偶极作用 离子型药物+非极性溶剂=离子-诱导偶极作用力 五、疏水相互作用(hydrophobic interactions) 定义:非极性分子在极性水中倾向于积聚的现象 如有盗版,举报属实免费赠送本书内容,客服微信Y1778837892

第二节药物理化性质对药物制剂的影响 一、药物理化学作用对药物性质的影响 (一)溶解度:1、结构相似者溶(分子化学键、分子间相互作用力、分子大小) 2、溶质、溶剂结构不相似者不溶 3、形成分子间氢键任意比例互溶,分子内氢键在非极性溶剂中增 大、极性溶剂中降低 (二)溶、沸点影响 分子间氢键:上升,需要破坏该键消耗能量 分子内氢键:降低,该键降低了范德华力 (三)对药物稳定性影响 制成络合物可提高稳定性 二、对剂型形成的影响 (一)液体制剂:1、混合溶剂可提高溶解度2、高分子溶液等电位稳定性提高(二)固体制剂:范德华力、氢键在压片的正作用和储存时的负作用 (三)其他:1、环糊精包合物 2、离子交换树脂:带有酸性或碱性高分子基团的功能性高分子聚合物,可通过离子键与正/负电荷的药物形成水不溶聚合物盐,达到延长作用时间,稳定释药速度,提高生物利用度作用。 3、固体分散体:药物以分子、胶态、微晶态分布在适宜材料中的- 4、共无定形药物系统:良好的稳定性、提高难溶性药物的溶解度和溶出速度

FDA《体内药物代谢药物相互作用研究-试验设计、数据分析、关于剂量和药品说明书的建议

FDA《体内药物代谢/药物相互作用研究-试验设计、数据分析、关于剂量和药品 说明书的建议 I.概述 本指导原则向申请新药(NDA)和就治疗用生物制品(以下统称为药物)申请生物制品许可(BLA),并计划进行体内药物代谢试验和代谢性药物-药物相互作用研究的申办者提供建议。本指导原则反映了管理当局的当前考量,即应在新药开发过程中确定该药物的代谢作用,同时探究其与其它药物的相互作用,作为适当评价安全性和有效性的一部分。对于代谢性药物-药物相互作用,本指导原则中考量的方法可这样理解,即某一个特殊的试验研究是否要进行,要根据所开发的药物以及其预期的临床应用而进行调整。此外,不是所有的药物-药物相互作用都是基于代谢而发生,也可因由吸收、组织和/或血浆结合、分布以及排泄的相互作用引起药动学变化。记载与体内载体有关的药物相互作用的频度越来越多,这在以后的指导原则中可能会进行更详细的阐述。药物-药物相互作用可能会改变药物代谢动力学/药效学的关系,尽管研究并不十分透彻。本指导原则中对这些重要领域考量的并不详尽。 FDA以前的关于药物代谢和代谢性药物-药物相互作用的体外研究方法指导原则,可参见题为药物开发过程中的药物代谢/药物相互作用研究:体外研究(1997年4月)的指导性文件。本指导原则可看作是先前指导原则的姊妹篇。有关药物代谢以及其它类型的药物-药物相互作用的讨论可参见其它指导原则,包括人用药品注册技术要求国际协调会议(ICH)E8 临床试验的总体考虑(1997年12月),E7 对于特殊人群的临床试验:老年人(1994年8月),以及E3临床研究报告的结构和内容(1996年7月),管理当局指导原则可能用于老年人的研究药物(1989年11月)和药物临床评价中性别差异的研究和评价(1993年7月)。 II. 背景 A. 代谢作用 药物的作用以及副作用源自药物在作用部位的浓度,通常与药量(剂量)或血液浓度有关,后者又受到药物吸收、分布、代谢和/或排泄的影响。药物的清除或代谢作用通常是通过肝脏代谢,或是肾脏的排泄途径。此外,蛋白质治疗药物可通过与细胞表面受体特殊的相互作用,继而被内吞并由溶酶体降解。肝脏的消除主要由位于肝细胞内质网的细胞色素P450酶系完成,但也可由非P450酶系清除,如N-乙酰化和葡萄糖醛酸转移酶。存在于消化道粘膜的P450酶系还可以显著影响药物吸收入体循环的药量。很多因素可以影响肝脏和肠道内药物的代谢,包括疾病的有无和/或合并用药。然而,大多数影响因素通常在一段时间内较为稳定,而合并用药则可以突然改变吸收和消除的代谢途径,成为特别需要关注的因素。当一个药物,包括前药,代谢成一种或更多活性代谢产

临床常见药物相互作用引起的不良反应

临床常见药物相互作用引起的不良反应 一、心血管系统的不良反应 1.?受体阻断剂与维拉帕米合用 ?受体阻断剂与维拉帕米合用易出现心动过缓,传导阻滞,血压下降或心衰。维拉帕米可使阿替洛尔的吸收增加,排泄减少;阿替洛尔能使维拉帕米的代谢速度减慢。维拉帕米和普萘洛尔合用可使心率明显减慢,甚至停搏。 2.奎尼丁与地高辛合用 奎尼丁与地高辛合用可使地高辛的血药浓度提高50%左右,引起心律失常。其原因使奎尼丁能将地高辛从骨骼肌中向血液转移,并减少地高辛从肾小管主动排泌。 3.茶碱与红霉素、普萘洛尔、?-受体阻断剂、H2受体阻断剂,钙通道阻断剂合用 茶碱与红霉素、普萘洛尔、?-受体阻断剂、H2受体阻断剂,钙通道阻断剂合用可使茶碱消除速度减慢,血药浓度升高,加之茶碱安全范围窄,易导致中毒出现,严重中毒表现为心动过速等,甚至呼吸、心跳停止。 4.排钾型利尿药、糖皮质激素与强心苷类合用 排钾型利尿药、糖皮质激素与强心苷类合用均可促进钾排出,使心脏对强心苷更敏感,易发生心律失常。 5.单胺氧化酶抑制剂与三环类抗抑郁药、间羟胺、麻黄素合用 由于三环类抗抑郁药使去甲肾上腺素再吸收减少,可致血压急骤升高;与间羟胺、麻黄素合用可使去甲肾上腺素大量释放,引起高血压危象。 6.氯丙嗪与氢氯噻嗪、呋塞米、普萘洛尔与硝苯地平、哌唑嗪、氯丙嗪合用 氯丙嗪与氢氯噻嗪、呋塞米、普萘洛尔与硝苯地平、哌唑嗪、氯丙嗪合用可使降压作用协同,导致严重低血压。 二、呼吸系统的不良反应 1.苯二氮卓类药物与吗啡类合用 苯二氮卓类与吗啡类合用可引起呼吸暂停;与其他中枢抑制药如巴比妥类合用,使呼吸受到明显抑制。 2.汉肌松与乙醚合用 汉肌松与乙醚合用可产生协同作用,应减量使用,否则出现呼吸抑制甚至呼吸停止。 3.氨基糖苷类抗生素与具有神经肌肉阻滞作用的药物合用 因为氨基糖苷类与乙醚、硫喷妥、普鲁卡因、琥珀胆碱、硫酸镁等合用,可使神经肌肉阻滞作用加重,出现呼吸麻痹。利多卡因与琥珀胆碱合用也会出现呼吸麻痹。

心血管药物的相互作用

心血管药物的相互作用 前言 大多数患心血管病的病人,尤其是老年病人,由于病情的需要服用数种药物。然而,必须清醒地认识到,药物的联合应用很可能在病人体内发生药物相互作用,有些相互作用是期望的,因能达到联合用药的目的,但也有许多不良的药物相互作用。这些不良的相互作用町以表现为疗效的下降(药物抵抗)、治疗作用的过度增强,或副作用的相加或增强,甚至引起中毒,因此,在临床用药时,医生要充分考虑到这些问题,以尽可能避免出现不良的药物相互作用。 药物相互作用是指病人同时或在一定时间内先后服用两种或两种以上药物时,由于药物之间或药物与机体之间的相互作用,改变了药物原有的理化性质、体内过程(吸收、分布、生物转化或排泄等)或组织对药物的敏感性,以致出现使用单味药物所没有的药理效应或毒性效应,从而产生了有益或有害(不良)的作用。 药物相互作用比较复杂,特定药物相互作用发生的几率及严重程度取决于目标药物和作用药物的药动学和药效学特性,心血管病病人由于接受药物的种类多,故发生药物相互作用的可能性亦大,伴肝肾功能损害的病人,这一问题临床重要性更为突出。熟悉和掌握药物相互作用的特性,将有助于临床医师更好地预测和识别药物的相互作用。 药物相互作用的基本机制可分为药效学的相互作用和药物代谢动力学(药动学)的相互作用两类:(一) 药效学的药物相互作用药效学

基础上的药物相互作用指作用药物的药理学效应改变了目标药物的药理学效应,这种改变与目标药物的药动学变化无关。药效学的相互作用可以表现为相加、协同或拮抗作用。(二) 药动学的相互作用一种药物的吸收、分布、代谢及清除等常因受到联合应用的其他药物的影响而有所改变,使体内药量或血药浓度增加或减少。这种相互作用可以是单向的,也可以是双向的。药动学的相互作用主要通过改变胃肠运动、影响与血浆蛋白的结合、抑制或者诱导药物代谢酶、影响药物排泄等机制来影响药效或出现不应有的毒副作用。 常用心血管药物之间的相互作用 (一) β受体阻滞剂的药物相互作用 l药效学相互作用β受体阻滞剂有多种药理作用,包括减慢心率和抑制房室传导,在这些方面与非二氢吡啶类钙拮抗剂及地高辛有相加作用,联合用药可以引起或加重心动过缓或心脏传导阻滞(见表1)。此外,β受体阻滞剂与地尔硫革、维拉帕米同时应用,对心肌收缩力的抑制也可产生相加作用。 NSAIDs可以抑制前列腺索的产生,由于前列腺素介导了β受体阻滞剂的部分降压作用,因此,长期服用NSAID者,β受体阻滞剂的降压作用减弱。

药物相互作用实验方案

艾迪注射液(中药)与培美曲塞(西药)相互作用实验方案1、实验目的与任务 1.1实验目的 本实验的目的是探究艾迪注射液与培美曲塞联合用药时在动物体内的药动学参数,来进一步探究两者的相互作用。 1.2实验任务 本次实验任务如下: (1)完成艾迪注射液与培美曲塞生物样品检测条件摸索,并进行方法学验证。 (2)在大鼠体内进行艾迪注射液与培美曲塞的药物代谢动力学研究(3)数据的统计和处理,药动学参数的计算,得出结论。 2、实验材料和仪器 2.1实验材料 艾迪注射液市售品;人参皂苷Re对照品;黄芪对照品;斑鳌对照品;培美曲塞市售品;培美曲塞对照品;甲醇(色谱纯);乙腈(色谱纯);磷酸钠缓冲液(分析纯);纯净水等 约SD大鼠130只(雌雄各半,体重200±20g) 2.2实验仪器 LC-15C高效液相色谱仪;AB-135型分析天平;低速离心机;涡旋混合仪等 3、实验方法 3.1标准品色谱条件摸索

3.1.1艾迪注射液高效液相色谱方法建立 艾迪注射液是由斑蝥、人参、黄芪和刺五加组成的纯中药制剂,根据查阅相关文献,本实验选择斑蝥、人参、黄芪三个有效成分用于艾迪注射液的方法建立。供试品和对照品分别注入高效液相色谱仪,并确定最低检测限及内标液的选择。 参考色谱条件:色谱柱:Cosmosil-C18(250mm×4.6mm,5um),流动相A:纯水,B:乙腈;梯度洗脱程序:0min 6%B;0-15min 6%-11%B;15-80min 11%-33%B;流速:1.0mL/min;检测波长:203nm;柱温:40℃;进样量20uL。 3.1.2培美曲塞高效液相色谱方法建立 将供试品和对照品分别注入高效液相色谱仪,并确定最低检测限及内标液的选择。 参考色谱条件:色谱柱:Cosmosil-C18(250mm×4.6mm,5um);流动相:50mmol/L;磷酸钠缓冲液(用磷酸调节pH=3.35):乙腈=84:16(V/V);流速=1mL/min;检测波长250nm;柱温30℃。 3.2生物样品处理方法的确定 取空白大鼠血浆100uL置于离心管中,按体积1:3加入300uL 甲醇作为沉淀剂,涡旋震荡3min后,4000r/min离心15min,沉淀蛋白,精密吸取上清液200uL,分别加入经稀释过的艾迪注射液标准品和培美曲塞标准品溶液,过0.22um有机滤膜,20uL进样,用HPLC 进行分析。根据分析结果来优化处理方法。 3.3预实验

药物相互作用(1)

第四章药物相互作用 江苏省淮安食品药品监督管理局 朱立专 2009年7月17日 药物相互作用 药物 相互作用? 一、药物相互作用 定义:两种或两种以上药物在体外所产生的物理或化学变化,以及在体内由这些变化造成的药理作用的改变。狭义的就是指体内药物之间所产生的药动学和药效学的改变。 某种药物的作用由于其他药物或化学物质的存在而受到干扰,使该药的疗效发生变化或产生不良反应。概念 药物效应动力学(药效学):研究在药物影响下机体细胞功能如何发生变化。 药物代谢动力学(药动学):研究药物本身在体内的过程,即机体如何对药物进行处理。 概念 配伍:两种或两种以上药物合用称为配伍。 配伍禁忌:不能配伍的称之为“配伍禁忌” 配伍变化:药物在体外的配伍禁忌。 药物相互作用 拜斯亭事件 西立伐他汀+ 吉非罗齐 横纹肌溶解反应 药物相互作用 药物相互作用 作用增强 作用减弱 临床疗效、毒副作用 药物相互作用 临床疗效增加,毒副 作用减小 太好了!!!! 药物相互作用 临床疗效降低、毒 副作用增加 糟糕!!! 药物相互作用 严重药物相互 作用 高血压危象 低血压休克 惊厥 实质器官损害

出血 低血糖昏迷 药物相互作用 药物相互作用方式: (1)药代动力学方面 (2)药效学方面 (3)体外相互作用 体外药物相互作用 是指在患者用药前,药物相互间发生化学或物理性相互作用,使药性发生变化,即物理化学性相互作用。本类反应多发生于液体制剂,如在静脉输液中或注射器内。 药物相互作用 静脉输液中加入药物,药物相互作用可产生的沉淀反应、变色和浑浊,注入血管内就能引起意外,应力求避免发生。 也可发生一种药物使另一种药物失效,达不到预期的治疗效果 例1 塑料制品 安定、硝酸甘油、硝酸异山梨醇、 醋酸酯、华法林钠、盐酸肼酞嗪 和硫喷妥钠,抗组胺类药、吩噻 嗪类药 吸附作用 例2 口服利福平、长期外用2%盐酸肾上腺素或1%环硼肾上腺素滴眼液 隐形眼镜 染色 例3 5%和10%葡萄糖注射液:添加氨茶碱、可溶性巴比妥盐、红霉素、卡那霉素、氢化可的松、可溶性磺胺类和华法林(×) 各种分子量的右旋糖酐:加入氨基已酸、氨苄西林、维生素C、氯丙嗪、可溶性苯巴比妥盐、维生素K1、异丙嗪和链激酶等(×) 药物相互作用 复方氯化钠溶液:加入两性霉素B、促肾上腺皮质激素、间羟胺、去甲肾上腺素和四环素等(×)20%和25%甘露醇:加入促肾上腺皮质激素、琥珀胆碱、去甲肾上腺素、间羟胺、可溶性巴比妥盐、四环素以及氯化钾或其他电解质(×) 药物相互作用 一患者用药: (1)白蛋白 2.5g 静滴 (2)50ml生理盐水冲管 (3)培氟沙星0.4 静滴 出现沉淀!!! 二、药物相互作用对临床疗效的影响 药物相互作用源于合并用药,相互作用的结果可能是有益的相互作用,也可能是有害的相互作用。 原则:能用一种不用两种

药物相互作用研究指导原则201205

附件 14:
药物相互作用研究指导原则
一、引言 本指导原则旨为拟进行药物(指新药,包括生物制品)相互作用研 究的申办方提供建议。本指导原则反映了国家食品药品监督管理局(以 下简称 SFDA)审评机构的当前认识:即新药的代谢应该在药物研发过程 中进行确定,该药与其他药物之间的相互作用应作为安全性和有效性评 价的一部分进行研究。本指导原则建议的研究方法是基于以下的共识, 即:是否应进行某项特定的试验取决于药物的特征及拟定的适应证。药 物相互作用除了发生在代谢过程中外,也可能发生在吸收、分布和排泄 过程。目前,越来越多的报告显示药物相互作用与转运体相关,因此, 它们也是新药开发过程中应该考察的因素之一。药物相互作用还可能改 变药代动力学/药效动力学(PK/PD)的相互关系。 二、背景 (一)代谢 药物在作用部位的浓度所引起预期的和非预期的效应通常与用药 剂量或血药浓度有关,而血药浓度受到药物吸收、分布、代谢/或排泄 的影响。药物或其代谢产物的消除通常通过两种途径:即代谢(常在肝 脏或肠粘膜)和排泄(常在肾和肝脏) 。此外,治疗用蛋白制剂可通过 与细胞表面受体产生特异性结合,然后经由细胞内吞和细胞内的溶酶体 降解进行消除。肝脏消除主要由位于肝细胞内质网的细胞色素 P450 酶 系,但也可经由非 P450 酶系系统,如通过 N-乙酰基和葡萄糖醛酰转移
1

酶完成。许多因素可影响药物在肝脏和肠内的代谢,如疾病、合并用药 (包括中草药) 、甚至食物(如西柚汁)等。虽然这些因素中的大多数 通常可保持相对的稳定,但是合并用药往往会突然改变药物的代谢,因 此需要特别关注。如果药物(包括前体药物)代谢成一种或多种活性代 谢物,合并用药对药物代谢的影响就变得更为复杂。这种情况下,药物 /药物前体的安全性和有效性不仅仅取决于原形药物的暴露量,还同时 取决于其活性代谢物的暴露量,而活性代谢物的暴露量与其生成、分布 和消除相关。因此,对新药安全性和有效性的评价应该包括药物的代谢 情况以及该代谢对整个消除过程的贡献大小。基于此,在药物代谢和相 互作用研究中,建立灵敏的、专属性强的药物及其重要代谢产物的测定 方法具有重要的意义。 (二)药物相互作用 1.代谢相关的药物相互作用 许多药物的代谢消除(包括大部分通过 P450 酶系的代谢) ,可因合 并用药而受到抑制、激活或诱导。因药物相互作用引起代谢的变化会相 当大,可能导致药物或其代谢物在血液或组织中浓度水平以一个数量级 或以上的降低或升高,也可能导致毒性代谢物的生成或毒性原型药物暴 露量水平的升高。这些暴露量水平的较大变化可使一些药物和/或其活 性代谢物的安全性和有效性特征发生重要的变化。此种变化不仅对于窄 治疗窗(NTR)的药物最为明显,也最容易预期,而且对于非窄治疗窗 (non-NTR)药物有时也可能发生(例如 HMG CoA 还原酶抑制剂) 。 代谢相关的药物相互作用研究的重要目的是探索新药是否有可能 对已上市的、并可能在医疗诊治中合用的药物的代谢消除产生显著影响。
2

药物相互作用研究指导原则

药物相互作用研究指导原则 一、引言 本指导原则旨为拟进行药物(指新药,包括生物制品)相互作用研究的申办方提供建议。本指导原则反映了国家食品药品监督管理局(以下简称SFDA)审评机构的当前认识:即新药的代谢应该在药物研发过程中进行确定,该药与其他药物之间的相互作用应作为安全性和有效性评价的一部分进行研究。本指导原则建议的研究方法是基于以下的共识,即:是否应进行某项特定的试验取决于药物的特征及拟定的适应证。药物相互作用除了发生在代谢过程中外,也可能发生在吸收、分布和排泄过程。目前,越来越多的报告显示药物相互作用与转运体相关,因此,它们也是新药开发过程中应该考察的因素之一。药物相互作用还可能改变药代动力学/药效动力学(PK/PD)的相互关系。 二、背景 (一)代谢 药物在作用部位的浓度所引起预期的和非预期的效应通常与用药剂量或血药浓度有关,而血药浓度受到药物吸收、分布、代谢/或排泄的影响。药物或其代谢产物的消除通常通过两种途径:即代谢(常在肝脏或肠粘膜)和排泄(常在肾和肝脏)。此外,治疗用蛋白制剂可通过与细胞表面受体产生特异性结合,然后经由细胞内吞和细胞内的溶酶体降解进行消除。肝脏消除主要由位于肝细胞内质网的细胞色素P450酶系,但也可经由非P450酶系系统,如通过N-乙酰基和葡萄糖醛酰转移酶完成。许多因素可影响药物在肝脏和肠内的代谢,如疾病、合并用药

(包括中草药)、甚至食物(如西柚汁)等。虽然这些因素中的大多数通常可保持相对的稳定,但是合并用药往往会突然改变药物的代谢,因此需要特别关注。如果药物(包括前体药物)代谢成一种或多种活性代谢物,合并用药对药物代谢的影响就变得更为复杂。这种情况下,药物/药物前体的安全性和有效性不仅仅取决于原形药物的暴露量,还同时取决于其活性代谢物的暴露量,而活性代谢物的暴露量与其生成、分布和消除相关。因此,对新药安全性和有效性的评价应该包括药物的代谢情况以及该代谢对整个消除过程的贡献大小。基于此,在药物代谢和相互作用研究中,建立灵敏的、专属性强的药物及其重要代谢产物的测定方法具有重要的意义。 (二)药物相互作用 1.代谢相关的药物相互作用 许多药物的代谢消除(包括大部分通过P450酶系的代谢),可因合并用药而受到抑制、激活或诱导。因药物相互作用引起代谢的变化会相当大,可能导致药物或其代谢物在血液或组织中浓度水平以一个数量级或以上的降低或升高,也可能导致毒性代谢物的生成或毒性原型药物暴露量水平的升高。这些暴露量水平的较大变化可使一些药物和/或其活性代谢物的安全性和有效性特征发生重要的变化。此种变化不仅对于窄治疗窗(NTR)的药物最为明显,也最容易预期,而且对于非窄治疗窗(non-NTR)药物有时也可能发生(例如HMG CoA还原酶抑制剂)。 代谢相关的药物相互作用研究的重要目的是探索新药是否有可能对已上市的、并可能在医疗诊治中合用的药物的代谢消除产生显著影响。此外,也应当探索已上市药物是否可能对新药的代谢消除产生影响。本

心血管常用药物

临床心血管内科常用药物总结

一、降压、抗心衰药 1、钙拮抗剂:(calcium channel blockers,CCB)降压疗效和幅度相对较强,对老年患者,嗜酒患者效果较好,并可用于合并糖尿病,冠心病,外周血管疾病患者。不宜用于心衰,窦房结功能低下或心脏传导阻滞患者。东方人对CCB反应更好,耐受更佳。 1) 心痛定(硝苯地平片):5-10mg 舌下含化10-20mg p.o tid 5mg/片 2) 伲福达(硝苯地平缓释片):20mg p.o bid 20mg/片 3) 得高宁(缓释片):10-20mg p.o bid 硝苯地平10mg/片极量:40mg/次 4) 拜新同(控释片):30mg p.o q.d 硝苯地平30mg*7#不能掰开,24h恒速释放硝苯地平,抗动脉粥样硬化,谷峰比达100%,单药控制率70%以上,对冠心病心绞痛也有效果。(进口)晨服INSIGHT、ACTION试验证实疗效 5) 波依定:非洛地平缓释片5-10mg p.o qd-bid(维持量)5mg/片 2.5mg/片*10# 晨服10mg/d 谷峰比仅为33% FEVER试验证实疗效 6) 尼群地平:洛普思10mg Bid;舒迈特胶囊10mg Bid(应用较少) 7) 尼莫地平:尼膜同30mg Bid;主要用于改善脑血管血供,轻度降压作用,治疗轻度认知功能障碍,保护神经元。30mg*20#普通剂型:20mg/片 8) 络活喜(长效)、施慧达、安内真、麦利平: 络活喜5mg p.o q.d 5mg*7# 氨氯地平,可掰开(适用于心衰伴有高血压患者)ASCOT ALLHAT试验证实疗效 施慧达2.5mg p.o q.d 2.5mg/片氨氯地平

药物代谢和药物相互作用的体外研究(修

工业指南 药物研发过程中药物代谢和药物相互作用的体外研究 I .简介 药物进入体内以后,一般经过两种途径进行消除:直接排泄或者代谢成为一种或几种活 性的或非活性的代谢产物。当药物主要通过代谢进行消除时,那么它的代谢途径会显著影响 药物的安全性、有效性及使用方法。如果药物仅由一种代谢途径进行消除,那么代谢速率的 个体差异能导致血和组织中的药物和代谢物浓度的极大差异。一些例子表明,差异呈现具有 遗传多态性特征的双相分布(如CYP450 2D6, CYP450 2C19, N-乙酰转移酶)。当遗传多态 性影响一条重要的药物消除途径时,为了达到安全有效地使用药物的目的,有必要进行大剂 量调整。已有例子证明这种差异的存在会影响治疗的效果。例如,某种药物主要有CYP4502 D6 进行代谢,大约有7%的高加索人对这种药物没有代谢能力,但是这个比例在别的人种通常要低得多。类似的报道也可见于其它的代谢途径,主要是CYP4502C19, N-乙酰转移酶。不 仅如此,很多酶的代谢消除途径,包括绝大部分由CYP450代谢酶介导的,可以被联合用药 中的其它药物抑制或诱导,结果,患者共服其它化合物会发生治疗情况的突然改变。这种药 物相互作用会引起血液和组织中药物和代谢物浓度减少或增加,或者引起有毒物质的积蓄 (如一些抗组胺药与抗真菌药间的相互作用)。这些变化能极大地改变一个新药的安全性和 有效性,特别是有效治疗浓度范围比较窄的药物。 如果了解药物代谢途径和可能存在的药物相互作用,有时允许使用那种若血药浓度不能 预测而会产生毒性浓度的药物。由于这些原因,所以在新药研究的早期弄清楚药物到底是通 过原形排泄的还是通过一种或者多种途径进行代谢消除的是非常重要的。假如代谢消除是主 要途径,那么需要了解其主要的代谢途径。这些信息将有助于认识个体之间代谢差异的意义 和一些药物-药物、药物-其它物质相互作用的重要性。这些资料也有助于决定一些代谢物的药理活性是否需要进行进一步的研究。 此FDA工业指南提供了研究体外药物代谢和药物相互作用的一些建议。本指导原则鼓励 只要可能和合适全面评估体外代谢和相互作用应作为常规工作,像其它所有FDA 指导性文件 一样,建议并非是需要的东西,但是,可供药物研究科学家们作为一种方法思考潜在的大量安全性的担忧。FDA认识到,任何方法的重要性都将视研发药物及其临床使用的不同而变化。FDA还认识到,临床观察也能阐明本文件中对体外研究敏感的相同问题。鉴于本指南所提供

药物相互作用的定性和争论

药物相互作用的定性和争论 张马忠王珊娟杭燕南 上海交通大学医学院附属仁济医院(上海200001) 药效学相互作用是指两种药物合用时,一种药物对另一药物的血药浓度无明显影响,但可改变后者的药理效应。包括:①改变组织或受体的敏感性:一种药物可使组织或受体对另一种药物的敏感性增加;②对受体以外部位的影响:这类相互作用可能与受体无关,如麻醉性镇痛药、乙醇、抗组胺药、抗忧郁药、抗惊厥药可加强催眠药的作用,利尿药、麻醉药、中枢神经系统抑制剂和心得安能增强抗高血压药物的降压作用;③改变体液和电解质的平衡:多发生在作用于心肌、神经肌肉突触传递及肾脏的药物,例如注射琥珀胆碱突然释出的钾可使合用强心甙的病人产生窦性心律失常等。 一、研究药物相互作用的意义 鉴于下列原因,研究药物相互作用具有相当重要的意义: 1.临床应用药物联合治疗的效果优于单一药物。肿瘤和严重感染时,联合用药可提高患者的生存率,常用组合可包括多达4~6种以上的药物。单一用药时,儿童急性淋巴细胞白血病的缓解率为40%~50%,三种以上药物联用时,缓解率可增加到94%~95%;而抗生素联合应用时,如在体外研究中证实药物间具有协同作用,能大大提高患者的治愈率;心力衰竭、严重高血压、心肌梗塞等疾病的治疗亦常需要2~3种或以上的药物。 2.大部分患者同时使用多种药物,其初衷并非出于利用药物间相互作用的有益之处,而是由于存在多种药物的适应症。上世纪70年代的统计表明,综合性医院的住院病人平均使用7.9种以上的药物,另外的统计发现,在使用抗生素治疗的患者,同时尚收到平均13种以上的额外药物治疗,时至今日,同时使用的药物应该不会减少。这种现象不仅局限于住院病人,20%(最近上升到50%)的老年人同时服用三种或以上的药物。显然以上联合用药治疗并非获得有益的药物间作用,更多情况下产生的相互作用可能是有害的,例如氨基甙类抗生素与先锋类或利尿酸合用,肾毒性和耳毒性增加,华法令的抗凝效果可因同时使用西米替丁增加,三环类抗抑郁药可消除胍乙啶的抗高血压作用,等等不易而足。May等发现,50%使用16~20种以上药物的住院病人将会出现需要治疗的不良反应或改变治疗方案,其中的20%可能来源于药物不良的相互作用,在17%~20%的老年非住院病人使用的药物可能产生不良反应。然而,对此类联合用药的性质已知的研究较少。 3.在制定环境污染的政策法规方面,最常参照的是单一污染物在空气或环境中的最低浓度,实际上很少考虑多种污染物之间相互作用在产生有害物质方面的作用。然而有证据表明,如此的相互作用确实发生而且对人类和环境产生重要的影响。 4.许多生理和病理过程可能受生物学介质(例如生长因子、干扰素、激素、炎性介质、凝血因子等等)间相互作用的控制。这些过程包括细胞增殖、分化和合成,胚胎诱导,血小板激活和血栓形成,急性炎症,休克,免疫反应,激素释放和效应,肾脏的水钠分泌,肌肉分解代谢,气管收缩,血管扩张和血压调节。如此广泛的相互作用对生理和病理效应具有相当重要的意义,发生协同相互作用时,多种因素间的协作导致最大效应,而拮抗相互作用的发生则有助于限制这些病理生理过程的效应范围,这些有益于正常生理活动的调节。 二、药效学相互作用的定义 同时或相继使用两个或两个以上药物时,其中一个药物作用的大小、持续时间甚至性质受另一药物的影响而发生明显改变,药效发生改变的药物称为目标药(object drug),引起这种改变的药物称为相互作用药(interacting drug);药效互相影响的两个药物互为目标药和相互作用药。相互作用通常可描述为协同(synergism)和拮抗(antagonism),广义地说,协同即是共

心血管常用药物

临床心血管内科常用药物总结 一、降压、抗心衰药 1、钙拮抗剂:(calcium channel blockers,CCB)降压疗效和幅度相对较强,对老年患者,嗜酒患者效果较好,并可用于合并糖尿病,冠心病,外周血管疾病患者。不宜用于心衰,窦房结功能低下或心脏传导阻滞患者。东方人对 CCB反应更好,耐受更佳。 1) 心痛定(硝苯地平片):5-10mg 舌下含化 10-20mg p.o tid 5mg/片 2) 伲福达(硝苯地平缓释片):20mg p.o bid 20mg/片 3) 得高宁(缓释片):10-20mg p.o bid 硝苯地平 10mg/片极量:40mg/次 4) 拜新同(控释片):30mg p.o q.d 硝苯地平 30mg*7#不能掰开,24h恒速释放硝苯地平,抗动脉粥样硬化,谷峰比达 100%,单药控制率 70%以上,对冠心病心绞痛也有效果。(进口)晨服 INSIGHT、ACTION试验证实疗效5) 波依定:非洛地平缓释片 5-10mg p.o qd-bid(维持量) 5mg/ 片 2.5mg/片*10# 晨服 10mg/d 谷峰比仅为 33% FEVER试验证实疗效 6) 尼群地平:洛普思 10mg Bid;舒迈特胶囊 10mg Bid(应用较少) 7) 尼莫地平:尼膜同 30mg Bid;主要用于改善脑血管血供,轻度降压作用,治疗轻度认知功能障碍,保护神经元。30mg*20#普通剂型: 20mg/片8) 络活喜(长效)、施慧达、安内真、麦利平: 络活喜 5mg p.o q.d 5mg*7# 氨氯地平,可掰开(适用于心衰伴有高血压患者) ASCOT ALLHAT试验证实疗效 施慧达 2.5mg p.o q.d 2.5mg/片氨氯地平 安内真 10mg p.o q.d 10mg/片 9) 司乐平:拉西地平常见副反应:反射性激活交感神经系统引起的头痛、头晕、面红、心悸(扩管引起)和胫前、踝部水肿、疲劳、失眠、恶心、便秘、腹痛。 10)异搏定(维拉帕米 verapamil):初用可先采用每日 120mg(半片),然后按需要增量。昀大剂量: 480mg/d(1# p.o bid)。 240mg/片(较少用于降压,多用于抗心律失常;禁忌与洋地黄类地高辛合用)引起窦性停搏时,用钙剂对抗。 11)合心爽、合贝爽缓释胶囊、恬尔心(地尔硫卓 Diltiazem):(降压效力稍差,宜用于冠脉痉挛性心绞痛等)一般需270mg/d才有明显降压作用 合贝爽:90mg q.d-bid 90mg/粒*10#,注射液 5-15mg/kg/min i.v.drip 10mg/支(NORDIL试验——北欧地尔硫卓临床研究, 2000) 合心爽:30mg tid老年人不宜与β受体阻滞剂合用,禁用二度以上 AVB。常见不良反应:偶有头晕,心动过缓,抑制心肌收缩力 , AVB,面色潮红,胃肠不适以及过敏等。 * 注意的是应避免将非双氢吡啶类的钙拮抗剂(即地尔硫卓,维拉帕米)与β受体阻滞剂合用,以免加重或诱发对心脏的抑制作用。注意药物间的相互作用。* 当发生心衰合并有高血压或者心绞痛时,CCB宜选用氨氯地平或者非洛地平,

药物相互作用概述

药物相互作用概述 1.药物相互作用的定义 广义:两种以上药物在体外所产生的物理变化和化学变化,以及在体内由这些变化造成的药理作用改变。(药物体外变化+机体内药理作用变化。) 狭义:是指在体内药物之间所产生的药物动力学和药效学的改变,从而使药物在体内的药理作用出现增强或减弱的现象。(药物在机体内药理作用变化。) 药物相互作用:系指一种药物因受联合应用的其他药物、食物或饮料的影响,其原来效应发生的变化。这种变化即包括效应强度的变化(增强或减弱),也可能发生作用性质的变化(无效或中毒)从而影响药物应用的有效性和安全性。 (1)药物相互作用的高风险人群 患各种慢性疾病的老年人; 需长期应用药物维持治疗的病人; 多脏器功能障碍者; (2)药物相互作用可能的三种作用方式 药剂学相互作用——药物配伍变化(物理化学性变化,多在体外) 药动学相互作用 药效学相互作用 一、药物配伍变化 (一)研究注射剂配伍变化的目的 (二)配伍变化分类: (1)可见配伍变化:溶液混浊、沉淀、结晶及变色。 (2)不可见配伍变化:水解反应、效价下降、聚合变化等 配伍禁忌是在一定条件下,产生的不利于生产、应用和治疗的配伍变化。 1)物理配伍禁忌 2)化学配伍禁忌 配伍禁忌往往是物理与化学的因素的相互影响而造成的。 (三)注射剂配伍变化发生原因 1.沉淀 1)注射液溶媒组成改变:某些注射剂内含非水溶剂,目的是使药物溶解或制剂稳定,若把这类药物加入水溶液中,由于溶媒性质的改变而析出药物产生沉淀: 安定、氯霉素、复方丹参、西地兰、氢化可的松等易出现沉淀、结晶。 氯霉素注射液(含乙醇、甘油等)加入5%葡萄糖注射液中析出氯霉素沉淀。 氢化可的松(乙醇-水等容混合液),必须在稀释时加以注意。 尼莫地平(25%乙醇17%聚乙二醇),应缓慢加入充足输液中,室温不能太低,与乙醇不相溶药物不能配伍,配好后仔细检查有无沉淀析出。 2)电解质的盐析作用:主要是对亲水胶体或蛋白质药物自液体中被脱水或因电解质的影响而凝集析出。 两性霉素B、乳糖酸红霉素、胰岛素、血浆蛋白等与强电解质注射液如氯化钠、氯化钾、乳酸钠、钙剂可析出沉淀。 氟罗沙星、培氯沙星、依诺沙星等,遇强电解质如氯化钠、氯化钾会发生同离子效应析出沉淀,因而禁与含氯离子的溶液配伍。 3)pH改变:注射液pH值是一个重要因素,在不适当的pH下,有些药物会产生沉淀或加速分解:如5%硫喷妥钠10ml加入5%葡萄糖500ml中,由于pH下降产生沉淀。青霉素稳

心血管药物相互作用

心血管药物的相互作用 心血管药物的相互作用是多种多样的,有时候是无法预测的,这对患者和医生来说,常存在潜在的严重后果。幸运的是,严重的相互作用相对来说并不常见,而且通过对可疑药物已有知识的了解并采取简单的预防措施,常常可以避免其发生。药物的相互作用分两型:药物动力学和药效学相互作用。药物动力学相互作用关注的是大多数药物代谢过程任何阶段产生的相互作用,包括吸收,代谢(通常在肝脏内)以及排泄(通常在肾脏内)。活性代谢产物可能有额外的相互作用。另一方面,药效学相互作用源于额外的心血管血液动力学和电生理效应。联合应用维拉帕米和地高辛可以增加房室传导阻滞就是一个典型的例子。尽管这种相互作用是可以预测的,但其临床的实际情况却往往依赖于某一个体房室结的特异和不可预测的生理和病理变异。 本章分析了心血管药物相互作用的2种方式。首先关注的是这种相互作用发生的最主要的器官位置,即心脏本身,并且特别考虑到窦房结(SA)和房室结(A V),室内传导系统,心肌收缩机制以及致心律失常药物的相互作用,随之评价了血管平滑肌作为药物相互作用的位点的地位,以及肝肾相互作用的情况。其次,依次分析了主要的心血管药物包括①β肾上腺素能阻滞剂,②抗心绞痛作用的血管扩张剂,包括钙通道拮抗剂,③利尿剂,④肾素血管紧张素转换酶抑制剂,⑤洋地黄类和其他正性肌力药物,⑥抗心律失常药物,⑦抗栓药物,⑧调脂药物。 一、心脏作为药物相互作用的位点

(一)窦房结和房室结 窦房结至少对三种起搏电流产生反应;包括I f,I Ca 和I k。其中 (L) I f为内向快速钠电流,最早是在浦肯野纤维中记录到的。I k为延迟整流外向钾电流。在这三种起搏电流中,2种对β肾上腺素能阻滞剂敏感,另外1 种对钙离子拮抗剂敏感。联合应用某一β阻滞剂和钙拮抗剂并不能使心脏停跳,原因有几个方面:首先,起搏电流I k不受二 。而可能与窦房者影响,其次,钙拮抗剂主要影响长效钙电流I Ca (L) 则不受钙拮抗剂的结和房室结除极初始相有关的一过性钙电流I Ca (T) 影响。第三,钙拮抗剂中只有维拉帕米及硫氮卓酮类对窦房结有作用,而双氢吡啶类(DHPs如硝苯地平类化合物)对SA和A V无明显影响。相比而言,对某些已接受β阻滞剂且易感患者静脉快速注射维拉帕米或硫氮卓酮引起窦房静止的病例已有报告。 因此,在窦房结水平药物相互作用的副反应可引起严重的心动过缓,严重的心动过速或房室传导阻滞,这些药物常包括β阻滞剂,钙通道拮抗剂或洋地黄类。 (二)室内传导系统 一些抗心律失常药物(Ia类及Ic类钠通道阻滞剂)抑制室内(希氏—浦肯野)传导系统,这些药物(奎尼丁,氟卡尼,普罗帕酮)不应同时应用,因为可引起严重的室内传导障碍。 (三)致心律失常药物的相互作用 药物致心律失常有三种主要的机制,首先,QT间断延长,尤其是存在低钾血症和/或心动过缓时,QT间期延长所致的心律失常类型

如何进行药物相互作用研究_李俊旭

医药经济报/2009年/8月/13日/第F04版 研发 如何进行药物相互作用研究 美国德克萨斯大学圣安东尼奥医学院李俊旭 药物相互作用研究一直是药理学研究中的一个重要方向。原因很简单:任何药物都有不良反应,如果能够找到两个以上的药物在一起使用时既能够减少或互相抵消不良反应又能够互相增强所需的治疗作用,岂不是很好?同样,药物相互作用的结果也可能是增强不良反应或减弱治疗效果,这当然是医药学家们想尽量避免的。药物相互作用的知识在古代医药学文献中即有记载。我国中医药文献口诀中就有“中药十八反歌诀”,这是古代医学家在长期临床实践中积累起来的药物相互作用常识。 现代临床应用中,药物相互作用(联合用药以提高药物代谢动力学或者药物效应动力学相互作用从而提高疗效等)的问题比比皆是。但如何对药物相互作用进行科学研究?药理学教材里面并没有讲,从事药理学科研工作的同仁们也多是参考国外文献,自己摸索或者口传心授进行学习的。有的时候学得四不像,就会闹出这样那样的笑话,甚至得出错误的研究结论。 药物相互作用的结果无非就是三种:协同、拮抗、相加(有的文献中也称为“无关”),但在实际的科研工作中必须采用一些统计学知识进行定量比较,方能做出客观的判断:到底是何种相互作用。 药物相互作用的研究方法和手段有很多种,本文拟简单介绍一种最为常用、我国科研文献中经常可以见到,却也容易犯这样那样错误的Isobologram分析方法。 Isobologram在中文文献中的名称有多种,比如等效应法、等高线法、等辐射分析法等等,不一而足。由此可见,对于这个名词的中文翻译一直存在很多争议,这里就用其英文词,不去追究中文译法。 Isobologram(或称isobolographic analysis)的应用前提和基础是两种药物能够产生类似效应,也就是说采用某一特定测量指标(比如镇痛实验中动物的反应潜伏期、强迫游泳实验中动物的不动时间等)时,二者的效应类似。此处仅讨论二者产生最大效应相同的情况(最大效应不同时需要引入一个新的变量)。 应用这种方法进行药物相互作用分析时,有两种实验设计方法:一种是固定一个药物剂量的同时,改变第二种药物的剂量(固定剂量法);一种是两种药物的剂量同时进行等比例变换(固定比例法)。不管应用何种方法,首先需要确定两种药物本身单独的剂量效应曲线和半数有效剂量(ED50),为后面的Isobolograph作图做准备。需要注意的是,计算ED50时可以采用曲线拟合或者直线回归法,但药物剂量应先采用对数剂量进行计算,最后再将计算得到的数值进行反对数运算,才是正确的ED50数值。 固定剂量法这种方法较为简单,用一个以上固定的一种药物剂量与第二种药物的不同剂量组合,确定新的量效曲线和ED50。这样就得到了在存在第一种药物某一剂量的情况下第二种药物新的ED50,将这一ED50代入Isobolograph图的直方坐标系中,来判断药物相互作用的结果。在Isobolograph图中,横轴为一个药物的ED50和标准误(或者使用95%置信区间),纵轴为另一个药物的ED50和标准误(或者使用95%置信区间),将两个均值用直线连接后即为相加线。如果实际测得的ED50落在相加线上则相互作用为相加,落在左下方则为协同,落在右上方则为拮抗。 固定比例法这种方法较为复杂。与上面的方法相同的是,需要先确定两种药物单独的量效曲线和ED50。然后,选择几个不同的固定比率,将两种药物在混合物的情况下再次确定新的量效曲线和ED50。这样,新的量效曲线实际上是两个药物共同作用的结果,是两条量效曲线合为

常见药物相互作用

临床常见药物相互作用引起的不良反应 (一)、心血管系统的不良反应 1.?受体阻断剂与维拉帕米合用 ?受体阻断剂与维拉帕米合用易出现心动过缓,传导阻滞,血压下降或心衰。维拉帕米可使阿替洛尔的吸收增加,排泄减少;阿替洛尔能使维拉帕米的代谢速度减慢。维拉帕米和普萘洛尔合用可使心率明显减慢,甚至停搏。 2.奎尼丁与地高辛合用 奎尼丁与地高辛合用可使地高辛的血药浓度提高 50%左右,引起心律失常。其原因使奎尼丁能将地高辛从骨骼肌中向血液转移,并减少地高辛从肾小管主动排泌。 3.茶碱与红霉素、普萘洛尔、?-受体阻断剂、H2 受体阻断剂,钙通道阻断剂合用可使茶碱消除速度减慢,血药浓度升高,加之茶碱安全范围窄,易导致中毒出现,严重中毒表现为心动过速等,甚至呼吸、心跳停止。 4.排钾型利尿药、糖皮质激素与强心苷类合用 排钾型利尿药、糖皮质激素与强心苷类合用均可促进钾排出,使心脏对强心苷更敏感,易发生心律失常。 5.单胺氧化酶抑制剂与三环类抗抑郁药、间羟胺、麻黄素合用 由于三环类抗抑郁药使去甲肾上腺素再吸收减少,可致血压急骤升高;与间羟胺、麻黄素合用可使去甲肾上腺素大量释放,引起高血压危象。 6.氯丙嗪与氢氯噻嗪、呋塞米、普萘洛尔与硝苯地平、哌唑嗪、氯丙嗪合用可使降压作用协同,导致严重低血压。 (二)、呼吸系统的不良反应 1.苯二氮卓类药物与吗啡类合用 苯二氮卓类与吗啡类合用可引起呼吸暂停;与其他中枢抑制药如巴比妥类合用,使呼吸受到明显抑制。 2.汉肌松与乙醚合用 汉肌松与乙醚合用可产生协同作用,应减量使用,否则出现呼吸抑制甚至呼吸停止。 3.氨基糖苷类抗生素与具有神经肌肉阻滞作用的药物合用

第十二节药物的相互作用

第十二节药物的相互作用 答案:隐藏 字体:大中小打印:省纸版>> 清晰版>> 自定义>> 药物相互作用概述 1.药物相互作用的定义 广义:两种以上药物在体外所产生的物理变化和化学变化,以及在体内由这些变化造成的药理作用改变。(药物体外变化+机体内药理作用变化。) 狭义:是指在体内药物之间所产生的药物动力学和药效学的改变,从而使药物在体内的药理作用出现增强或减弱的现象。(药物在机体内药理作用变化。) 药物相互作用:系指一种药物因受联合应用的其他药物、食物或饮料的影响,其原来效应发生的变化。这种变化即包括效应强度的变化(增强或减弱),也可能发生作用性质的变化(无效或中毒)从而影响药物应用的有效性和安全性。 (1)药物相互作用的高风险人群 患各种慢性疾病的老年人; 需长期应用药物维持治疗的病人; 多脏器功能障碍者; (2)药物相互作用可能的三种作用方式 药剂学相互作用——药物配伍变化(物理化学性变化,多在体外) 药动学相互作用 药效学相互作用 一、药物配伍变化 (一)研究注射剂配伍变化的目的 (二)配伍变化分类: (1)可见配伍变化:溶液混浊、沉淀、结晶及变色。 (2)不可见配伍变化:水解反应、效价下降、聚合变化等 配伍禁忌是在一定条件下,产生的不利于生产、应用和治疗的配伍变化。

1)物理配伍禁忌 2)化学配伍禁忌 配伍禁忌往往是物理与化学的因素的相互影响而造成的。 (三)注射剂配伍变化发生原因 1.沉淀 1)注射液溶媒组成改变:某些注射剂内含非水溶剂,目的是使药物溶解或制剂稳定,若把这类药物加入水溶液中,由于溶媒性质的改变而析出药物产生沉淀: 安定、氯霉素、复方丹参、西地兰、氢化可的松等易出现沉淀、结晶。 氯霉素注射液(含乙醇、甘油等)加入5%葡萄糖注射液中析出氯霉素沉淀。 氢化可的松(乙醇-水等容混合液),必须在稀释时加以注意。 尼莫地平(25%乙醇17%聚乙二醇),应缓慢加入充足输液中,室温不能太低,与乙醇不相溶药物不能配伍,配好后仔细检查有无沉淀析出。 2)电解质的盐析作用:主要是对亲水胶体或蛋白质药物自液体中被脱水或因电解质的影响而凝集析出。 两性霉素B、乳糖酸红霉素、胰岛素、血浆蛋白等与强电解质注射液如氯化钠、氯化钾、乳酸钠、钙剂可析出沉淀。 氟罗沙星、培氯沙星、依诺沙星等,遇强电解质如氯化钠、氯化钾会发生同离子效应析出沉淀,因而禁与含氯离子的溶液配伍。 3)pH改变:注射液pH值是一个重要因素,在不适当的pH下,有些药物会产生沉淀或加速分解: 如5%硫喷妥钠10ml加入5%葡萄糖500ml中,由于pH下降产生沉淀。 青霉素稳定的PH值为6.0~6.5,葡萄糖PH3.2~5.5,不可配伍 【经典真题】 A型题: 5%硫喷妥钠加入5%葡萄糖500ml中产生沉淀,是由于() A.电解质的盐析作用 B.聚合反应 C.直接反应 D.注射液溶媒组成改变 E.PH改变 [答疑编号111120101:针对该题提问] 『正确答案』E 4)直接反应: 普鲁卡因与氯丙嗪或异丙嗪发生化学反应 头孢菌素类与Ca2+、Mg2+等形成难溶性螫合物析出沉淀 四环素与含钙盐的输液在中性或碱性下产生沉淀 四环素与亚铁离子形成红色螯合物 四环素与铝离子形成黄色螯合物 四环素与镁离子形成绿色螯合物

相关文档
相关文档 最新文档