文档库 最新最全的文档下载
当前位置:文档库 › SAS学习系列39. 时间序列分析Ⅲ—ARIMA模型

SAS学习系列39. 时间序列分析Ⅲ—ARIMA模型

SAS学习系列39. 时间序列分析Ⅲ—ARIMA模型
SAS学习系列39. 时间序列分析Ⅲ—ARIMA模型

39. 时间序列分析Ⅱ——ARIMA 模型

随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。

而非平稳序列随机分析的发展就是为了弥补确定性因素分解方法的不足。时间序列数据分析的第一步都是要通过有效手段提取序列中所蕴藏的确定性信息。Box 和Jenkins 使用大量的案例分析证明差分方法是一种非常简便有效的确定性信息的提取方法。而Gramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。

(一)ARMA 模型

即自回归移动平均移动模型,是最常用的拟合平稳时间序列的模型,分为三类:AR 模型、MA 模型和ARMA 模型。 一、AR(p )模型——p 阶自回归模型 1. 模型:

011t t p t p t x x x φφφε--=+++

其中,0p φ≠,随机干扰序列εt 为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s ),且当期的干扰与过去的序列值无关,即E(x t εt )=0.

由于是平稳序列,可推得均值

11p

φμφφ=

--

-. 若00φ=,称为

中心化的AR (p )模型,对于非中心化的平稳时间序列,可以令

01(1)p φμφφ=---,*t t x x μ=-转化为中心化。

记B 为延迟算子,1()p p p B I B B φφΦ=--

-称为p 阶自回归多

项式,则AR (p )模型可表示为:()p t t B x εΦ=.

2. 格林函数

用来描述系统记忆扰动程度的函数,反映了影响效应衰减的快慢程度(回到平衡位置的速度),G j 表示扰动εt-j 对系统现在行为影响的权数。

例如,AR(1)模型(一阶非齐次差分方程),1, 0,1,2,j j G j φ==

模型解为0t j t j j x G ε∞

-==∑.

3. 模型的方差

对于AR(1)模型,22

2

1()()1t j

t j j Var x G Var εσεφ∞

-===-∑. 4. 模型的自协方差

对中心化的平稳模型,可推得自协方差函数的递推公式:

用格林函数显示表示:

2

00

()()i j t j t k j j k

j i j j k G G E G

G γεεσ

∞∞

---+=====∑∑∑

对于AR(1)模型,

2

1

1

2

1

()(0)1k k k εσγφγφφ==- 5. 模型的自相关函数 递推公式:

对于AR(1)模型,11()(0)k k k ρφρφ==.

平稳AR(p )模型的自相关函数有两个显著的性质: (1)拖尾性

指自相关函数ρ(k )始终有非零取值,不会在k 大于某个常数之后就恒等于零;

(2)负指数衰减

随着时间的推移,自相关函数ρ(k )会迅速衰减,且以负指数k i λ(其中i λ为自相关函数差分方程的特征根)的速度在减小。

6. 模型的偏自相关函数

自相关函数ρ(k)实际上并不只是x t与x t-k之间的相关关系,它还会受到中间k-1个随机变量x t-1, …, x t-k+1的影响。为了能剔除了中间k-1个随机变量的干扰,单纯测度x t与x t-k之间的相关关系,引入了滞后k 偏自相关函数(PACF),计算公式为:

其中,

滞后k偏自相关函数实际上等于k阶自回归模型第k个回归系数

φ:

kk

γ得到

两边同乘以x t-k,求期望再除以(0)

取前k个方程构成的方程组:

称为Yule-Walker方程,可以解出

φ.

kk

可以证明平稳AR(p)模型,当k>p时,0

φ=. 即平稳AR(p)模型

kk

的偏自相关函数具有p步截尾性。

注:实际上样本的随机性使得偏自相关函数不是严格截尾,例如上面两图都1阶显著不为0,1阶之后都近似为0.

二、MA(q)模型——q 阶移动平均模型

1. 模型:

其中,0q θ≠,随机干扰序列t ε为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s )。

若μ=0,称为中心化的MA(q)模型,非中心化的MA(q)模型可以通过*t t x x μ=-转化为中心化。

记B 为延迟算子,1()q q q B I B B θθΘ=--

-称为q 阶自移动平

均系数多项式,则中心化MA(q)模型可以表示为()t q t x B ε=Θ.

2. 模型的方差

3. 模型的自协方差

只与滞后阶数k 相关,且q 阶截尾。当k=0时,

当1≤k ≤q 时,

当k>q 时,()0k γ=.

4. 模型的自相关函数:()

()(0)

k k γργ=

(q 阶截尾性)

5. 模型的滞后k 阶偏自相关函数(中心化)

可以证明滞后k 阶偏自相关函数具有拖尾性。

6. 模型的可逆性 以MR(1)为例,

模型Ⅰ:111

1t

t t t t

x x B

εθεεθ-=-=-或

模型Ⅱ:11

1

1

1

1t t t t t x x B

εεεθθ-=-

=-

或 它们的自相关函数2111/(1)ρθθ=-+相同(即相同的自相关函数对应不同的回归模型),为了保证对应的唯一性,需要增加约束条件,即MR(q)模型的可逆性条件。

观察两个模型的第二种表示:当1||1θ<时,模型Ⅰ收敛、模型Ⅱ不收敛;当1||1θ>时,模型Ⅰ不收敛、模型Ⅱ收敛。

表示成收敛形式的MR(q)模型称为可逆MR(q)模型。一个自相关函数只对应唯一一个可逆MR(q)模型。

三、ARMA(p, q)模型——自回归移动平均模型

1. 模型

其中,0p φ≠,0q θ≠,随机干扰序列εt 为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s ),且当期的干扰与过去的序列值无关,即E(x t εt )=0.

若0=0φ,则称为中心化的ARMA(p,q)模型。引入延迟算子,中心化的ARMA(p,q)模型可表示为:()()p t q t B x B εΦ=Θ.

显然,AR(p)和MA(q)模型是ARMA(p,q)模型的特例。 2. 数字特征 (1)均值:0

1()1t p

E x φφφ=

--

-;

(2)自协方差函数:20

()i i k i k G G εγσ∞

+==∑,其中G i 为格林函数;

(3)自相关函数:0

20

()

()(0)

i i k

i i

i G G

k k G

γργ∞

+=∞

===

∑∑

3. 模型的初步定阶

对于平稳非白噪声序列,计算出样本自相关系数(ACF )和偏自

相关系数(PACF ),根据其性质估计自相关阶数?p

和移动平均阶数?q ,称为ARMA(p,q)模型的定阶。

可以推导出:样本自相关函数?()k ρ和偏自相关函数?kk

φ都近似服从正态分布1

(0,)N n

.

取显著水平α=0.05,若样本自相关系数和样本偏自相关系数在最初的k 阶明显大于2倍标准差,而后几乎95%的系数都落在2倍标准差的范围内,且非零系数衰减为小值波动的过程非常突然,通常视为k 阶截尾;若有超过5%的样本相关系数大于2倍标准差,或者非零系数衰减为小值波动的过程比较缓慢或连续,通常视为拖尾。

4. 参数估计

对非中心化的ARMA(p,q)模型

()

()

q

t t

p

B

x

B

με

Θ

=+

Φ

.

参数μ可用样本均值来估计总体均值(矩估计法),初步定阶估计出自相关阶数?p和移动平均阶数?q后,模型共有p+q+1个未知参数:

2

11

,,,,,,

p qε

φφθθσ.

(1)参数的矩估计

用时间序列样本数据计算出延迟1阶到p+q阶的样本自相关函数?()k

ρ,延迟k阶的总体自相关函数为

11

(,,,,,)

k p q

ρφφθθ. 用计算出的样本自相关函数来估计总体自相函数,得到p+q个联立方程组:

从中解出

11

,,,,,

p q

φφθθ的值作为未知参数估计值

11

????

,,,,,

p q

φφθθ. ARMA(p,q)模型的两边同时求方差,并把前面的参数的估计值代入,可得白噪声序列的方差估计为:

(2)参数的极大似然估计

当总体分布类型已知时,极大似然估计是常用的估计方法。其基本思想是,认为样本来自使该样本出现概率最大的总体。

因此,未知参数的极大似然估计,就是使得似然函数(即联合密度函数)达到最大值的参数值:

在时间序列分析中,序列的总体分布通常是未知的。为了便于分析和计算,通常假设序列服从多元正态分布,它的联合密度函数是可导的。在求极大似然估计时,为了求导方便,常对似然函数取对数,然后对对数似然函数中的未知参数求偏导数,得到似然方程组。理论上,只要求解似然方程组即可得到未知参数的极大似然估计。但在实际上是使用计算机经过复杂的迭代算法求出未知参数的极大似然估计。

两种估计的比较:

矩估计的优点是不要求知道总体的分布,计算量小,估计思想简单直观。但缺点是只用到了样本自相关系数的信息,序列中的其他信息被忽略了,这导致估计精度一般较差。因此,它常被作为极大似然估计和最小二乘估计的迭代计算的初始值。

极大似然估计的优点是充分应用了每一个观察值所提供的信息,因而它的估计精度高,同时,还具有估计的一致性、渐近正态性和渐近有效性等优良统计性质,是一种非常优良的参数估计方法。

(3)参数的最小二乘估计

使ARMA(p,q)模型的残差平方和达到最小的那组参数值:

通过计算机借助迭代方法求出。由于充分利用了序列的信息,该方法估计精度最高。

在实际运用中,最常用的是条件最小二乘估计,假定时间序列过去未观察到序列值等于序列均值,可得到残差的有限项表达式:

于是残差平方和达到最小的那组参数值为:

5. 模型和参数的显著性检验

ARMA(p,q)模型中,使用Q LB统计量检验残差序列的自相关性,为了克服DW检验的有偏性,Durbin在1970年提出了修正的Durbin h统计量:

其中,n为观察值序列的长度,2

σ为延迟因变量系数的最小二乘估计

β

的方差。

参数的显著性检验是要检验每一个模型参数是否显著非零。若某个参数为零,模型中包含这个参数的乘积项就为零,可以简化模型。因此,该检验的是为了精简模型。

原假设H0:某未知参数βj=0;H1:βj≠0. 可以构造出检验未知参数显著性的t(n-m)检验统计量,其中m为参数的个数。

6. 模型优化

当一个拟合模型在置信水平α下通过了检验,说明了在该置信水平下该拟合模型能有效地拟合时间序列观察值的波动。但是这种有效的拟合模型并不是惟一的。

如果同一个时间序列可以构造两个拟合模型,且两个模型都显著有效,那么应该选择哪个拟合模型用于统计推断呢?通常采用AIC 和SBC信息准则来进行模型优化。

(1)AIC准则——最小信息量准则

由日本统计学家赤池弘次(Akaike)于1973年提出,是一种考评综合最优配置的指标,它是拟合精度和参数未知个数的加权函数:AIC=-2ln(模型中极大似然函数值)+2(模型中未知参数个数)

使其达到最小值的模型被认为是最优模型。

(2)BIC/SBC准则

AIC准则的不足:若时间序列很长,相关信息就越分散,需要多自变量复杂拟合模型才能使拟合精度比较高。在AIC准则中拟合误差等于2?

σ,即随样本容量n增大,但模型参数个数的惩罚因子n

ln()

ε

(始终=2)却与n无关。因此在样本容量n趋于无穷大时,由AIC 准则选择的拟合模型不收敛于真实模型,它通常比真实模型所含的未知参数个数要多。

为了弥补AIC准则的不足,Akaike于1976年提出BIC准则。而Schwartz在1978年根据贝叶斯理论也得出同样的判别准则,称为SBC 准则。SBC准则定义为:

SBC=-2ln(模型中极大似然函数值)+ln(n )(模型中未知参数个数)

即将未知参数个数的惩罚权重由常数2变成了ln(n )。在所有通过检验的模型中使得AIC 或SBC 函数达到最小的模型为相对最优模型(因为不可能比较所有模型)。

7. 模型预测

即利用时间序列已观察到的样本值对时间序列在未来某个时刻的取值进行估计。常用的预测方法是线性最小方差预测。

根据ARMA(p,q)模型的平稳性和可逆性,可以用格林函数的传递形式和逆转函数的逆转形式等价描述该序列:

右式代入左式得:

10000

0t i j t i j i j t i j i t i i j i j i x G I x G I x C x ∞

∞∞∞

------=====??=== ???∑∑∑∑∑

可见,x t 是历史数据x t-1, x t-2, …的线性函数。

对于任意一个将来时刻t +l ,也可以用上式预测,但x t+l-1, …, x t+1

未知。根据线性函数的可加性,所有未知信息都可以用已知信息的线性函数表示出来,并用该线性函数进行估计:

用?()t t l t l e l x x

++=-来衡量预测误差,最常用的预测原则是预测误差的方差最小法:

在线性预测方差最小法下得到的估计值?t l x

+是在序列x t , x t-1, …已

知的情况下得到的条件无偏最小方差估计值。且预测方差只与预测步长

l 有关,而与预测起始点t 无关。

预测步长l 越大预测值的方差越大,因此只适合于短期预测。在

正态假定下,估计值?t l x

+的1-α的置信区间为:

(二)ARIMA 模型——混和自回归移动平均模型

一、原理

也称Box-Jenkins 模型,用来处理单变量同方差的非平稳时间序列,通过差分法或适当的变换转化为平稳序列,再使用ARMA 模型。 注:残差的条件方差是异方差的时间序列,适合用GARCH 模型。 ARIMA(p,d,q)模型的形式如下:

(

)

()() =

()

d d t

t t t B B x B x B εεΘΦ?=Θ?Φ 或 其中,(B d d

I ?=-)为d 阶差分,

为平稳可逆ARMA(p,q)模型的自回归和移动平均系数多项式。

可见,ARIMA 模型的实质就是差分运算与ARMA 模型的组合。任何非平稳序列只要通过适当阶数的差分实现平稳,就可以对差分后序列进行ARMA 模型的拟合了。

基于ARIMA模型下的时间序列分析与预测

龙源期刊网 https://www.wendangku.net/doc/2914073450.html, 基于ARIMA模型下的时间序列分析与预测 作者:万艳苹 来源:《金融经济·学术版》2008年第09期 摘要:大多数的时间序列存在着惯性,或者说具有迟缓性。通过对这种惯性的分析,可以由时间序列的当前值对其未来值进行估计。本文以1949年到2004年江苏省社会消费品零售总额数据为研究对象,将这些数据平稳化并做分析,发现ARIMA(1,1,2)模型能比较好的对江苏省社会消费品零售总额进行市时间序列分析和预测,。 关键词:ARIMA;江苏省消费品零售总额;时间序列分析 一、引言 江苏省是一个经济大省,经济一直保持平稳较快增长,城乡居民收入都位于全国前茅,消费品需求旺盛,人们生活水平比较高。其中社会消费品零售总额是反映人民生活水平提高的一个很好的指标。所以对社会消费品零售总额做分析就比较重要。但是影响社会消费品零售总额的因素有很多,包括收入、住房、医疗、教育以及人们的预期等很多因素,而且这些因素之间又保持着错综复杂的联系。因此运用数理经济模型来分析和预测较为困难。所以本文采用ARIMA模型对江苏省的社会消费品零售总额进行分析,得出其规律性,并预测其未来值。 二、ARIMA模型的说明和构建 ARIMA模型又称为博克斯-詹金斯模型。ARIMA模型是由三个过程组成:自回归过程(AR(p));单整(I(d));移动平均过程(MA(q))。AR(p)即自回归过程,是指一个过程的当前值是过去值的线性函数。如:如果当前观测值仅与上期(滞后一期)的观测值有显著的线性函数关系,则我们就说这是一阶自回归过程,记作AR(1)。推广之,如果当前值与滞后p期的观测值都有线性关系则称p阶自回归过程,记作AR(p)。MA(q),即移动平均过程,是指模型值可以表示为过去残差项(即过去的模型拟合值与过去观测值的差)的线性函数。如:MA(1)过程,说明时间序列受到滞后一期残差项的影响。推广之,MA(q)是指时间序列受到滞后q期残差项的

AR,MA,ARIMA模型介绍及案例分析

BOX -JENKINS 预测法 1 (1)()AR p 模型(Auto regression Model )——自回归模型 p 阶自回归模型: y t =c +?1y t?1+?2y t?2+?+?p y t?p +e t 式中,y t 为时间序列第t 时刻的观察值,即为因变量或称被解释变量;y t?1,y t?2,?,y t?p 为时序y t 的滞后序列,这里作为自变量或称为解释变量;e t 是随机误差项;c ,?1,?2,?,?p 为待估的自回归参数。 (2)()MA q 模型(Moving Average Model )——移动平均模型 q 阶移动平均模型: 1122t t t t q t q y e e e e μθθθ---=+--- - 式中,μ为时间序列的平均数,但当{}t y 序列在0上下变动时,显然μ=0,可删除此项;t e ,1t e -,2t e -,…,t q e -为模型在第t 期,第1t -期,…,第t q -期的误差;1θ,2θ,…,q θ为待估的移动平均参数。 (3)(,)ARMA p q 模型——自回归移动平均模型(Auto regression Moving Average Model ) 模型的形式为: 11221122t t t p t p t t t q t q y c y y y e e e e φφφθθθ------=+++ ++--- - 显然,(,)ARMA p q 模型为自回归模型和移动平均模型的混合模型。当q =0,时,退化为纯自回归模型()AR p ;当p =0时,退化为移动平均模型()MA q 。 2 改进的ARMA 模型 (1)(,,)ARIMA p d q 模型 这里的d 是对原时序进行逐期差分的阶数,差分的目的是为了让某些非平稳(具有一定趋势的)序列变换为平稳的,通常来说d 的取值一般为0,1,2。 对于具有趋势性非平稳时序,不能直接建立ARMA 模型,只能对经过平稳化处理,而后对新的平稳时序建立(,)ARMA p q 模型。这里的平文化处理可以是差分处理,也可以是对数变换,也可以是两者相结合,先对数变换再进行差分处理。 (2)(,,)(,,)s ARIMA p d q P D Q 模型 对于具有季节性的非平稳时序(如冰箱的销售量,羽绒服的销售量),也同样需要进行季节差分,从而得到平稳时序。这里的D 即为进行季节差分的阶数;,P Q 分别是季节性自回归阶数和季节性移动平均阶数;S 为季节周期的长度, 如

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

实验三:ARIMA模型建模与预测实验报告

课程论文 (2016 / 2017学年第 1 学期) 课程名称应用时间序列分析 指导单位经济学院 指导教师易莹莹 学生姓名班级学号 学院(系) 经济学院专业经济统计学

实验三ARIMA 模型建模与预测实验指导 一、实验目的: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念: 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验任务: 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验要求: 实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。 实验题:对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。

时间序列ARIMA模型的SAS程序编写

goptions vsize=7cm hsize=10cm; data b; format time monyy5.; input monyy7. asr; dif=dif(asr) ; keep time asr dif; cards; Jan1999 50 Feb1999 54.5 Mar1999 51 Apr1999 49 May1999 50 Jun1999 52 Jul1999 49 Aug1999 49 Sep1999 55 Oct1999 58 Nov1999 60 Dec1999 67.6 Jan2000 62 Feb2000 58.4 Mar2000 55 Apr2000 52.7 May2000 54.4 Jun2000 55.9 Jul2000 53.6 Aug2000 53.4 Sep2000 58.7 Oct2000 62.8 Nov2000 64.2 Dec2000 73.9 Jan2001 66.9 Feb2001 61.7 Mar2001 58.5 Apr2001 56.3 May2001 60.1 Jun2001 60.3 Jul2001 58 Aug2001 58.5 Sep2001 64.3 Oct2001 68.5 Nov2001 70.6 Dec2001 79.2 Jan2002 72.4

Feb2002 67.3 Mar2002 62.9 Apr2002 60.7 May2002 65.9 Jun2002 65.8 Jul2002 62.9 Aug2002 63.6 Sep2002 70.5 Oct2002 76 Nov2002 79 Dec2002 85.1 Jan2003 79.9 Feb2003 73.5 Mar2003 69.5 Apr2003 64.8 May2003 67.6 Jun2003 73.4 Jul2003 70.2 Aug2003 71.6 Sep2003 79.3 Oct2003 85.5 Nov2003 88.5 Dec2003 98.4 Jan2004 90.8 Feb2004 81.8 Mar2004 78.8 Apr2004 75 May2004 81 Jun2004 83.9 Jul2004 80.1 Aug2004 81.1 Sep2004 89.7 Oct2004 98.7 Nov2004 101.7 Dec2004 116.3 Jan2005 103.7 Feb2005 94.2 Mar2005 89.1 Apr2005 86.2 May2005 91.9 Jun2005 98.6 Jul2005 92.2 Aug2005 96.1 Sep2005 103.5

时间序列分析资料报告——ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

ARIMA时间序列建模过程——原理及python实现

ARIMA时间序列建模过程——原理及python实现 ARIMA模型的全称叫做自回归查分移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model),是统计模型(statistic model)中最常见的一种用来进行时间序列预测的模型,AR、MA、ARMA模型都可以看作它的特殊形式。 1. ARIMA的优缺点 优点:模型十分简单,只需要内生变量而不需要借助其他外生变量。 缺点:要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的;本质上只能捕捉线性关系,而不能捕捉非线性关系。 2. ARIMA的参数与数学形式 ARIMA模型有三个参数:p,d,q。 p--代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做 AR/Auto-Regressive项; d--代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项; q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项。 差分:假设y表示t时刻的Y的差分。 if d=0, yt=Yt, if d=1, yt=Yt?Yt?1, if d=2, yt=(Yt?Yt?1)?(Yt?1?Yt ?2)=Yt?2Yt?1+Yt?2 ARIMA的预测模型可以表示为: Y的预测值= 白噪音+1个或多个时刻的加权+一个或多个时刻的预测误差。 假设p,q,d已知,

ARIMA用数学形式表示为: yt?=μ+?1?yt?1+...+?p?yt?p+θ1?et?1+...+θq?et?q 其中,?表示AR的系数,θ表示MA的系数 3.Python建模 ##构建初始序列 import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.graphics.tsaplots import acf,pacf,plot_acf,plot_pacf from statsmodels.tsa.arima_model import ARMA from statsmodels.tsa.arima_model import ARIMA #序列化 time_series_ = pd.Series([151.0, 188.46, 199.38, 219.75, 241.55, 262.58, 328.22, 396.26, 442.04, 517.77, 626.52, 717.08, 824.38, 913.38, 1088.39, 1325.83, 1700.92, 2109.38, 2499.77, 2856.47, 3114.02, 3229.29, 3545.39, 3880.53, 4212.82, 4757.45, 5633.24, 6590.19, 7617.47, 9333.4, 11328.92, 12961.1, 15967.61]) time_series_.index = pd.Index(sm.tsa.datetools.dates_from_range('1978','2010')) time_series_.plot(figsize=(12,8)) plt.show() 3.1 异常值及缺失值处理 异常值一般采用移动中位数方法: frompandasimportrolling_median threshold =3#指的是判定一个点为异常的阈值 df['pandas'] = rolling_median(df['u'], window=3, center=True).fillna(method='bfill').fillna(method='ffill') #df['u']是原始数据,df['pandas'] 是求移动中位数后的结果,window指的 是移动平均的窗口宽度 difference = np.abs(df['u'] - df['pandas']) outlier_idx = difference > threshold 缺失值一般是用均值代替(若连续缺失,且序列不平稳,求查分时可能出现nan) 或直接删除。

季节ARIMA模型建模与预测实验指导

季节ARIMA模型建模与预测实验指导

————————————————————————————————作者: ————————————————————————————————日期: ?

实验六季节ARIMA模型建模与预测实验指导 学号:20131363038 姓名:阙丹凤班级:金融工程1班 一、实验目的 学会识别时间序列的季节变动,能看出其季节波动趋势。学会剔除季节因素的方法,了解ARIMA模型的特点和建模过程,掌握利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、实验内容及要求 1、实验内容: 根据美国国家安全委员会统计的1973-1978年美国月度事故死亡率数据,请选择适当模型拟合该序列的发展。 2、实验要求: (1)深刻理解季节非平稳时间序列的概念和季节ARIMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作。 三、实验步骤 第一步:导入数据 第二步:画出时序图

6,000 7,000 8,000 9,000 10,000 11,000 12,000 510152025303540455055 606570 SIWANGRENSHU 由时序图可知,死亡人数虽然没有上升或者下降趋势,但由季节变动因素影响。 第三步:季节差分法消除季节变动 由时序图可知,波动的周期大约为12,所以对原序列作12步差分,得到新序列如下图所示。

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析及VAR模型

Lecture 6 6. Time series analysis: Multivariate models 6.1Learning outcomes ?Vector autoregression (VAR) ?Cointegration ?Vector error correction model (VECM) ?Application: pairs trading 6.2Vector autoregression (VAR)向量自回归 The classical linear regression model assumes strict exogeneity; hence, there is no serial correlation between error terms and any realisation of any independent variable (lead or lag). As we discovered, serial correlation (or autocorrelation) is very common in financial time series and panel data. Furthermore, we assumed a pre-defined relation of causality: explanatory variable affect the dependent variable? 传统的线性回归模型假设严格的外主性,误差项与可实现的独立变量之间没有序列相关性。金融时间序列及面板数据往往都有很强的自相关性,假定解释变量影响因变量。 We now relax bo什]assumptions using a VAR model. VAR models can be regarded as a generalisation of AR(p) processes by adding additional time series. Hence, we enter the field of multivariate time series analysis. VAR模型可以'"l作是在一般的自回归过程中加入时间序列。 Lefs look at a standard AR(p) process for hvo variables (y( and xj? (1)%= Ql + 琅]仇『一 +仏 (2)x t = a2 + - + £2t The next step is to allow that lagged values of xt can affect y( and vice versa. This means that we obtain a system of equations for two dependent variables(y(and xj?Both dependent variables are influenced by past realisations of y(and x t. By doing that, we violate strict exogeneity (see Lecture 2); however, we can use a more relaxed concept, namely weak exogeneity?As we use lagged values of bodi dependent variables, we can argue that these lagged values are known to us, as we observed them in the previous period? We call these variables predetermined? Predetermined (lagged) variables fulfil weak exogeneity in the sense that they have to be uncorrelated with the contemporaneoiis error term in t? We can still use OLS to estimate the following system of equations, which is called a VAR in reduced form. (3)+y 仇1化_丫+sr=i ^12 +£it (4)X t = a2+2X1021”—, + _i + f2t

AR,MA,ARIMA模型介绍及案例分析

BOX-JENKINS 预测法 1 适用于平稳时序的三种基本模型 (1)()AR p 模型(Auto regression Model )——自回归模型 p 阶自回归模型: 式中,为时间序列第时刻的观察值,即为因变量或称被解释变量;, 为时序的滞后序列,这里作为自变量或称为解释变量;是随机误 差项;,,,为待估的自回归参数。 (2)()MA q 模型(Moving Average Model )——移动平均模型 q 阶移动平均模型: 式中,μ为时间序列的平均数,但当{}t y 序列在0上下变动时,显然μ=0,可删除此项;t e ,1t e -,2t e -,…,t q e -为模型在第t 期,第1t -期,…,第t q -期 的误差;1θ,2θ,…,q θ为待估的移动平均参数。 (3)(,)ARMA p q 模型——自回归移动平均模型(Auto regression Moving Average Model ) 模型的形式为: 显然,(,)ARMA p q 模型为自回归模型和移动平均模型的混合模型。当q =0,时,退化为纯自回归模型()AR p ;当p =0时,退化为移动平均模型()MA q 。 2 改进的ARMA 模型 (1)(,,)ARIMA p d q 模型 这里的d 是对原时序进行逐期差分的阶数,差分的目的是为了让某些非平稳(具有一定趋势的)序列变换为平稳的,通常来说d 的取值一般为0,1,2。 对于具有趋势性非平稳时序,不能直接建立ARMA 模型,只能对经过平稳化处理,而后对新的平稳时序建立(,)ARMA p q 模型。这里的平文化处理可以是差分处理,也可以是对数变换,也可以是两者相结合,先对数变换再进行差分处理。 (2)(,,)(,,)s ARIMA p d q P D Q 模型 对于具有季节性的非平稳时序(如冰箱的销售量,羽绒服的销售量),也同样需要进行季节差分,从而得到平稳时序。这里的D 即为进行季节差分的阶数; ,P Q 分别是季节性自回归阶数和季节性移动平均阶数;S 为季节周期的长度, 如时序为月度数据,则S =12,时序为季度数据,则S =4。 在SPSS19.0中的操作如下

股票预测模型【运用ARIMA模型预测股票价格】

股票预测模型【运用ARIMA模型预测股票价格】 [摘要]ARIMA模型是时间序列中十分常见和常用的一种模型,应用与经济的各个领域。本文基于ARIMA模型,采用了莱宝高科近67个交易日的数据,对历史数据进行分析,并且在此基础上做出一定的预测,试图为现实的投资提供一些参考信息。[关键字]ARIMA模型;股价预测;莱宝高科一、引言时间序列分析是从一段时间上的一组属性值数据中发现模式并预测未来值的过程。ARIMA模型是目前最常用的用于拟合非平稳序列的模型,对于满足有限参数线形模型的平稳时间序列的分析,ARIMA在理论上已趋成熟,它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。有限参数线形模型能描述的随机现象相当广泛,模型拟合的精度能达到实际工程的要求,而且由有限参数的线形模型结构可推导出适用的线形预报理论。利用ARIMA 模型描述的时间序列预报问题在金融,股票等领域具有重要的理论意义。本文将利用ARIMA模型结合莱宝高科的数据建立模型,并运用该模型对莱宝的股票日收盘价进行预测。二、ARIMA模型的建立 2.1ARIMA模型简介ARIMA是自回归移动平均结合模型的简写形式,用于平稳序列或通过差分而平稳的序列分析,简记为ARIMA(p,d,q)用公式表示为:△dZt=Xt=ψ1Xt-1+ψ2Xt-2+?+ψpXt-p+at-θ1at-1-θ2at-2-?-θqat-q 其中,p、d、q分别是自回归阶数、差分阶数和滑动平均阶数;Zt是时间序列;Xt是经过d阶差分后的时间序列值;at-q是时间为t-q的随机扰动项;ψp、θq分别是对应项前的系数。 2.2模型建立流程(1)平稳性检验以2010-3-4到2010-6-10的“莱宝高科”(002106)股票的收盘价作为模型的数据进行建立时间序列模型:做出折线图观察数据的特征:进行单位根检验,判别序列是否为平稳序列;若一阶差分后的数据为平稳序列,可以建立时间序列模型。说明原数据为一阶单整。(2)模型的选择和参数的估计根据数据的平稳性特征,初步确定建立ARIMA模型。观察一阶差分以后的序列的自相关函数和偏自相关

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

时间序列分析,sas各种模型,作业神器

实验一分析太阳黑子数序列 一、实验目的:了解时间序列分析的基本步骤,熟悉SAS/ETS软件使用方法。 二、实验内容:分析太阳黑子数序列。 三、实验要求:了解时间序列分析的基本步骤,注意各种语句的输出结果。 四、实验时间:2小时。 五、实验软件:SAS系统。 六、实验步骤 1、开机进入SAS系统。 2、创建名为exp1的SAS数据集,即在窗中输入下列语句: 3、保存此步骤中的程序,供以后分析使用(只需按工具条上的保存按钮然后填写完提问 后就可以把这段程序保存下来即可)。 4、绘数据与时间的关系图,初步识别序列,输入下列程序: ods html; ods listing close; 5、run;提交程序,在graph窗口中观察序列,可以看出此序列是均值平稳序列。

6、识别模型,输入如下程序。 7、提交程序,观察输出结果。初步识别序列为AR(2)模型。 8、估计和诊断。输入如下程序: 9、提交程序,观察输出结果。假设通过了白噪声检验,且模型合理,则进行预测。 10、进行预测,输入如下程序: 11、提交程序,观察输出结果。

12、退出SAS系统,关闭计算机。总程序: data exp1; infile "D:\"; input a1 @@;

year=intnx('year','1jan1742'd,_n_-1); format year year4.; ; proc print;run; ods html; ods listing close; proc gplot data=exp1 ; symbol i=spline v=dot h=1 cv=red ci=green w=1; plot a1*year/autovref lvref=2 cframe=yellow cvref=black ; title "太阳黑子数序列"; run; proc arima data=exp1; identify var=a1 nlag=24 minic p=(0:5) q=(0:5); estimate p=3; forecast lead=6 interval=year id=year out=out; run; proc print data=out; run; 选取拟合模型的规则: 1.模型显著有效(残差检验为白噪声)

R 语言环境下用ARIMA模型做时间序列预测

R 语言环境下使用ARIMA模型做时间序列预测 1.序列平稳性检验 通过趋势线、自相关(ACF)与偏自相关(PACF)图、假设检验和因素分解等方法确定序列平稳性,识别周期性,从而为选择适当的模型提供依据。 1.1绘制趋势线 图1 序列趋势线图 从图1很难判断出序列的平稳性。 1.2绘制自相关和偏自相关图

图2 序列的自相关和偏自相关图

从图2可以看出,ACF拖尾,PACF1步截尾(p=1),说明该现金流时间序列可能是平稳性时间序列。 1.3 ADF、PP和KPSS 检验平稳性 图3 ADF、PP和KPSS检验结果 通过ADF检验,说明该现金流时间序列是平稳性时间序列(p-value for ADF test <0.02,拒绝零假设).pp test和kpss test 结果中的警告信息说明这两种检验在这里不可用。但是这些检验没有充分考虑趋势、周期和季节性等因素。下面对该序列进行趋势、季节性和不确定性因素分解来进一步确认序列的平稳性。 1.4 趋势、季节性和不确定性因素分解 R 提供了两种方法来分解时间序列中的趋势、季节性和不确定性因素。第一种是使用简单的对称过滤法,把相应时期内经趋势调整后的观察值进行平均,通过decompose()函数实现,如图4。第二种方法更为精确,它通过平滑增大规模后的观察值来寻找趋势、季节和不确定因素,利用stl()函数实现。如图5。

图4 decompose()函数分解法 图5 stl()函数分解法 两种方法得到的结果非常相似。从上图可以看出,该现金流时间序列没有很明显的长期趋势。但是有明显的季节性或周期性趋势,经分解后的不确定因素明显减少。

SAS学习系列39.时间序列分析报告Ⅲ—ARIMA模型

39. 时间序列分析Ⅱ——ARIMA 模型 随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。 而非平稳序列随机分析的发展就是为了弥补确定性因素分解方法的不足。时间序列数据分析的第一步都是要通过有效手段提取序列中所蕴藏的确定性信息。Box 和Jenkins 使用大量的案例分析证明差分方法是一种非常简便有效的确定性信息的提取方法。而Gramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。 (一)ARMA 模型 即自回归移动平均移动模型,是最常用的拟合平稳时间序列的模型,分为三类:AR 模型、MA 模型和ARMA 模型。 一、AR(p )模型——p 阶自回归模型 1. 模型: 011t t p t p t x x x φφφε--=+++L 其中,0p φ≠,随机干扰序列εt 为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s ),且当期的干扰与过去的序列值无关,即E(x t εt )=0.

由于是平稳序列,可推得均值0 11p φμφφ= ---L . 若00φ=,称为 中心化的AR (p )模型,对于非中心化的平稳时间序列,可以令 01(1)p φμφφ=---L ,*t t x x μ=-转化为中心化。 记B 为延迟算子,1()p p p B I B B φφΦ=---L 称为p 阶自回归多项式,则AR (p )模型可表示为:()p t t B x εΦ=. 2. 格林函数 用来描述系统记忆扰动程度的函数,反映了影响效应衰减的快慢程度(回到平衡位置的速度),G j 表示扰动εt-j 对系统现在行为影响的权数。 例如,AR(1)模型(一阶非齐次差分方程),1, 0,1,2,j j G j φ==L 模型解为0t j t j j x G ε∞ -==∑. 3. 模型的方差 对于AR(1)模型,22 2 1()()1t j t j j Var x G Var εσεφ∞ -===-∑. 4. 模型的自协方差 对中心化的平稳模型,可推得自协方差函数的递推公式: 用格林函数显示表示: 2 00 ()()i j t j t k j j k j i j j k G G E G G γεεσ ∞∞ ∞ ---+=====∑∑∑ 对于AR(1)模型,

Eviews时间序列分析实例.

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 [例1]某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本

相关文档
相关文档 最新文档