文档库 最新最全的文档下载
当前位置:文档库 › 气浮池计算书

气浮池计算书

气浮池计算书
气浮池计算书

处理水量Q=5m3/h

反应时间t=6分钟,接触室上升流速V

=10毫米/s

气浮分离速度Vs=2.0mm/s,分离室停留时间取10分钟

溶气水量占处理污水量的比值R=30%,溶气压力采用3kg/cm2填料罐过流密度L=5000m3/d.m2

设计计算:

(1)气浮接触室直径d

o

V

=10mm/s,接触室表面积:

A

0=Q(1+R)/V

=5(1+0.3)/(3600×10×10-3)=0.1806m2

接触室直径:d=(4×A/π)1/2=(4×0.1806/3.14) 1/2=0.48m,取0.5m (2)气浮池直径D,选定分离速度V s=2.0mm/s,则分离室表面积:

A

s =Q(1+R)/V

s

=5(1+0.3)/(3600×2×10-3)=0.903m2

气浮池直径D=[4×(A0+A s)/π]1/2=[4×(0.1806+0.903)/3.14]1/2=1.175m,取1.2m

(3)分离室水深H

s ,选取分离室停留时间t

s

=10分钟,则

H

s =V

s

t

s

=2.0×10-3×10×60=1.2m

接触室出口断面处的流速V

1=7mm/s,则出口处水深H

2

H

2=Q(1+R)/(t

s

d

o

V

1

)=5×(1+0.3)/(3600×3.14×0.5×7×10-3)=0.164m,取1.7m

(4)接触室高度H

0=H

3

-H

2

=1.2-0.17=1.03m

(5)气浮池容积

W=(A

0+A

s

)H

s

=(0.1806+0.903)×1.2=1.3m3

(6)时间校核,接触室气、水接触时间

t

0=H

/V

=1.03/(10×10-3)=103秒(>60秒)

气浮池总停留时间:T=60×W/[Q×(1+R)]=60×1.3/[5×(1+0.3)]=12.0分钟

分离室停留时间:T- t

=12.0-103/60=10.28分钟

与初选时间相符

(7)计算反应池体积V

其中V1的高度h

1

为:

h

1=(D-d

)/2×tg30°=(1.2-0.5)/2×0.577=0.2020m

V

1=[(D/2)2+(d

/2)2+(D/2)×(d

/2)]×(πh

1

/3)

=[(1.2/2)2+(0.5/2)2+(1.2/2)×(0.5/2)]×(3.14×0.2020/3) =0.121m3

设取圆台V

2的底d

=0.5m,则V

2

的高h

2

为:

h

2=(D-d

)/2×tg30°=0.202m V

2

=0.121m3

∴V=V

1+V

2

=0.121×2=0.242m3

根据基本设计数据反应时间为t=6分钟计算,反应池体积为:

W

1

=Qt/60=5×6/60=0.5m3

现V略小于W

1

,其实际反应时间为:

t

1

=60×V/Q=60×0.242/5=2.904分钟

(8)反应-气浮池高度

浮渣层高度H

1=5厘米,干舷H

=15厘米,则反应-气浮池高度H为:

H=H

0+H

1

+H

2

+h

+h

1

+h

2

=0.15+0.05+0.17+1.03+0.202+0.202=1.804m

(9)集水系统

气浮池集水采用12根均布的支管,每根支管流量为:

q=Q(1+R)/12=5×(1+0.3)/12=0.5417m3/h=0.000151m3/s

查表得支管直径d

y

=25mm,管中流速为0.95m/s,支表中水的损失为:

h

阻=(ξ

+λL/d+ξ

)VX2/(2g)

=(0.5+0.02×1.80/0.025+0.3+1.0)×0.952/2g=0.15米

出水总管直径Dg取DN80,管中流速为<0.54m/s,总管上端装水位调节器反应池进水管靠近池底(切面方向),其直径D’=80毫米,管中流速<1.0m/s 气浮池排渣管直径DN100mm

2.溶气释放器

根据溶气压3kg/m2,溶气水量1.5m3/h,及接触室直径d

=0.5m的情况,可选用TJ-H 型释放器一台,释放器安置在离接触室底5厘米处的中心。

3.压力溶气罐

按过流密度L=5000m3/d.m2计算

溶气罐直径D

d

=[4QR/(πL/24)]1/2=[4×5×0.3×24/(3.14×5000)]=0.0917m

取标准直径D

d =100mm,实际I

A

为:

I

A =24QR/(π/4×D

d

2)=24×5×0.3×4/(3.14×0.12)=4586m3/d

采用Φ25阶梯环作填料,填料层高Z

4

取0.5米,则溶气罐高:

Z=2Z

1+Z

2

+Z

3

+Z

4

=2×0.075+0.3+1.0+0.5=2.0m

溶气罐直径很小,不设布水装置,进水管直径D

g

为32mm

管中流速V=1.3m/s,出水管直径取50mm,管内流速V=0.53m/s

气浮法设计计算

气浮法设计计算一.气浮法分类及原理 二.气浮法设计参数

三.气浮法设计计算

四.不同温度下的K T值和736K T值

例:2×75m3 / h气浮池 气浮池设置在絮凝池侧旁,沉淀池上方。气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。 气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。 ●结构尺寸: 取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=1.2×75=90m3/h 接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h 接触区底部通水平面面积:F J1=90/64.8=1.389≈1.4m2 接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=1.4/2=0.7m 接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h 接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2 接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m 扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m 扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3 接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3 接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m

混凝气浮池精编版

4.8混凝气浮池 4.8.1设计说明 在经过前面构筑物的生化处理的出水中投加混凝剂,经混凝反应后进入混凝气浮池分离,进一步降低有机物悬浮物的浓度,保证有良好的出水。混凝气浮法分为加药反应和气浮两个部分,加药反应通过添加合适的混凝剂和絮凝剂以形成较大的絮体,再通入气浮分离设备后与大量密集的细气泡相互粘附,形成比重小于水的絮体,依靠浮力上浮到水面,从而完成固液分离。 整个混凝气浮的工艺流程为将配制好的混凝剂通过定量投加的方式加入到原水中,并通过一定方式实现水和药剂的快速均匀混合,然后进入气浮池进行固液分离,混凝气浮由混凝与气浮两个工艺组成。 (1)混凝工艺 向污水中投入某种化学药剂(常称之为混凝剂),使在水中难以沉淀的胶体状悬浮颗粒或乳状污染物失去稳定后,由于互相碰撞而聚集或聚合、搭接而形成较大的颗粒或絮状物,从而使污染物更易于自然下沉或上浮而被除去。混凝剂可降低污水的浊度、色度,除去多种高分子物质、有机物、某些重金属毒物和放射性物质[19]。 混凝剂的投加分为干投法和湿投法,本设计采用湿投法,相对于干投法,湿投法更容易与水充分混合,投量易于调节,且运行方便。 (2)气浮工艺 气浮过程中,细微气泡首先与水中的悬浮粒子相粘附,形成整体密度小于水的“气泡——颗粒”复合体,使悬浮粒子随气泡一起浮升到水面。由于部分回流水加压气浮在工程实践中应用较多,并且节省能源、操作稳定、资源利用较充分,所以本次设计采用部分回流水加压气浮流程。 4.8.2设计参数 混凝气浮池进出水水质见表4-8-1: 表4-8-1 混凝气浮池进出水质表 SS 水质指标COD BOD 5 进水水质(mg/L)247 58.1 312.1 出水水质(mg/L) 123.5 29 68.7 去除率(%)50 50 78 ①设计流量Q= 125m3/h = 0.035m3/s ②反应池停留时间T = 15min ③反应池水深与直径之比H:D = 10:9 ④接触室上升流速Vc = 10mm/s

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1. 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD ,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h ,为两池并联设计。 2. 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质和处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上 规定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-2 3/2.18.0,中 心管流速不大于s mm /30,中心管下部应设喇叭口和反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450 。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0.025m/s ,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h ,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36 .040=?= ,取d 0=900mm ; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m ) 喇叭口的管径取中心管直径的1.35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口和反射板之间的缝隙 水流速度 v 1=0.02mm/s ,则有

气浮池设计详细资料

目录 第一章设计任务书 (2) 1.1 设计题目 (2) 1.2 设计资料 (2) 1.3 设计内容 (2) 1.4设计成果 (2) 第二章设计说明与计算书 (3) 2.1 设计原理及方案选择 (3) 2.1.1设计原理 (3) 2.1.2方案选择 (5) 2.2设计工艺计算 (6) 2.2.1供气量与空压机选型 (6) 2.2.2溶气罐 (7) 2.2.3气浮池 (8) 2.2.4附属设备 (10) 第三章参考文献 (11) 第四章设计心得体会 (12) 第五章附图 (12) 气浮池的设计计算

第一章设计任务书 1.1 设计题目 加压溶气气浮设备的设计(平流式) 1.2 设计资料 某工厂污水工程拟用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用净化后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,溶气罐内停留时间为3min,分离时间为15min,溶气罐压力为0.4Mpa,气固比0.02,温度30℃。设计水量850m3/d。 1.3 设计内容 (1)确定设计方案; (2)气浮设备的设计计算; (3)系统设备选型,包括水泵、溶气释放器、溶气压力罐、空压机及刮渣机等;(4)计算书编写,计算机绘图。 1.4设计成果 (1)设备工艺设计计算说明书;要求参数选择合理,条理清楚,计算准确,并附设计计算示意图;提交电子版和A4打印稿一份。 (2)气浮系统图和气浮设备结构详图(包括平面图、剖面图);要求表达准确规范;提交电子版和A3打印稿一份。

第二章设计说明与计算书 2.1 设计原理及方案选择 2.1.1设计原理 加压气浮法是在加压情况下,将空气溶解在废水中达饱和状态,然后突然减至常压,这时溶解在水中的空气就成了过饱和状态,以极微小的气泡释放出来,乳化油和悬浮颗粒就粘附于气泡周围而随其上浮,在水面上形成泡沫层,然后由刮泡器清除,使废水得到净化。 根据废水中所含悬浮物的种类、性质、处理水净化程度和加压方式的不同,基本流程有以下三种。 1、全部废水溶气气浮法 全部废水溶气气浮法是将全部废水用水泵加压,在泵前或泵后注入空气。如图1、图2所示。在溶气罐内空气溶解于废水中,然后通过减压阀将废水送入气浮池,废水中形成许多小气泡粘附废水中的乳化油或悬浮物而浮出水面,在水面上形成浮渣。用刮板将浮渣连续排入浮渣槽,经浮渣管排出池外,处理后的废水通过溢流堰和出水管排出。 图1 全部的废水加压容器气浮(泵前加气)

高效浅层气浮系统技术说明书

高效浅层气浮系统技术说明 气浮净水技术在国内外应 用广泛。国内应用的气浮装置 有分散空气气浮法、电解气浮 法、压力溶气气浮法等(以下简 称传统气浮法),目前压力溶气 气浮法应用最广。但是近年来 刚刚进入中国市场的浅层气浮装置后来居上,该装置由美国克拉福达(Krofta) 公司经过几十年研究开发,我公司在该技术的基础上进行改造、研制的新产品。 1、工作原理 浅层气浮装置的结构如图1所示。 原水通过泵1进入气浮装置2的中心管3,通过可旋转的水力接头4和可旋转的分配管5均匀地配入气浮池底部,溶气水经过中心管7进入可旋转的分配管8,与原水同步进入气浮池底部。9亦为一个可旋转的水力接头。饱含微气泡的 溶气水与原水在气浮装置的底部充分碰撞、粘附,使原水中的微粒形成比重<1

的浮渣上升到水面而被除去。原水的分配管5和溶气水的分配管8被固定在同一旋转装置10上,其旋转方向与原水进入气浮池底部的水流方向相反,但速度相等。本装置的关键部分是成功地利用“零速度”原理,使进水对原水不产生扰动,固液分离在一种静态下进行。 表面形成的浮渣层由螺旋撇渣装置11收集,然后经过排渣管12将其排到池外。澄清后的水由旋转集水管13收集后排到池外,集水管13与中央旋转部分1 4连在一起,这样原水在气浮池中的停留时间就是中央旋转部分的回转周期。 连在旋转行走装置上的刮板将池底和池壁上的沉泥刮到泥斗6中,定期排放。 另外一项重要的改进就是固定在旋转行走架10上相互之间有一定间距的一组同心锥形板装置15,与配水部分一起沿气浮池同步旋转。每相邻两块锥形板 组成一个倾斜的环行气浮区域16,该区域内水时刻处于层流状态,加速了颗粒 杂质随微气泡的上升速度。 浅层气浮装置还包括一对并联运行的溶气管20(简称ADT’S),进水泵17的压力较低,只需202.6 kPa。进水首先通过与两个ADT’S连接的三通阀18,A DT’S的另一端布置溶气出水口。压缩空气也经过一个三通阀19与压力水在同一端进入ADT’S,压缩空气的压力一般为707.8 kPa。所有的三通阀靠一只调节器联动,正常运行时,一只ADT的进、出水口均被打开释放溶气水,而进气口被 关闭;同时另一只ADT的进水口和出水口被关闭,压缩空气通过20~40 μm的微孔不锈钢板进入ADT,靠压缩空气的压力将空气溶于水中,而不是靠水的压力。水沿着切线方向高速进入ADT中,流速可达10 m/s,压力水在ADT中呈螺旋状前进,达995 r/min,进水口可以调节,以便控制流量和流速。

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1、 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h,为两池并联设计。 2、 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质与处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上规 定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-23/2.18.0,中心管 流速不大于s mm /30,中心管下部应设喇叭口与反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0、025m/s,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36.040=?=,取d 0=900mm; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m) 喇叭口的管径取中心管直径的1、35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口与反射板之间的缝隙 水流速度 v 1=0、02mm/s,则有 m m d v Q h 2.0215 .102.014.336005086400113=???=?=π;

SQF150竖流式气浮装置技术说明书

SQF150竖流式气浮装置技术说明 一、主要技术参数 ·池体直径:φ6.5m ·处理量:150m3/h ·出渣的含固率≥3% ·气浮类型:部分加压水回流溶气气浮 ·溶气水回流比:25~30% ·溶气水压力:0.25~0.3Mpa ·单台设备净重:~13T ·单台气运行总荷重:~110T ·刮渣斗数量:1个 ·刮渣机功率:0.75kw ·溶气水泵功率:15kw ·空压机功率:2.2kw ·电机防护等级:IP55 ·绝缘等级:F级 ·工作制:24小时/天连续运行 二、主要结构和工作原理 1、竖流式气浮装置主要由气浮池体、溶气系统(含溶气水泵、流量计、空压机、溶气罐、填料、溶气释放器、管道阀门)、刮渣机组成。 ⑴池体直径6500mm,总高约5700mm,占地面积小。整套气浮装置采用钢制结构,分内外两个同心的筒体。为保证设备加工质量和

产品外观,制作筒体时,采用卷板机分块卷制后在专用平台上焊接拼装。池底部设有排泥管道与排空管道,中心处有进水管、溶气水管、环形穿孔集水管。 ⑵进水管底部设有散流布水装置,可将原水或加药絮凝后的废水在内筒底部均匀扩散,继而与溶气释放器释放的溶气水进行充分反应。释放器采用新型不锈钢制溶气释放器,耐腐蚀,不易堵塞,释气效率高达99%,释出气泡直径为20~30微米。为防止由于水质变化或停机检修后释放器堵塞,设置了释放器空气反洗装置,无需拆卸就能实现释放器的清洗工作。 ⑶环形的穿孔集水管安装在分离区(外筒)底部,通过数根均布的清水管将分离后的清水引至出水堰槽。出水堰底板与气浮装置总出水管相连,出水口设有水位调节装置,可根据浮渣层厚度和出水水质调节气浮池水位,便于刮渣机有效工作。 ⑷刮渣机安装在气浮池顶部,电机驱动减速机带动主轴旋转,刮渣机刮板通过联接螺栓与主轴法兰联接,刮渣板旋转时将浮至水面的浮渣或浮油刮至渣槽。渣槽具有一定的坡度,通过重力将浮渣排出气浮装置。 ⑷溶气罐本体由上封头、下封头、卷制罐体、支架、进气管口、进水管口等组成,在我公司的压力容器车间内加工。溶气罐加工完毕后进行水压试验。罐体上安装有液面计和压力表,可观察罐内的水位和压力;罐顶安装有安全阀,压力达到预设值时可自动泄压,保证了溶气罐的安全。φ50 鲍尔环填料安装在溶气罐内部,可增大气液接触面积,提高溶气效果。 2、工作原理

沉淀池设计计算

沉淀池 沉淀池是利用重力沉降作用将密度比水大的悬浮颗粒从水中去除的处理构筑物,是废水处理中应用最广泛的处理单元之一,可用于废水的处理、生物处理的后处理以及深度处理。在沉砂池应用沉淀原理可以去除水中的无机杂质,在初沉池应用沉淀原理可以去除水中的悬浮物和其他固体物,在二沉池应用沉淀原理可以去除生物处理出水中的活性污泥,在浓缩池应用沉淀原理分离污泥中的水分、使污泥得到浓缩,在深度处理领域对二沉池出水加絮凝剂混凝反应后应用沉淀原理可以去除水中的悬浮物。 沉淀池包括进水区、沉淀区、缓冲区、污泥区和出水区五个部分。进水区和出水区的作用是使水流均匀地流过沉淀池,避免短流和减少紊流对沉淀产生的不利影响,同时减少死水区、提高沉淀池的容积利用率;沉淀区也称澄清区,即沉淀池的工作区,是沉淀颗粒与废水分离的区域;污泥区是污泥贮存、浓缩和排出的区域;缓冲区则是分隔沉淀区和污泥区的水层区域,保证已经沉淀的颗粒不因水流搅动而再行浮起。 沉淀池的原理 沉淀池是利用水流中悬浮杂质颗粒向下沉淀速度大于水流向卜流动速度、或向下沉淀时间小于水流流出沉淀池的时间时能与水流分离的原理实现水的净化。 理想沉淀池的处理效率只与表面负荷有关,即与沉淀池的表面积有关,而与沉淀池的深度无关,池深只与污泥贮存的时间和数量及防止污泥受到冲刷等因素有关。而在实际连续运行的沉淀池中,由于水流从出水堰顶溢流会带来水流的上升流速,因此沉淀速度小于上升流速的颗粒会随水流走,沉淀速度等于卜-升流速的颗粒会悬浮在池中,只有沉淀速度大于上升流速的颗粒才会在池中沉淀下去。而沉淀颗粒在沉淀池中沉淀到池底的时间与水流在沉淀池的水力停留时间有关,即与池体的深度有关。 理论上讲,池体越浅,颗粒越容易到达池底,这正是斜管或斜板沉淀池等浅层沉淀池的理论依据所在。为了使沉淀池中略大于上升流速的颗粒沉淀下去和防止已沉淀下去的污泥受到进水水流的扰动而重新浮起,因而在沉淀区和污泥贮存区之间留有缓冲区,使这些沉淀池中略大于上升流速的颗粒或重新浮起的颗粒之间相互接触后,再次沉淀下去。 用沉淀池的类型 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。各自的优缺点和适用范围见表3—3。

气浮池

气浮池 设计说明 气浮工艺主要处理对象为疏水性悬浮物(ss )及脱稳胶粒。选用加压溶气气浮系统,对密度小的纤维类、油类、微生物、表面活性剂的分离尤具优势。 加压容器气浮系统:依靠水泵将处理后的水加压,与加压空气一道被压入密闭的压力溶气罐,空气借助压力以及气、水接触产生的湍动溶解于水中,多余的未溶解空气则由防空阀排放。将溶气水通向溶气释放器,溶气释放器骤然消能减压致使微小气泡稳定释放至水中,供气浮之用。 配备的其它设备:泵两台(一台备用)、空压机、压力溶气罐及相应管道 设计计算 1.1主要工艺指标 (1)气浮池所需空气量Q g h kg fP C Q s g /049.01000 17.425.0)195.38.0(7.18164.11000)1(=??-???=-=γ 式中: Q g --气浮池池所需空气量,kg/h γ--空气容重,g/L (20℃时为1.164g/L ) C s --一定温度下,一个大气压时的空气溶解度,mL/L ·atm(20℃时为18.7 mL/L ·atm) f --加压溶气系统的溶气效率,取0.8 P --溶气压力,atm (2)溶气水量Q r h m K fP Q Q T g r /30009.0024 .095.38.0736049.0736=???== 式中,K T --溶解度系数,20℃时为0.024 1.2气浮池本体 气浮池用挡板或穿孔墙分为接触室和分离室。

1.2.1接触室 (1)接触室表面积A c m v Q Q A c r c 21.015 36001000)251.117.4(3600=??+=+= 式中:v c --水流平均速度,取15mm/s (2)接触室长度L m B A L c c 5.02.01.0=== 式中:B c --接触室宽度,m (3)接触室堰上水深H 2 m B H c 2.02== (4)接触室气水接触时间t c s v H H t c c 107151000)2.08.1(21=?-=-= 式中:H 1--气浮池分离室水深,取1.8m 1.2.2分离室 (1)分离室表面积A s m v Q Q A s r S 211 36001000)251.117.4(3600=??+=+= 式中:v s --分离室水流向下平均速度,取1mm/s (2)分离室长度L S m B A L S S s 43.17 .01=== 满足长宽比2:1~3:1 式中:B s --分离室宽度,m (3)气浮池水深h 2 m t v h S 8.110360205.12=-???==

1万吨造纸废水(白水)处理浅层气浮方案

10000M3/d白水(废水)处理项目 技 术 方 案

一、基本概况 中国水资源短缺且污染十分严重,日趋严重的水质污染问题已经引起各国政府的高度重视。为了有效竭制水质恶化趋势,保护人类赖以生存的环境,所有工业污染源都做到达标排放。其中,造纸工业废水由于其有机污染物含量高,排放量大,环境污染严重,被列为国家重点污染源冶理项目之一。 为了保证生产的顺利进行,需要对其生产过程中产生的大量造纸白水进行处理。处理后回用于生产,减少生产成本,节约水资源。本工艺技术方案通过污水处理新技术的应用,在少量资金投入下,使其达到规定的白水回用要求。 二、水质、水量及回用标准 1、设计规模Q=10000 M3/d 2、设计白水水质SS:2000mg/L PH:6-9 3、设计回用水水质 选用超效浅层气浮净水器一台 经超效浅层气净水器处理后出水水质达到如下: SS:5-20mg/L PH:6-9 三、编制原则 1、严格遵守国家及地方有关环保法律法规和技术政策; 2、在厂方总体规划指导下,结合实际情况,充分发挥工艺优势,尽量减少投资和占地; 3、在污水处理站的设计中要贯彻世通的原则,最大限度的降低污水处理成本; 4、将污水处理与利用相结合,实现污水资源化; 四、工艺流程选择 造纸白水是目前较难处理的行业废水之一,一般投资和运行费用较高。投

资与征地是目前困扰造纸厂废水处理的难题,希望投资省、占地小,运行费用低的条件下能够有效处理造纸白水,达到回用要求。依照水质资料来看,SS:2000mg/L,PH:6-9。通过造纸白水工程的实践经验,采用超效浅层气浮净水器,处理效果好,运行稳定可靠,操作方便,可大幅度降低投资费用,最大限度地降低对周围环境的影响。 综上所述,确定如下工艺技术流程: 混凝剂加药装置助凝剂加药装置→泵→排往压滤机 车间白水→斜网→集水池→污水泵→新型均衡消能装置→超效浅层气浮→清水池→清水回用 高效强溶溶气管回流泵 贮气罐 空压机 五、工艺流程说明 1、车间白水经过粗细格栅拦截杂质。 2、白水通过斜网拦截较粗大悬浮物(纸浆)这部份纸浆可回收。 3、经过集水池使水质、水量均衡。 4、再由水泵提升(加药)至超效浅层气浮净水器固液分离,溶气水采用 自身处理后的清水回流,回流水依靠泵加压至0.5~0.6Mpa左右与压缩空气一起进入强溶溶气管。采用专门技术使空气在3~6秒内迅速均匀溶解于水中,并通过新型均衡消能装置,使微小气泡稳定释放,并与水中杂质颗粒及絮粒相粘附而一起浮至水面,浮渣由不停回转的螺旋状刮渣器舀起,靠刮渣器的斜度利用重力自流至纸浆池,再由泵送至压滤机脱水后干泥外运,清水由气浮中自流至清水池,清水回用。

平流式气浮池设计计算书

平流式气浮池设计计算书 一、设计说明 气浮法也称浮选法,其原理是设法使水中产生大量的微气泡,以形成水、气、及被去除物质的三相混合体,在界面张力、气泡上升浮力和静水压力差等多种力的共同作用下,促进微细气泡粘附在被去除的微小油滴上后,因粘合体密度小于水而上浮到水面,从而使水中油粒被分离去除。气浮法通常作为对含油污水隔油后的补充处理。即为生化处理之前的预处理,经过气浮处理,可将含油量降到30mg/L以下,再经过生化处理,出水含有可达到10mg/L以下。 设计选用目前最常用的平流式气浮池,废水经配水井进入气浮接触区,通过导流板实现降速,稳定水流。然后废水与来自溶气开释器释出的溶气水相混合,此时水中的絮粒和微气泡相互碰撞粘附,形成带气絮粒而上浮,并在分离区进行固液分离,浮至水面的泥渣由刮渣机刮至排渣槽排出。净水则由穿孔集水管汇集至集水槽后出流。部分净水经过回流水泵加压后进溶气罐,在罐内与来自空压机的压缩空气相互接触溶解,饱和溶气水从罐底通过管道输向开释器。 本设计采用加压溶气气浮法在国内外应用最为广泛。与其他方法相比,它具有以下优点:在加压条件下,空气的溶解度大,供气浮用的气泡数目多,能够确保气浮效果;溶进的气体经骤然减压开释,产生的气泡不仅微细、粒度均匀、密集度大、而且上浮稳定,对液体扰动微小,因此特别适用于对疏松絮凝体、细小颗粒的固液分离;工艺过程及设备比较简单,便于治理、维护;特别是部分回流式,处理效果明显、稳定,并能较大地节约能耗。 二、设计任务 完成一个城市污水处理中常用的典型构筑物的工艺设计,较完整地绘制该构筑物的工艺施工图纸。 构筑物——平流式气浮池(共壁合建) 设计流量——Qs=100m3/h 三、设计计算 1.污水水质情况 C = 700㎎/L 悬浮固体浓度o f= 90%空气饱和率Aa/S= 气固比

超效浅层气浮技术

超效浅层气浮技术 一、工作原理 气浮法净化水是当前国际较新的水处理技术。 其原理是在污水引入大量微小气泡,气泡通过表面张力粘附于细小悬浮物上,形成整体比重小于1的状况,根据浮力原理浮至水面,实现固液分离,污水得以净化。 传统气浮由于设计结构上的致命缺陷,处理能力很低,污水在气浮内滞留时间需30~40分钟,设备体积极为庞大,且净化率很低,现已淘汰。 超效浅层气浮净水器的出现是气浮净水技术的一个重大突破。它改传统气浮的静态进水动态出水,为动态进水静态出水,应用“零速原理”,使浮选体在相对静止的环境中垂直浮上水面,实现固-液分离的。“零速原理”使上浮路程减至最小,且不受出水流速的影响,上浮速度达到或接近理论最大值,污水在净化池中的停留时间由传统气浮的30~40分钟减至仅需3~5分钟,极大地提高了处理效率,设备体积随之大幅减小,且可架空、叠装、设置于建筑物上,少占地或不占地。随着布水装置的旋转,将事先与污水均匀混合的气泡能十分均匀地充满整个净化池,不存在气浮死区和气泡不均匀区,从而大大提超了净化效率。 超效浅层离子气浮净水器是将进水口、出水口和气浮刮渣斗安装在绕气浮池中央回转的回转机上。回转机架和刮渣斗均由电机带动并可无级调速。用同进水流速一致的速度旋转。废水从池中心的旋转进水器进水,通过进水配水器布水,进水配水器的移动速度可以和进水流速相同。使原水进入池内产生零速度,按此“零速原理”进水不会对池内水流产生扰乱。使池内颗粒的沉浮在一种超静的状态下进行,从而大大提超了气浮池的效率。螺旋状的刮泥装置对水体的扰动极小,且刮起的仅为已充分分离的浮渣,含固率低。 二、超效浅层离子气浮净水器特点: ⑴采用“浅池理论”、“零速原理”、“新溶气机理”设计; ⑵水力停留时间短,只有3-5分钟,池深不超过700mm; ⑶微气泡极小,密度极超,不需事先将它们凝聚为很大矾花,故可大大减少加药量,极大的降低运行成本; ⑷微细气泡与絮粒的沾附发生于包括接触区在内的整个气浮分离过程; ⑸强制布水,进出水都是静态的; ⑹清水的排出是在固液分离以后进行的,浮渣瞬时隔离排除,水体扰动小; ⑺出渣含固率超达3%-5%,悬浮物去除率达99.5%,池底设有刮泥板,自动刮除沉降污泥; ⑻采用的溶气管设计独特,体积小,溶气效率超,操作方便,占地面积小; ⑼设备运行效率超,稳定性好,处理量大,一次性投资少; ⑽溶气水和药剂加入点的合理选用,保证实现共聚气浮; ⑾具有多项调节功能,能随处理水质水量的变化而变化。 三、适用范围 浅层离子气浮净水器是工业废水物化处理中新型超效气浮处理设备,广泛适用于造纸白水回收、制革、纺织、制皂、食品、碳黑、纤维制品、采油、啤酒、市政污水回用等领域。和加药设备、溶气设备、泵等辅助设备合理配置可使废水中的悬浮物总量降低99.8%左右。而气浮水力停留时间只有3~5min。采用本设备能大幅度降低投资和运行费用,节约大量的耕地,当用于处理大规模污水时尤为显著。 四、国内外加压溶气气浮处理设备性能比较和浅层气浮设备在造纸工业的应用情况分别见表 3、表4。 表3 国内外加压溶气气浮设备性能比较

气浮池设计

2.1 压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备) 2.1.1 溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%,因此优化溶气系统的设计对缩小气浮操作费用是很重要的。 溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷环之类,也有用空罐的。 因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流泵和空压机的参数。 在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。这样就使得溶气罐的体积显得庞大,停留时间有时长达3~5min。国内的研究证实了液膜阻力控制着溶气速率,认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数。 所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。 第一种是泵前进气,流程图见图3。当空气吸入量小于空气在该温度下水中的饱和度时,由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。这种方式省去了空压机,气水混合效果好,但水泵必须采用自引方式进水,而且要保持lm

以上的水头,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会产生气蚀现象。

沉淀池设计与计算

第六节、普通沉淀池 沉淀池可分为普通沉淀池和浅层沉淀池两大类。按照水在池内的总体流向,普通沉淀池又有平流式、竖流式和辐流式三种型式。 普通沉淀池可分为入流区、沉降区、出流区、污泥区和缓冲区5个功能区。入流区和出流区的作用是进行配水和集水,使水流均匀地分布在各个过流断面上,为提高容积利用、系数和固体颗粒的沉降提供尽可能稳定的水力条件。沉降区是可沉颗粒与水分离的区域。污泥区是泥渣贮存、浓缩和排放的区域。缓冲层是分隔沉降区和污泥区的水层,防止泥渣受水流冲刷而重新浮起。以上各部分相互联系,构成一个有机整体,以达到设计要求的处理能力和沉降效率。 一、平流沉淀池 在平流沉淀池内,水是按水平方向流过沉降区并完成沉降过程的。图3-16是没有链带式刮泥机的平流沉淀池。废水由进水槽经淹没孔口进入池内。在孔口后面设有挡板或穿孔整流墙,用来消能稳流,使进水沿过流断面均匀分布。在沉淀池末端没有溢流堰(或淹没孔口)和集水槽,澄清水溢过堰口,经集水槽排出。在溢流堰前也设有挡板,用以阻隔浮渣,浮渣通过可转动的排演管收集和排除。池体下部靠进水端有泥斗,斗壁倾角为50°~60°,池底以0.01~0.02的坡度坡向泥斗。当刮泥机的链带由电机驱动缓慢转动时,嵌在链带上的刮泥板就将池底的沉泥向前推入泥斗,而位于水面的刮板则将浮渣推向池尾的排渣管。泥斗内设有排泥管,开启排泥阀时,泥渣便在静水压力作用下由排泥管排出池外。[显示图片] 链带式刮泥机的缺点是链带的支承和驱动件都浸没于水中,易锈蚀,难保养。为此,可改用桥式行车刮泥机,这种刮泥机不但运行灵活,而且保养维修都比较方便。对于较小的平流沉淀池,也可以不设刮泥设备,而在沿池的长度方向设置多个泥斗,每个泥斗各自单独排泥,既不相互干扰,也有利于保证污泥浓度。 沉淀池的设计包括功能构造设计和结构尺寸设计。前者是指确定各功能分区构件的结构形式,以满足各自功能的实现;后者是指确定沉淀池的整体尺寸和各构件的相对位置。设计良好的沉淀池应满足以下三个基本要求;有足够的沉降分离面积:有结构合理的人流相出流放置能均匀布水和集水;有尺寸适宝、性能良好的污泥和浮渣的收集和排放设备。 进行沉淀池设计的基本依据是废水流量、水中悬浮固体浓度和性质以及处理后的水质要求。因此,必须确定有关设计参数,其中包括沉降效率、沉降速度(或表面负荷)、沉降时间、水在池内的平均流速以及泥渣容重和含水率等。这些参数一般需要通过试验取得;若无条件,也可根据相似的运行资料,因地制宜地选用经验数据。以-萨按功能分区介绍设计和计算方法。 1.入流区和出流区的设计 入流和出流区设计的基本要求,是使废水尽可能均匀地分布在沉降区的各个过流断面,既有利于沉降,也使出水中不挟带过多的悬浮物。

平流式气浮分离池设计计算书

苏州科技学院 环境科学与工程学院课程设计说明书 课程名称:水处理构筑物课程设计 学生姓名:郁仁飞学号:0820103202 系别:环境科学与工程学院 专业班级:环工0812 指导老师:袁怡 2011年12月 一、设计说明

气浮法也称浮选法,其原理是设法使水中产生大量的微气泡,以形成水、气、及被去除物质的三相混合体,在界面张力、气泡上升浮力和静水压力差等多种力的共同作用下,促进微细气泡粘附在被去除的微小油滴上后,因粘合体密度小于水而上浮到水面,从而使水中油粒被分离去除。气浮法通常作为对含油污水隔油后的补充处理。即为生化处理之前的预处理,经过气浮处理,可将含油量降到30mg/L 以下,再经过生化处理,出水含有可达到10mg/L以下。 设计选用目前最常用的平流式气浮池,废水从池下部进入气浮接触区,保证气泡与废水有一定的接触时间,废水经隔板进入气浮分离区进行分离后,从池底集水管排出。浮在水面在的浮油用刮油设备刮入集油槽后排出。其优点是池身浅、造价低、构造简单、管理方便。 二、设计任务 完成一个废水处理中常用的典型构筑物的工艺设计,较完整地绘制该构筑物的工艺施工图纸。 构筑物——平流式气浮池(共壁合建) 设计流量——Q S=330m3/h 三、设计参数 1、加压水泵 加压水泵作用是提供一定压力的水量,本设计中采用离心泵 2、空气供给设备

压力溶气气浮的供气方式可分为泵前插管进气、水泵—射流器供气、水泵—空压机供气三种,本设计中采用水泵—空压机供气 3、气浮池设计参数控制范围及要点: (1)回流比5%~10% (2)接触区水流上升流速10~20mm/s (3)接触区水流停留时间>60s (4)接触室内的溶气释放器,需根据确定的回流水量、溶气压力及各种型号释放器的作用范围确定合适的型号与数量,并力求布置均匀。 (5)分离室流速 1.5~2.5mm/s (6)气浮池有效水深 2.0~2.5m (7)隔板下端的水流上升速度32mm/s (8)气浮池单宽<10m (9)池长<15m (10)气浮池排渣一般采用刮渣机定期排除。 (11)气浮池集水应力求均匀,一般采用穿孔集水管,集水管内的最大流速宜控制在0.5m/s左右。 基本设计数据的确定: 1)回流比取10% 2)接触室停留时间T2=2min 3)气浮分离速度采用1.5mm/s

浅层气浮技术

浅层气浮技术 气浮净水技术在国内外应用广泛。国内应用的气浮装置有分散空气气浮法、电解气浮法、压力溶气气浮法等(以下简称传统气浮法),目前压力溶气气浮法应用最广。但是近年来刚刚进入中国市场的浅层气浮装置后来居上,该装置由美国克拉福达(Krofta)公司经过几十年研究开发,本文对该装置的结构作一介绍。 1 工作原理 浅层气浮装置的结构如图1所示。 原水通过泵1进入气浮装置2的中心管3,通过可旋转的水力接头4和可旋转的分配管5均匀地配入气浮池底部,溶气水经过中心管7进入可旋转的分配管8,与原水同步进入气浮池底部。9亦为一个可旋转的水力接头。饱含微气泡的溶气水与原水在气浮装置的底部充分碰撞、粘附,使原水中的微粒形成比重<1的浮渣上升到水面而被除去。原水的分配管5和溶气水的分配管8被固定在同一旋转装置

10上,其旋转方向与原水进入气浮池底部的水流方向相反,但速度相等。本装置的关键部分是成功地利用“零速度”原理,使进水对原水不产生扰动,固液分离在一种静态下进行。 表面形成的浮渣层由螺旋撇渣装置11收集,然后经过排渣管12将其排到池外。澄清后的水由旋转集水管13收集后排到池外,集水管13与中央旋转部分14连在一起,这样原水在气浮池中的停留时间就是中央旋转部分的回转周期。 连在旋转行走装置上的刮板将池底和池壁上的沉泥刮到泥斗6中,定期排放。 另外一项重要的改进就是固定在旋转行走架10上相互之间有一定间距的一组同心锥形板装置15,与配水部分一起沿气浮池同步旋转。每相邻两块锥形板组成一个倾斜的环行气浮区域16,该区域内水时刻处于层流状态,加速了颗粒杂质随微气泡的上升速度。 浅层气浮装置还包括一对并联运行的溶气管20(简称ADT’S),进水泵17的压力较低,只需202.6 kPa。进水首先通过与两个ADT’S连接的三通阀18,ADT’S的另一端布置溶气出水口。压缩空气也经过一个三通阀19与压力水在同一端进入ADT’S,压缩空气的压力一般为707.8 kPa。所有的三通阀靠一只调节器联动,正常运行时,一只ADT的进、出水口均被打开释放溶气水,而进气口被关闭;同时另一只ADT的进水口和出水口被关闭,压缩空气通过20~40 μm的微孔不锈钢板进入ADT,靠压缩空气的压力将空气溶于水中,而不是靠水的压力。水沿着切线方向高速进入ADT中,流速可达10 m/s,

竖流式沉淀池设计计算

竖流式沉淀池设计计算 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。 设置沉淀池的一般要求有哪些 (1)沉淀池的个数或分格数一般不少于2个,为使每个池子的人流量均等,要在人流口处设置调节阀,以便调整流量。池子的超高不能小于0.3m,缓冲层为0.3m~0.5m。 (2)一般沉淀池的停留时间不能小于1h,有效水深多为2~4m(辐流式沉淀池指周边水深),当表面负荷一定时,有效水深与沉淀时间之比也为定值。 (3)沉淀池采用机械方式排泥时,可以间歇排泥或连续排泥。不用机械

排泥时,应每日排泥,初沉池的静水头不应小于1.5m,二沉池的静水头,生物膜法后不应小于1.2m,活性污泥法后不应小于0.9m。 (4)采用多斗排泥时,每个泥斗均应没单独的排泥管和阀门,排泥管的直径不能小于200mm。污泥斗的斜壁与水平面的倾角,采用方斗时不能小于60°,采用圆斗时不能小于55 (5)当采用重力排泥时,污泥斗的排泥管一般采用铸铁管,其下端伸入斗内,顶端敞口伸出水面,以便于疏通,在水面以下1.5~2.0m处,由排泥管接出水平排泥管,污泥借静水压力由此管排出池外。 (6)使用穿孔排泥管排泥时,排泥管长度应在15m以内,排泥管管径150~200mm,孔径15~25mm,孔眼内流速4~5m/s,孔眼总面积与管截面积的比值为0.6~0.8,孔眼向下成45°~60°交错排列。为防止排泥管堵塞,应设压力水冲洗管,根据堵塞情况及时疏通。

(7)进水管有压力时,应设置配水井,进水管由配水井池壁接人,且应将进水管的进口弯头朝向井底。沉淀池进、出水区均应设置整流设施,同时具备刮渣设施。 (8)沉淀池的出水整流措施通常为溢流式集水槽,出水堰可用三角堰、孔眼等形式,普遍采用的是直角锯齿形三角堰,堰口齿深通常为50mm,齿距为200mm左右,正常水面应当位于齿高的1/2处。堰口设置可调式堰板上下移动机构,在必要时可以调整。 (9)沉淀池最大出水负荷,初沉池不宜大于2.9L/(s·m),二沉池不宜大于1.7 L/(s·m)。在出水堰前必须设置收集与排除浮渣的措施,如果使用机械排泥,排渣和排泥可以综合考虑。

溶气气浮池的计算书

平流式气浮池的计算书 已知: Q=150m3/d 待处理废水量 SS=700mg/L 悬浮固体浓 度 700 A a/S=0.02气固比 P= 4.2atm溶气压力0.2-0.4MPa C a=18.5mg/L 空气在水中饱和溶解度 T1=3min 溶气罐内停留时间 T2=15min 气浮池内接触时间 T s=25min 分离室内停 留时间10~20min v s=0.09m/min 浮选池上升 流速 0.09~0.18m /min (1)确定溶气水量Q R Q R=A a/S*S a*Q/C a(f*P- 1)= 75m3/d20%~40%溶气效率 f= 0.6 取回流水量Q R=75m3/d (2)气浮池设计 ①接触区容积Vc Vc=(Q+Q R)*T2/(24*60)= 2.34m3(150+75)*15/(24*60)②分离区容积Vs

Vs=(Q+Q R)*T s/(24*60)= 4.68m3(150+75)*30/(24*60)③气浮池有效水深H H=v s*T s=0.09*25 2.25m ④分离区面积A s和长度L2 A s=Vs/H= 2.08m2 取池宽 1.5m B= 则分离区长度L2=As/B= 1.3667m ⑤接触区面积A c和长度L1 A c=Vc/H= 1.0578m2 L1=A c/B=0.705m ⑥浮选池进水管:DN200 ⑦浮选池出水管:DN150 ⑧集水管小孔面积S 取小孔流速v1=0.5m/s S=(Q+Q R)/24/3600v1=0.0052m2(150+/24/3600/0.5取小孔直径D1=0.015m 则孔数 4*S/3.14*D12=29.44个 n= 孔数取整数,孔口向下,与水平成45°角,分二排交错 排列 ⑨浮渣槽宽度L3: 取L3=0.8m 浮渣槽深度h′取1m,槽底坡度i=0.5,坡向排泥管,排泥管采用Dg=200. (3)溶气罐设计 ①溶气罐容积V1 V1=Q R*T1/(24*60)=0.156m3 溶气罐直径D=0.45m,溶气部分高度1m(进水管中心

气浮池设计书

两级气浮池 大庆油田水务公司含油污水应用技术项目部

目录 1两级气浮池设计说明书 (1) 1.1絮凝池 (1) 1.2回流比 (1) 1.3接触室 (1) 1.4分离室 (2) 1.5两级气浮装置的选择 (2) 2.两级气浮池设计计算书 (2) 2.1基础计算(溶气罐气浮) (2) 2.1.1回流水量 (2) 2.1.2理论空气用量[1] (2) 2.1.3设备提供气量 (3) 2.1.4接触室面积 (3) 2.1.5分离室面积 (3) 2.1.6池水深 (3) 2.1.7溶气罐直径 (4) 2.2池体及校核计算 (4) 2.2.1絮凝池 (4) 2.2.2接触室 (4) 2.2.3分离室 (5) 2.3 进、出水管线、排空及排渣管线和释放器设计及计算 (5)

2.3.1 进、出水管线设计 (5) 2.4释放器设计计算 (6) 2.4.1 一级气浮的释放器 (6) 2.4.2 二级气浮的释放器 (7) 2.5 空压机及气管线设计计算 (8) 2.5.1 空压机选择 (8) 2.5.2 气管线设计 (8) 2.6池体材质 (8) 3 材料表 (8) 4 设备表 (10) 5 图纸 (11) 6参考文献 (11)

1两级气浮池设计说明书 已知条件:来水流量Q=1(3)m3/h,来水含油≤230mg/L,含悬浮物≤600mg/L,处理后出水含油≤110mg/L,含悬浮物≤350mg/L。 1.1絮凝池 絮凝时间对气浮池的处理效果有重要影响,给排水设计手册[1]上絮凝时间采用10-20min。根据前期药剂筛选实验得出,处理含油废水时,其最佳絮凝时间为15min,本装置的絮凝池按此参数进行设计。 1.2回流比 回流比过低会导致无法产生足够的微气泡,从而不能有效去除石油类、悬浮物等指标;回流比过高易导致系统的能耗高,同时需选择较大的溶气罐或溶气泵,造成初期投入较大。为达到合适的回流比,根据相关文献[3],回流比采用40%。本设计选择50%。 1.3接触室 根据给排水设计手册[1],建议该室内水流上升速度10-20mm/s。本设计选择滤速ν=15mm/s。

相关文档