文档库 最新最全的文档下载
当前位置:文档库 › 选修2-3概率习题集和历年真题

选修2-3概率习题集和历年真题

选修2-3概率习题集和历年真题
选修2-3概率习题集和历年真题

选修2-3概率分布练习一、条件概率与事件的独立性

1.已知

12

P B|A()

35

P A

()=,,则P(AB)=( ) 5

A.

6

9

B.

10

2

C.

15

1

D.

15

2.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件,取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是()

2 A.

5

3

B.

5

1

C.

2

3

D.

10

3.某班高三(1)班有学生40人,其中共青团员15人。全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一人做学生代表。

(1)求选到的是第一组学生的概率;

(2)已知选到的是共青团员,求他是第一组学生的概率。

4.某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动。(1)设所选3人中女生人数为X,求X的分布列;

(2)求男生甲或女生乙被选中的概率;

(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求()P B|A

P B和()。

5.甲、乙两人各射击一次,他们各自击中目标的概率都是0.6,他们都击中目标的概率是()

A.0.6

B.0.36

C.0.16

D.0.84

6.设两个独立事件A和B都部分发生的概率为1

9

,A发生B不发生的概率与B发生A不发生

的概率相同,则事件A发生的概率P(A)是()

2 A.

9

1

B.

18

1

C.

3

2

D.

3

7.一个口袋里有5个白球和3个黑球,任意取出一个,如果是黑球,则这个黑球不放回而另外放入一个白球,这样继续下去,直到去除的都是白球时结束。求直到取到白球所需的抽取次数X的概率分布列。

8.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取两个节目,求:

(1)第一次抽到舞蹈节目的概率;

(2)第一次和第二次都抽到舞蹈节目的概率;

(3)在第一次抽到舞蹈节目的条件下,第二次抽到舞蹈节目的概率。

9.一个教室里有4个一年级男生,6个一年级女生,6个二年级男生,随机抽一名学生,为了使事件“抽出男生”与事件“抽出一年级学生”相互独立,该教室还应有几名二年级女生?

10.在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能够正确回答第一、二、三、四轮问题的概率

为1431

6543

,,,,且各轮问题能否正确回答互不影响。

(1)求该选手进入第三轮被淘汰的概率:

(2)求该选手至多进入第三轮考核的概率;

(3)该选手在选拔过程中回答过得问题数计为X,求随机变量X的分布列。

二、独立重复试验与二项分布

1.若X~B(5,0.1),则P(X≤2)等于()

A.0.665

B.0.00856

C.0.91854

D.0.99144

2.一射手对同一目标独立射击四次,已知至少命中一次的概率为80

81

,则此射手每次射击命

中的概率为()

1 A.

3

2

B.

3

1

C.

4

2

D.

5

3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于恰好发生2次的概率,则事件A在一次试验中发生的概率P的取值范围是

4.设

8

X~B(4,P),P(X=2)=

27

且,那么一次试验成功的概率是

5.甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束。设各局比赛相互之间没有影响,求前三局比赛甲队领先的概率。

6.某商场经销某商品,顾客可采用一次性付款或分期付款购买。根据以往资料统计,顾客采用一次性付款的概率是0.6。经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元。

(1)求三位购买该商品的顾客中至少有1位采用一次性付款的概率;

(2)求三位顾客每人购买1件该商品,商场获得的利润不超过650元的概率。

7.甲、乙两位同学进行三分球投篮比赛,甲每次投中的概率为

13,乙每次投中的概率为12

,每人分别进行三次投篮。

(1)设甲投中的次数为ξ,求ξ的分布列; (2)求乙至多投中2次的概率;

(3)求乙恰好比甲多投中2次的概率。

8.在一次数学考试中,第14题和15题为选做题。规定每位考生必须且只需在其中选做一题。设4名考生选做这两题的可能性均为

1

2

。 (1)求其中甲、乙2名学生选做同一道题的概率;

(2)设这4名考生中选做第15题的学生数为ξ,求ξ的分布列。

求随机事件概率的步骤:

第一步,确定事件的性质,古典型、互斥事件、独立事件、独立重复试验, 把所给问题归结为四类事件中的某一类;

第二步,判断事件的运算,和事件、积事件,确定事件至少有一个发生,还是同时发生,分别运用相加或相乘事件公式 第三步,运用公式, 古典型:()m P A n

=

. 互斥事件:P A ()B P A ?+()=P(B) 条件概率:P B |A P(AB)

()=

P(A)

独立事件:P AB ()=P(A)P(B) n n ()(1)k k

n k n k C p p -=-次独立重复试验:P 求得

三、离散型随机变量的均值

常用分布的均值

(1)两点分布:E (X )=P

(2)二项分布:X~B(n ,p), E (X )=nP

1.口袋中装有5只球,编号为1,2,3,4,5,从中任取3个球,以X 表示取出球的最大号码,则E (X )=( )

A.4

B.5 9

C.2 15

D.4

2.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=

3.一个盒子中有9个正品球,3个次品球,球的大小相同,每次取一个球,取出后不再放回,在取得正品前已取出的次品数X 的期望为

4.高三(1)班的联欢会上设计了一项游戏,在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同。某学生一次从中摸出5个球,其中红球的个数为X,求X的期望.

5.某种有奖销售饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内

印有“奖励一瓶字样”即为中奖,中奖概率为1

6

.甲、乙、丙三位同学每人购买一瓶饮料。

(1)求甲中奖且乙、丙都没有中奖的概率;

(2)求中奖人数ξ的分布列及数学期望E(ξ).

6.在篮球比赛中罚球命中1次得1分,不中得0分。如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X的均值是多少?

7.某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训次数统

(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等

的概率;

(2)从这40人中任选2名学生,用X表示这2人参加培训次数之差的绝对值,求随机变量

X 的分布列及数学期望E(X).

四、离散型随机变量的方差

常用分布列的方差:

(1)两点分布:D(X)=p(1-p)

(2)二项分布:X~B(n,p), E(X)=np(1-p)

1.

若E(X)=0,D(X)=1,则a= ,b=

2.

且E(X)=1.1,求()=

3.已知离散型随机变量X 的分布列如下表:

4.设在15个不同类型的零件中有2个次品,每次任取1个,共取3次,并且每次取出不再放回.若以X ,表示取出次品的个数,求X 的期望E(X)和方差D(X)

2010—2013高考题

1.(2010理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 2.(2011理科)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.

13 B.12 C.23 D.34

3.(2012理科)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有 (A )12种 (B )10种 (C )9种

(D )8种

4.(2012理科)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,2

50),且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为

5.(2013理科)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等5的概率为

1

14

,则n =__________.

6.(2014理科)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )

A. 0.8

B. 0.75

C. 0.6

D. 0.45

7.(2011)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:

A 配方的频数分布表

(1) 分别估计用A 配方,B 配方生产的产品的优质品率;

(2) 已知用B 配方生产一件产品的利润(单位:元)与其质量指标值的关系式为

2,94,2,94102,4,102.t y t t -

=≤

从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)

8. (2012理)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花作垃圾处理。

(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n )的函数解析式。

以100天记录的各需求量的频率作为各需求量发生的概率。

(ⅰ)若花店一天购进16枝玫瑰花,x 表示当天的利润(单位:元),求x 的分布列、数学

期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理

由。

9.(2013理)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (1)将T 表示为X 的函数;

(2)根据直方图估计利润T 不少于57 000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望.

10.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:

(1)求y 关于t 的线性回归方程;

(2)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的

变化情况,并预测该地区2015

年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:

()()

()

1

2

1

n

i

i

i n

i i t t y y b t t ∧

==--=

-∑∑,??a

y bt =-

11.(2010理科)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:

K 2

=2

n(ad bc)(a+b)(c+d)(a+c)(b+d)

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

(完整版)04183概率论与数理统计(经管类)_1001

浙04183# 概率论与数理统计(经管类)试题 第 1 页(共 5 页) 全国2010年1月高等教育自学考试 概率论与数理统计(经管类)试题 课程代码:04183 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ?B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B ) D.P (AB )=φ 2.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.8 1 B.41 C.8 3 D. 2 1 3.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53 )A |B (P =,则P (B )=( ) A. 51 B. 52 C. 5 3 D. 5 4 4.设随机变量X 则k= A.0.1 B.0.2 C.0.3 D.0.4 5.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( ) A.F(-a)=1-? a 0dx )x (f B.F(-a)= ? -a dx )x (f 21 C.F(-a)=F(a) D.F(-a)=2F(a)-1 6.设二维随机变量(X ,Y )的分布律为

浙04183# 概率论与数理统计(经管类)试题 第 2 页(共 5 页) 则P{XY=0}=( ) A. 121 B. 61 C. 3 1 D. 3 2 7.设随机变量X ,Y 相互独立,且X~N (2,1),Y~N (1,1),则( ) A.P{X-Y ≤1}=21 B. P{X-Y ≤0}=21 C. P{X+Y ≤1}= 2 1 D. P{X+Y ≤0}= 2 1 8.设随机变量X 具有分布P{X=k}=5 1 ,k=1,2,3,4,5,则E (X )=( ) A.2 B.3 C.4 D.5 9.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑ == 5 1 i i x 5 1x 和25 1 i i 2 )x x (41 s ∑=-= ,则 s ) x (5μ-服从( ) A.t(4) B.t(5) C.)4(2χ D. )5(2χ 10.设总体X~N (2 ,σμ),2 σ未知,x 1,x 2,…,x n 为样本,∑=--= n 1 i 2i 2 )x x (1 n 1 s ,检验假 设H 0∶2σ=2 0σ时采用的统计量是( )

频率与概率教案

频率与概率教案 Prepared on 24 November 2020

《频率与概率》教案 教学目标:1。经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。 2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。 3.能运用树状图和列表法计算简单事件发生的概率。 教学重点:运用树状图和列表法计算事件发生的概率。 教学难点:树状图和列表法的运用方法。 教学过程: 问题引入:对于前面的摸牌游戏,在一次试验中,如果摸得第一张牌面数字为1,那么摸第二张牌的数字为几的可能性大如果摸得第一张牌的牌 面数字为2呢(由此引入课题,然后要求学生做实验来验证他们 的猜想) 做一做: 实验1:对于上面的试验进行30次,分别统计第一张牌的牌面字为1时,第二张牌的牌面数字为1和2的次数。 实验的具体做法:每两个人一个小组,一个负责抽纸张,另一个人负责记录, 如:1 2 2 1---------(上面一行为第一次抽的) 2 1 2 1---------(下面一行为第二次抽的) 议一议: 小明的对自己的试验记录进行了统计,结果如下:

数字为2 让学生去讨论小明的看法是否正确,然后让学生去说说自已的看法。 想一想: 对于前面的游戏,一次试验中会出现哪些可能的结果每种结果出现的可能性相 可能出现的结果(1,1)(1,2)(2,1)(2,2) 1)(1,2)

(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4。 利用树状图或表格,可以比较方便地求出某些事件发生的概率。 例1:随机掷一枚硬币两次,至少有一次正面朝上的概率是多少 解:随机掷一枚均匀的硬币两次,所有可能出现的结果如下: 正 正 开始反 正 反 正 总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3种:(正,正)(正,反)(反,正),因此至少有一次正面朝上的概率为3/4。 第二种解法:列表法 随堂练习: 1.从一定高度随机掷一枚硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果。小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上。那么你认为小明第4次掷硬币,出现正面的可能

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率统计习题及答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

概率论试题(答案)

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D) 0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3 (B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B)

04183概率论与数理统计(经管类)(有问题详解)

文案大全 04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

频率和概率

频率和概率 考纲考试范围 (一)考纲点击 1.经历试验、统计等活动过程,在活动中进步发展学生合作交流的意识和能力。 2.通过试验等活动,理解事件发生的频率与概率之间的关系,加深对概率的理解,进一步 体会概率是描述随即现象的数学模型。 3.能运用树状图和列表发计算简单事件发生的概率,能用试验或模拟试验的方法估计一些 复杂的随即事件发生的频率。 4.结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的关系。(二)单元知识结构 基础训练 例一.某学校有320名学生,现对他们的生日进行统计(可以不同年) ( ) A.至少有两人生日相同 B.不可能有两人生日相同 C.可能有两人生日相同,且可能性较大 D.可能有两人生日相同,但可能性较小 例二.一个小球从A点沿制定的轨道下落,在每个交叉口都有向左 或向右两种机会均等的结果,小球最终到达H 点的概率是() A.1 2 B. 1 4 C. 1 6 D. 1 8 例三.在甲乙两个盒子里分别放着4个和8个小球,其中甲盒子中装有1个红球,3个白球;乙盒子 装有2个红球,6个白球.如果你现在想取出一个红球,那么选择哪个盒子能使你成功的机会大? 例四.现有长度为3cm,4cm,5cm,7cm,9cm的小木棒5根,从中任意取出三根,则能构成三角形 的概率是多少? 解:列举所有可能出现的结果:3cm,4cm,5cm;3cm,4cm,7cm;3cm,4cm,9cm;3cm,5cm, 7 cm;3cm,5cm,9cm;3cm,7cm,9cm;4cm,5cm,7cm;4cm,5cm,9cm;4cm,7cm,9cm;5cm, 7cm,9cm.共有10种情况,其中能构成三角形的有6种情况,所以 P= 10 6 = 5 3 . 例五. 李大爷的鱼塘今年放养鱼苗10万条,根据这几年的统计分析,鱼苗成活率约为95%,现准 备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条 鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,请你帮助李大爷估算今年鱼塘中 鱼的总重量.如果每千克售价为4元,那么,李大爷今年的收入如何? 解:李大爷的鱼塘有鱼≈100000×95%=95000(条) 李大爷的鱼塘鱼的总重量≈[(40×2.5+25×2.2+35×2.8)÷(40+25+35)]× 95000=240350(千克) 李大爷今年的收入≈240350×4=961400(元) 答:李大爷估算今年鱼塘中鱼的总重量估计有240350千克,如果每千克售价为4元, 李大爷大约 今年的收入有961400元. 高频考点 1、如图所示的矩形花园ABCD中,AB=4m,BC=6m,E为DC边上任意一点,小鸟任意落在矩形中,则 落在阴影区域的概率是多少? 现实生活中存在大量的随机事件随机事件发生的可能性有大小 随机事件发生的可能性(概率)的计算 概率的应用理论计算 试验估算 只涉及一步实验的随机 事件发生的概率 涉及两步或两步以上实验的随 机事件发生的的概率 列表法树状图法 C E B D

概率统计试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =U ________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===L 则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X L 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件 是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 , 03()2,342 0, kx x x f x x ≤

基于概率神经网络(PNN)的故障诊断

基于概率神经网络(PNN)的故障诊断 概率神经网络PNN是一种结构简单、训练简洁、应用相当广泛的人工神经网络,在实际应用中,尤其是在解决分类问题的应用中,它的优势在于线性学习算法来完成以往非线性学习算法所做的工作,同时又能保持非线性算法的高精度等特性。基于概率神经网络的故障诊断方法实质上是利用概率神经网络模型的强大的非线性分类能力,将故障样本空间映射到故障模式空间中,从而形成一个具有较强容错能力和结构自适应能力的诊断网络系统。 1 概述 概率神经网络是一种可以用于模式分类的神经网络,其实只是基于贝叶斯最小风险准则发展而来的一种并行算法,目前已经在雷达、心电图仪等电子设备中获得了广泛的应用。PNN与BP网络相比较,其主要优点为: 快速训练,其训练时间仅仅大于读取数据的时间。 无论分类问题多么复杂,只要有足够多的训练数据,就可以保证获得贝叶斯准则下的最优解。 允许增加或减少训练数据而无需重新进行长时间的训练。 PNN层次模型是Specht根据贝叶斯分类规则与Parzen的概率密度函数提出的。在进行故障诊断的过程中,求和层对模式层中间同一模式的输出求和,并乘以代价因子;决策层则选择求和层中输出最大者对应的故障模式为诊断结果。当故障样本的数量增加时,模式层的神经元将随之增加。而当故障模式多余两种时,则求和层神经元将增加。所以,随着故障经验知识的积累,概率神经网络可以不断横向扩展,故障诊断的能力也将不断提高。 2基于PNN的故障诊断 1.问题描述 发动机运行过程中,油路和气路出现故障是最多的。由于发动机结构复杂,很难分清故障产生的原因,所以接下来尝试利用PNN来实现对发动机的故障诊断。 在发动机运行中常选用的6种特征参数:AI、MA、DI、MD、TR和PR。其中,AI为最大加速度指标;MA为平均加速度指标;DI为最大减速度指标;MD为平均减速度指标;TR为扭矩谐波分量比;PR为燃爆时的上升速度。 进行诊断时,首先要提取有关的特征参数,然后利用PNN进行诊断,诊断模型如图1所示。 2.PNN的创建和应用

学校概率论习题集答案

概率练习答案 第一章练习一 一、填空: 1、b 表示不中,z 表示中(1) zzz,zzb,zbz,bzz,zbb,bzb,bbz,bbb (2)0,1,2,3,4,5 (3)1,2,3,4,5,(4)z,bz,bbz,bbbz,bbbbz. … 2、(1)A B ?(2)AB (3)AB AB ?(4)AB (5)_ _B A AB ? 3、(1)A B C ?? (2)ABC ABC ABC ABC ??? 4、(1)成立(2)不成立(3)不成立(4)成立 5、(1)?(2)]2,5.1[)1,5.0()25.0,0[??(3)B (4) A 6、(1) 11,279 (2)1 21 二、解答题: 1、不相容A 与D ,B 与D ,C 与D 。相容B 与C , 对立事件B 与D 2、(1){奇奇,奇偶,偶奇,偶偶} (2)1C AB AB =?、2C AB AB =? 3、a/a+b 第一章练习二 一、1-5 1、 ( A ) 2、(C ) 3、 ( B) 4、 ( B ) 二、1、p -1, 2、0.82 3、1-p-q 4、c-b,(c-b)/(1-b) 三、1、(1)0.4 (2)0.2 2、0.99 3、52.0)(,7.0)/(,7.0)/(=?==B A P A B P B A P 第一章练习三 一、1、1 3 2、0.84 3、31P - 4、0.684 二、1、0.55 2、0.18;49 3、 4 7 4、 (1) 0.0125 (2) 0.64 5、05.0)99.0(95.0)99.0(1≤?≥-x x 三、事件A 、B 独立,当且仅当()()()()P AB P AB P AB P AB = 必要性易证 充分性:[()()][()()]()[1()()()]P B P AB P A P AB P AB P A P B P AB --=--+

04183概率论与数理统计(经管类)

04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回, 则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X Λ21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量 的联合分布函数为,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21Λ是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X Λ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。 A .21)0(=≤+Y X P B .21)1(=≤+Y X P C .21)0(=≤-Y X P D .21)1(=≤-Y X P 10.设总体X~N (2,σμ),2 σ为未知,通过样本n x x x Λ21,检验00:μμ=H 时,需要 用统计量( C )。

概率论模拟试题(附答案)

模拟试题(一) 一.单项选择题(每小题2分,共16分) 1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立 (C) 0)(0)(==B P A P 或 (D) AB 未必是不可能事件 2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( ) (A) )1(3p - (B) 3)1(p - (C) 31p - (D) 21 3 )1(p p C - 3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立 的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续 4.若随机变量ξ的概率密度为)( 21)(4 )3(2 +∞<<-∞=+- x e x f x π , 则=η( ))1,0(~N (A) 2 3 +ξ (B) 2 3 +ξ(C) 2 3-ξ(D) 2 3 -ξ 5.若随机变量ηξ ,不相关,则下列等式中不成立的是( ) (A) 0),(=ηξCov (B) ηξηξD D D +=+)( (C) ηξξηD D D ?= (D) ηξξηE E E ?= 6.设样本n X X X ,,,21???取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X (B) )1,0(~N X n (C) ) (~21 2n X n i i χ∑= (D) )1(~-n t S X 7.样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量

(完整word版)04183概率论与数理统计(经管类)2015年真题2套及标准答案

全国高等教育自学考试 概率论与数理统计(经管类)2015年10月真题 (课程代码:04183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设事件A 与B 互不相容,且P(A)=0.4,P(B)=0.2,则P(A ∪B)=( ) A.0 B.0.2 C.0.4 D.0.6 2.设随机变量X ~B(3,0.3),则p={X-2}=( ) A.0.189 B.0.21 C.0.441 D.0.7 3.设随机变量X 的概率密度为=???≤≤=a x ax x f ,则常数其他,, 0, 10,)(2( ) A.0 B.3 1 C.2 1 D.3 4.设随机变量X 的分布律为 { }==-12 .06.02.01 012X P P X ,则( ) A.0.2 B.0.4 C.0.6 D.0.8 5.设二维随机变量(x,y)的分布律为{}==11 .02.01.013.02.01.00 2 10\X P Y X 则( ) A.0.1 B.0.2 C.0.3 D.0.4 6.设随机变量X ~N(3,22),则E(2X+2)=( ) A.3 B.6 C.9 D.15 7.设随机变量X 服从参数为3的泊松分布,Y 服从参数为5 1 的指数分布,且X,Y

互相独立,则D(X-2Y+1)=( ) A.23 B.28 C.103 D.104 8.已知X 与Y 的协方差Cov (X,Y )=2 1 -,则Cov (-2X,Y )=( ) A.21 - B.0 C.2 1 D.1 9.设)2(,...,,21>n x x x n 为总体X 的一个样本,且,未知)()(μμ=X E x 为样本均值,则μ的无偏估计为( ) A.x n B.x C.x n )1(- D. x n ) 1(1 - 10.设a 是假设检验中犯第一类错误的概率,0H 为原假设,以下概率为a 的是( ) A.{}不真接受00|H H P B.{}真拒绝00|H H P C.{}不真拒绝00|H H P D.{}真接受00|H H P 二、填空题(本大题共15小题,每小题2分,共30分) 11.袋中有编号为0,1,2,3,4的5个球,从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_____. 12.设A,B 为随机事件,则事件“A,B 至少有一个发生”可由A,B 表示为_____. 13.设事件A,B 相互独立,且P(A)=0.3,P(B)=0.4,则)(B A P Y =_____. 14.设X 表示某射手在一次射击命中目标的次数,该射手的命中率为0.9,则P{x=0}=_____. 15.设随机变量X 服从参数为1的指数分布,则P{X >2}=_____. 16.设二维随机变量(X,Y)的分布律为c Y X 25 61 256 2590 10\则c=_____. 17.设二维随机变量(X,Y)的分布函数为F(x,y),则P{X ≤0,Y ≤0}用F(x,y)表

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

04183概率论与数理统计(经管类)_第2章课后答案

习题2.1 1.设随机变量X的分布律为P{X=k}=,k=1,2,N求常数a. N 解:由分布律的性质沫皿瑶=1得 P(X=1)申(X=2) + …P+X=N) =1 N* =1,即a=1 NI 2.设随机变量X只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为一,一一—,求常数C. 花亡4c 5c l&c 解:- ---- ------------ : 2c 4c Sc 1.6c 37 C ~ 3?将一枚骰子连掷两次,以X表示两次所得的点数之和,以丫表示两次出现的最小点数,分别求X,丫的分布律. 注:可知X为从2到12的所有整数值. 可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36 ,故 P(X=2)=(1/6)*(1/6)=1/36( 第一次和第二次都是1) P(X=3)=2*(1/36 )= 1/18(两种组合(1,2)(2,1)) P(X=4)=3*(1/36 )= 1/12(三种组合(1,3)(3,1)(2,2)) P(X=5)=4*(1/36 )= 1/9(四种组合(1,4)(4,1)(2,3)(3,2)) P(X=6)=5*(1/36 = 5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3)) P(X=7)=6*(1/36) = 1/6(这里就不写了,应该明白吧) P(X=8)=5*(1/36) = 5/36 P(X=9)=4*(1/36) = 1/9 P(X=10)=3*(1/36) = 1/12 P(X=11)=2*(1/36) = 1/18 P(X=12)=1*(1/36) = 1/36 以上是X的分布律投两次最小的点数可以是1到6里任意一个整数,即丫的取值了. P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值

概率统计习题带答案

概率统计习题带答案 概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。3.试验E为掷2颗骰子观察出现的点数。每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白

球、m个红球,乙袋中装有N个白球、M个红球。今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。求:P(A|B);

基于概率论的风险型决策及应用

第12卷第2期2009年4月西安文理学院学报:自然科学版Journal of Xi , an University of A rts &Science (Nat Sci Ed ) Vol .12 No .2Ap r .2009 文章编号:100825564(2009)022******* 收稿日期:2008212210 作者简介:彭玉忠(1951—),男,江苏邳州人,江苏省运河高等师范学校数学系副教授,特级教师.研究方向:高师基 础数学与应用数学研究. 基于概率论的风险型决策及应用 彭玉忠 (江苏省运河高等师范学校数学系,江苏邳州221300) 摘 要:运用概率论处理运筹学中的风险型决策问题,得到一些具有实际意义的结果:运用状态概率和方案的期望值确立风险型决策的指导原则;运用树型图直观表示风险型决策方案的形成过程;以转移概率为特征值对风险型决策方案进行稳定性分析;运用Bayes 概率计算公式对决策方案进行前、后验分析和调整. 关键词:概率论;风险型决策;依据原则;树型图;转移概率;Bayes 公式.中图分类号:C934 文献标识码:A 0 引言 决策是人们生活和工作中普遍存在的一种活动.决策的正确与否会给国家、企业和个人带来利益或损失.决策通常有三种类型 [1] :确定型、风险型、不确定型.确定型决策是在未来状态完全确定、影响决策的因 素完全掌握的情况下的决策,决策者只要根据掌握的信息就可以顺理成章地得到决策方案;不确定型决策是在与决策有关的信息相对匮乏、未来状态出现的可能性的大小无法预测的情况下所作的决策,不确定型决策的制定主要靠决策者的主观意志和经验判断;风险型决策是在对影响决策的信息掌握的不很充分、但对各种状态可能发生的概率为已知的条件下的决策.风险型决策受到有关随机因素的影响,决策时存在一定的风险,但以概率为数学工具进行统计定量分析,确定出最佳决策方案,可以较大限度地符合实际情况,使收益最大化或损失最小化. 1 风险型决策依据的基本原则 任何决策都不可能十全十美,都会有得有失.在利害冲突中趋利避害,决定取舍,决策者必须有一个指导思想,有一个制约决策方案所依据的基本原则.风险型决策最常用的基本原则有两种.1.1 最大概率原则 这种决策原则,就是在决策方案涉及的各种状态中,以概率最大的那一状态作为选择方案的前提条件.亦即,以概率最大的那一状态下实现最大收益值的方案作为决策方案.这一决策原则的指导思想是:在概率最大的那种状态下实施的决策方案实现最大收益值的可能性也是最大的. 例1 某农场对每一种天气类型发生的概率及种植各种农作物的收益如表1,试按最大概率原则确定最佳决策方案. 解 由表1可知,“平年”状态的概率最大.而在“平年”状态下,大豆的收益最大.所以,该农场应该选择种植大豆为最佳决策方案.

相关文档