文档库 最新最全的文档下载
当前位置:文档库 › 三角函数错解一例剖析

三角函数错解一例剖析

三角函数错解一例剖析
三角函数错解一例剖析

三角函数问题错解一例剖析

□周双进

(两当县第一中学,甘肃,两当

742400) 例1.在ABC ?中,已知53

sin =A ,13

5cos =B ,求C cos 的值。 这道题目,是高中数学三角函数中的常见题型。笔者在教学中,发现学生对此问题的错解率特别高。

学生中常见的解答过程如下:

错解:在ABC ?中, 135cos =B ,∴B 为锐角,且13

12sin =B . 又53sin =A ,∴A 可能为锐角也可能为钝角。

(1)当A 为锐角时,54cos =A .

∴ B A B A B A B A C sin sin cos cos )cos()](cos[cos +-=+-=+-=π =65

1613125313554=?+?-. (2)当A 为钝角时,54

cos -=A .

∴ B A B A B A B A C sin sin cos cos )cos()](cos[cos +-=+-=+-=π =65

56131253135)54(=?+?--. 故所求C cos 的值6516或65

56。

似乎他们考虑的很全面,在已知三角形一个内角A 的正弦值sinA (其中sinA<1),求cosA 时,应该分A 为锐角和钝角两种情况进行讨论。但他们往往忽视三角形三个内角之间的内在联系,忽视三个角的三角函数值之间的数量关系。

不难分析,上例中A 不可能为钝角,只能是锐角,故正确结果应是 C cos =65

16. 其实,对于三角函数中类似问题,我们有如下结论:

结论1.在ABC ?中,若B A sin sin <,则A 必为锐角。

结论2.在ABC ?中,若1sin sin <

结论3.在ABC ?中,若B A sin sin =,则A 、B 均为锐角,且B A =。

进一步地,综合上述几个结论,我们有如下定理:

定理:在ABC ?中,B A sin sin ≤成立的充要条件是B A ≤。即

下面对以上几个结论进行证明。 结论1的证明:用反证法证明。

假设A 不是锐角,由于A 是ABC ?的一个内角,则A 为直角或钝角,且B 只能是锐角。即

ππ

<≤A 2,

.20,20π

π

π<<≤-<∴B A

由)sin(sin A A -=π和题设B A sin sin <,知

B A sin )sin(<-π.

根据函数x y sin =的单调性,有

B A <-π,即

π>+B A ,这与π<+B A 矛盾.

故A 必为锐角.

结论2的证明:

只需证明B 为锐角和B 为钝角的三角形存在即可。

根据结论1,知A 为锐角。

2)arcsin(sin )arcsin(sin π

<<=B A A ,

(1)若)arcsin(sin B B =,则B 为锐角。

显然,以锐角A 和锐角B 为内角的ABC ?是存在的。

(2)若)arcsin(sin B B -=π,则B 为钝角,且

.)]arcsin(sin )n [arcsin(si )]arcsin(sin [)arcsin(sin πππ<--=-+=+A B B A B A

因此,以锐角A 和钝角B 为内角的ABC ?也是存在的。

故在题设条件下,B 可能为锐角,也可能为钝角。

结论2也可以由作图直接验证而得。

其实,以上结论均可以用正弦定理来证明。

以下用正弦定理证明定理:在ABC ?中,B A sin sin ≤?B A ≤. 证明:在ABC ?中,由正弦定理

R C

c B b A a 2sin sin sin ===(其中R 是ABC ?外接圆的直径)知, A R a sin 2=,B R b sin 2=,C R c sin 2=.

所以,在ABC ?中,

B A ≤?b a ≤?B R A R sin 2sin 2≤?B A sin sin ≤,即 B A sin sin ≤?B A ≤.

最后,我们再做一个类似题型的练习。

例2.在ABC ?中,已知135sin =

A ,53sin =

B ,则B A cos cos +的值是( )。 (A)65112;(B)65112或658;(C)65112或658-;(D)65112或658或658-。 解: 1sin sin <

∴ A 必为锐角,且13

12cos =A ,而B 则可能为锐角,也可能为钝角。

(1)当B 为锐角时,5

4cos =B .

∴ 65112541312cos cos =+=+B A . (2)当B 为钝角时,5

4cos -=B .

∴ 658541312cos cos =-=+B A . 故应选(B )。

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

三角函数综合应用解题方法总结(超级经典)

精锐教育学科教师辅导教案

例3:求函数y=f(x)=cos 2 2x-3cos2x+1的最值. 解 ∵f(x)=(cos2x- 23)2-4 5, ∴当cos2x=1,即x= k π,(k ∈Z)时,y=min=-1, 当cos2x=-1,即x= k π+ 2 π ,( k ∈Z)时,y=max=5. 这里将函数f(x)看成关于cos2x 的二次函数,就把问题转化成二次函数在闭区间[-1,1]上的最值值问题了. 4.引入辅助角法 y=asinx+bcosx 型处理方法:引入辅助角?,化为y=22b a +sin (x+?),利用函数()1sin ≤+?x 即可求解。Y=asin 2 x+bsinxcosx+mcos 2 x+n 型亦可以化为此类。 例4:已知函数()R x x x x y ∈+?+= 1cos sin 2 3cos 212当函数y 取得最大值时,求自变量x 的集合。 [分析] 此类问题为x c x x b x a y 2 2 cos cos sin sin +?+=的三角函数求最值问题,它可通过降次化简整理为 x b x a y cos sin +=型求解。 解: ().4 7,6,2262,4562sin 21452sin 23 2cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+??? ??+=+???? ??+=++=+?++?=y z k k x k x x x x x x x x y ππππππ 5. 利用数形结合 例5: 求函数y x x = +s in c o s 2的最值。 解:原函数可变形为y x x = ---s i n c o s () .0 2 这可看作点Ax xB (c o s s i n )() ,和,-20的直线的斜率,而A 是单位圆x y 2 2 1+=上的动点。由下图可知,过B ()-20,作圆的切线时,斜率有最值。由几何性质,y y m a x m i n .= =-333 3 , 6、换元法 例6:若0

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

最新九年级《三角函数》知识点、经典例题

九年级《三角函数》知识点、例题、中考真题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 22c b a =+ 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 定 义 表达式 取值范围 关 系 正弦 斜边的对边A A ∠= sin c a A =sin 1sin 0<A (∠A 为锐角) B A cot tan = B A tan cot = A A cot 1 tan = (倒数) 1cot tan =?A A 余切 的对边 的邻边A A A ∠∠= cot a b A =cot 0cot >A (∠A 为锐角) 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 三角函数 0° 30° 45° 60° 90° αsin 0 2 1 2 2 2 3 1 αcos 1 2 3 2 2 2 1 0 αtan 0 3 3 1 3 - αcot - 3 1 3 3 0 6、正弦、余弦的增减性: ) 90cot(tan A A -?=)90tan(cot A A -?= B A cot tan = B A tan cot = )90cos(sin A A -?=) 90sin(cos A A -?= B A cos sin =B A sin cos =A 90B 90∠-?=∠? =∠+∠得由B A 对边 邻边 斜边 A C B b a c A 90B 90∠-?=∠? =∠+∠得由B A

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

三角函数10道大题(带答案)

三角函数大题转练 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++=π π · (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[ππ-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4?? ∈ ? ? ? πα,若()2cos 2,2 f =αα求α的大小 : 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.

5、 设函数2())sin 4 f x x x π = ++. (I )求函数()f x 的最小正周期; ; (II )设函数()g x 对任意x R ∈,有()()2 g x g x π+=,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相 邻两条对称轴之间的距离为2 π, (1)求函数()f x 的解析式; (2)设(0,)2 πα∈,则()22 f α =,求α的值. ' 7、设426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? -???? 上为增函数,求 ω的最大 值.

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

三角函数10道大题(带答案)1

三 角 函 数 1.已知函数()4cos sin()16 f x x x π =+ -. (Ⅰ)求 ()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++ =π π (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间]4 ,4[π π- 上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+ π (Ⅰ)求()f x 的定义域与最小正周期; (II)设0,4?? ∈ ?? ? πα,若( )2cos 2,2 f =α α求α的大小 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期;(2)求)(x f 的单调递减区间.

5、 设函数2())sin 4 f x x x π = ++. (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()()2g x g x π + =,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对 称轴之间的距离为 2 π, (1)求函数()f x 的解析式;(2)设(0,)2π α∈,则()22 f α =,求α的值. 7、设 426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? - ???? 上为增函数,求 ω的最大值.

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

三角函数10道大题(带答案)

三角函数 令狐采学 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()3 2sin()(2R x x x x x f ∈-+-++=π π (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[π π-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0, 4?? ∈ ?? ? πα,若()2cos 2,2 f =α α求α的大小 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间. 5、设函数2())sin 24 f x x x π = ++. (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()()2 g x g x π+=,且当[0,]2 x π∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3,其图 像相邻两条对称轴之间的距离为2 π, (1)求函数()f x 的解析式;

(2)设(0, )2π α∈,则()22 f α =,求α的值. 7、设426 f (x )cos(x )sin x cos x π =ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )=的值域 (Ⅱ)若y f (x )=在区间322,ππ?? -???? 上为增函数,求ω的最 大值. 8、函数 2 ()6cos 3(0)2 x f x x ωωω=+->在一个周期内的图象 如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ?为正三角形. (Ⅰ)求ω的值及函数()f x 的值域; (Ⅱ)若0()f x =,且0102(,)33 x ∈-,求0(1)f x +的值. 9、已知 ,,a b c 分别为ABC ?三个内角,,A B C 的对边, cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ?的面积为3;求,b c . 10、在?ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cosA =2 3 ,sinB . (Ⅰ)求tanC 的值;(Ⅱ)若a ?ABC 的面积. 答案 1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值. 【 精 讲 精 析 】 ( Ⅰ ) 因 为 ()4cos sin()16 f x x x π =+-14cos cos )12x x x =+-

任意角的三角函数典型例题精析

任意角的三角函数·典型例题精析 例1下列说法中,正确的是 [] A.第一象限的角是锐角 B.锐角是第一象限的角 C.小于90°的角是锐角 D.0°到90°的角是第一象限的角 【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键. 【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B). (90°-α)分别是第几象限角? 【分析】由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的 【解】(1)由题设可知α是第二象限的角,即 90°+k·360°<α<180°+k·360°(k∈Z), 的角. (2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角. (3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z), 所以-180°-k·360°<-α<-90°-k·360°(k∈Z).

故-90°-k·360°<90°-α<-k·360°(k∈Z). 因此90°-α是第四象限的角. 解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内. 【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的. 例3已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间 [] 【分析】解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易. 【解法一】由正、余弦函数的性质, 【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当 应选(A). 可排除(C),(D),得(A). 【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,可自己练习. 例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值; 【分析】利用三角函数的定义进行三角式的求值、化简和证明,是 三两个象限,因此必须分两种情况讨论.

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

三角函数综合测试题(及答案)

三角函数综合测试题 一、选择题(每小题5分,共70分) 1. sin2100 = A . 2 3 B . - 2 3 C . 2 1 D . - 2 1 2.α是第四象限角,5 tan 12 α=- ,则sin α= A .15 B .15- C .513 D .513 - 3. )12 sin 12 (cos ππ - )12sin 12(cos π π+= A .- 23 B .-21 C . 2 1 D .23 4. 已知sinθ=5 3 ,sin2θ<0,则tanθ等于 A .-4 3 B .4 3 C .-4 3或4 3 D .5 4 5.将函数sin()3y x π =- 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变) ,再将所得的图象向左平移3 π 个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π =- C .1sin()26y x π=- D .sin(2)6 y x π =- 6. ()2 tan cot cos x x x += A .tan x B . sin x C . c o s x D . cot x 7.函数y = x x sin sin -的值域是 A. { 0 } B. [ -2 , 2 ] C. [ 0 , 2 ] D.[ -2 , 0 ] 8.已知sin αcos 8 1 = α,且)2,0(πα∈,则sin α+cos α的值为 A. 25 B. -25 C. ±25 D. 2 3 9. 2 (sin cos )1y x x =--是

A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4( πππ π B .),4(ππ C .)45,4(ππ D .)2 3,45(),4(π πππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为 x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2 π B .ω=21,θ= 2π C .ω=2 1,θ=4π D .ω=2,θ=4π 12. 设5sin 7a π=,2cos 7b π=,2tan 7 c π =,则 A .a b c << B .a c b << C .b c a << D .b a c << 13.已知函数()sin(2)f x x ?=+的图象关于直线8 x π =对称,则?可能是 A . 2π B .4π- C .4 π D .34π 14. 函数f (x )= x x cos 2cos 1- A .在??????20π , 、??? ??ππ,2上递增,在??????23,ππ、??? ??ππ 2,23上递减 B .在??????20π,、??? ??23ππ,上递增,在??? ??ππ,2、??? ??ππ 223, 上递减 C .在?? ????ππ, 2、??? ?? ππ223,上递增,在?? ????20π,、??? ??23ππ, 上递减 D .在????? ?23, ππ、??? ??ππ2,23上递增,在?? ????20π,、??? ??ππ,2上递减 二.填空题(每小题5分,共20分,) 15. 已知??? ? ?- ∈2, 2ππα,求使sin α=3 2 成立的α= 16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+?)(ω>0,|?|< 2 π ,x ∈R )的部分图象如图,则函数表达式为

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,

三角函数10道大题(带答案)

三角函数 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++ =π π (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[π π-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+ π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4?? ∈ ?? ? πα,若( )2cos 2,2 f =α α求α的大小 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间. 5、 设函数2()cos(2)sin 24 f x x x π = ++. (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()() 2g x g x π + =,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式.

6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对 称轴之间的距离为 2 π, (1)求函数()f x 的解析式; (2)设(0,)2π α∈,则()22 f α =,求α的值. 7、设 426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? - ???? 上为增函数,求 ω的最大值. 8、函数2 ()6cos 3(0)2 x f x x ωωω=->在一个周期内的图象如图所示,A 为 图象的最高点,B 、C 为图象与x 轴的交点,且ABC ?为正三角形. (Ⅰ)求ω的值及函数()f x 的值域; (Ⅱ)若0()5f x =,且0102 (,)33 x ∈-,求0(1)f x +的值. 9、已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ?的面积为3;求,b c . 10、在?ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =2 3 ,sin B C . (Ⅰ)求tan C 的值; (Ⅱ)若a ?ABC 的面积.

相关文档 最新文档