文档库 最新最全的文档下载
当前位置:文档库 › 大学物理实验系列——杨氏模量数据处理

大学物理实验系列——杨氏模量数据处理

大学物理实验系列——杨氏模量数据处理
大学物理实验系列——杨氏模量数据处理

用列表法处理杨氏模量的测量数据

用作图法处理数据(图要做在坐标纸上),求出杨式模量E . 根据

N

M

b D gLR y ??=

28π

由图可以解出

kg

cm

N M 9.275.1=??

带入上式,解出:

2

/y N m =

大测量范围。

杨氏模量实验报告

实验十拉伸法测金属杨氏模量 【实验简介】 杨氏模量是工程材料的重要参数,它是描述材料刚性特征的物理量,杨氏模量越大,材料越不易发生变形,杨氏模量可以用动态法来测量,也可以用静态法来测量。本实验采用静态法。对于静态法来说,既可以用金属丝的伸长与外力的关系来测出杨氏模量,也可以用梁的弯曲与外力的关系来测量。静态法的关键是要准确测出试件 的微小变形量。杨氏模量是重要的物理量,它是选定构件材料的 依据之一,是工程技术常用参数,在工程实际中有着重要意义。 托马斯.杨生平简介、 托马斯.杨生(Thomas Young ,1773-1829)是英国物理学家,考古学家, 医生。光的波动说的奠基人之一。1773年6月13日生于米尔费顿,曾在伦 敦大学、爱丁堡大学和格丁根大学学习,伦敦皇家学会会员,巴黎科学院院 士。1829年5月10日去世。早期提出和证明了声波和光波的干涉现象(著名杨氏双缝干涉实验),并用光的干涉原理解释了牛顿环现象等。1807年提出了表征弹性体的量——杨氏模量。 【实验目的】 1、学会测量杨氏模量的一种方法(静态法); 2、掌握用光杠杆法测量微小长度变化的原理(放大法); 3、学习用逐差法处理实验数据。图10-1 托马斯.杨 【实验仪器及装置】 杨氏模量测定仪、光杠杆、望远镜标尺组、螺旋测 微器(25mm、0.01mm)、游标卡尺(125mm、0.02mm) 及钢卷尺(2m、1mm)等 图10-2 望远镜标尺图10-3 杨氏模量测定仪图10-4 实验装置放置图

【实验原理】 1、静态法测杨氏模量 一根均匀的金属丝或棒,设其长度为L ,截面积为S,在受到沿长度方向的外力F 的作用下伸长L ?。根据胡克定律可知,在材料弹性范围内,其相对伸长量 L L /?(应变)与外力造成的单位 面积上受力F/S(应力)成正比,两者的比值 L L S F Y //?= (10-1) 称为该金属丝的弹性模量,也称杨氏模量,它的单位为2/N m (牛顿/平方米)。 实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量。设金属丝的直径为d ,则24 1 d S π=,杨氏模量可表示为: 2 4FL Y d L π= ? (10-2) 式(2)表明:在长度L 、直径d 和外力F 相同的情况下,杨氏模量大的金属丝的伸长量较小,而一般金属材料的杨氏模量均达到211/10m N 的数量级,所以当FL/2d 的比值不太大时,绝对伸长量L ?就很小,用通常的测量仪(游标卡尺、螺旋测微器等)就难以测量。实验中可采用光学放大法将微小长度转换成其他量测量,用一种专门设计的测量装置—— 光杠杆来进行测量。光杠杆及测量装置如图10-5、图10-6所示。 图10-5 光杠杆图 前足 后足 镜面M M M L

动态悬挂法测杨氏模量数据处理参考范例

动态悬挂法测杨氏模量数据处理参考范例 1. 数据记录 表1 各测量量测量值 样品 () L m m () m L m m ? ()m g ()m m g ? () 1f H z ()1 m f H z ? 黄铜 0.05 0.01 0.1 不锈钢 0.05 0.01 1 表2 样品直径测量值 次数 黄铜直径 () d m m () m d m m ? 不锈钢直径 () d m m () m d m m ? 1 0.005 0.005 2 3 4 5 6 2. 数据处理 (1)黄铜: L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f :0.10.058B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.998d m m = 1.110.0170.019A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.020u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001037.9310 701.0 1.6067 1.6067 5.99810 L m f Y d ---????==? ? 10 2 9.47710 N m = ?Y E = =

1.3%= 则101029.47710 1.3%0.1310Y Y u Y E N m =?=??=? (2)不锈钢 L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f : 10.58B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.945d m m = 1.110.0210.024A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.025u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001034.4310 1014 1.6067 1.6067 5.94510L m f Y d ---????==? ? 11 2 1.86510 N m =?Y E = = 1.7%= 则11 11 2 1.86510 1.7%0.03210 Y Y u Y E N m =?=??=? 3. 实验结果 (1)室温下测得黄铜样品的杨氏模量为: ()10 2 9.50.210Y N m =±? () 0.683p = 1.3% Y E = (2)室温下测得不锈钢样品的杨氏模量为: ()11 2 1.860.0410Y N m =±? () 0.683p = 1.7% Y E = 备注:不确定度u 在计算过程中保留两位有效数字,在最后计算结果中保留一位有效数字。

杨氏模量实验报告.doc

杨氏模量实验报告 开展实验自然要写实验报告,杨氏模量实验报告怎样写呢?那么,下面是我给大家整理收集的杨氏模量实验报告相关范文,仅供参考。 杨氏模量实验报告1 【实验目的】 1.1.掌握螺旋测微器的使用方法。 2.学会用光杠杆测量微小伸长量。 3.学会用拉伸法金属丝的杨氏模量的方法。 【实验仪器】 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。 1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。这圆形夹头可以在支架的下梁的圆孔内自由移动。支架下方有三个可调支脚。这圆形的气泡水准。使用时应调节支脚。由气泡水准判断支架是否处于垂直状态。这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。 2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时

平面镜以两前支脚为轴旋转。 图1 图2 图3 3、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。这是表明标尺通过物镜成像在分划板平面上。由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。标尺是一般的米尺,但中间刻度为0。 【实验原理】 1、胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为塑性形变。 应力:单位面积上所受到的力(F/S)。 应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 用公式表达为: (1) 2、光杠杆镜尺法测量微小长度的变化 在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,

杨氏模量实验报告记录

杨氏模量实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

一、实验目的:1.学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理 2.学会用“对称测量”消除系统误差 3.学习如何依实际情况对各个测量进行误差估算 4.练习用逐差法、作图法处理数据 二、实验原理: 在外力作用下,固体材料所发生的形状变化称之为形变。形变分为弹性形变和范性形变。如果加在物体上的外力停止作用后,物体能完全恢复原状的形变称之为弹性形变;如果加在物体上的外力停止作用后,物体不能完全恢复原状的形变称之为范性形变。 在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。设细丝的原长为L ,横截面积为S ,两端受拉力(或 压力)F 后,物体伸长(或缩短)L ?。而单位长度的伸长量L L ?称为应变,单位横截面积所承受的力S F 称 为应力。根据胡克定律,在弹性限度内,应力与应变成正比关系,即 L L E S F ?= 式中比例系数E 称为杨氏弹性模量,简称杨氏模量。实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,而只决定于物体的材料。杨氏模量是表征固体材料性质的一个重要物理量,是选定机械构件材料的依据之一。 由上式得 L S FL E ?=0 在国际单位制(SI)中,E 的单位为2-m ?N 实验证明,杨氏模量与外力F 、物体长度L 和横截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量 设金属丝的直径为d ,则 2d 41 π=S L FL E ?=2d 4π 而L ?是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的L ?约为0.3mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量L ?的间接测量。

杨氏模量数据表格及数据处理要求

杨氏模量测定(横梁弯曲法) 一、实验目的 1.学会用横梁弯曲法测定金属材料的杨氏模量; 2.学会读数显微镜的使用方法,掌握测量微小长度变化的方法; 二、实验仪器及用具 FD-YZ-MT杨氏模量测试仪1套JC—10读数显微镜米尺游标卡尺千分尺待测矩形金属条 三、实验原理 这部分内容请同学们按照实验报告写作要求来写 四、实验步骤(供参考) (1)将矩形待测材料安放在仪器的刀口上,套上铜刀口(下端挂一砝码盘)并使其刀刃恰 好在仪器两刀口的中间。 (2)调节显微镜的目镜,看清楚镜简内的叉丝.松开显微镜的底座并使镜筒轴线正对着铜 刀上的基线,前后移动底座,直到从镜中看清楚铜刀基线,锁定底座和升降杆;转动读数显微镜的镜筒使得目镜中看到直尺方向与竖直方向一致,读数显微镜的手轮朝上,锁紧读数显微镜镜筒,转动手轮移动十字叉丝与基线像完全重合,记下读数.(3)在砝码盘上顺序地加法码.共加7次,每次砝码的质量为10 g,同时,每次转动显微 镜的手轮,使得十字叉丝水平线与目镜中基线像重合,记下相应读数. (4)由梁上每取下一片砝码,仿照步骤(3)记下相应的读数. (5)测出仪器两刀口间的距离l,测量1—3次,再测出待测样品的厚度h和宽度a,各测 量6次,记录下相应的测量结果. (6)实验完毕整理好实验仪器 (7)利用逐差法求出对应10g的弛垂度λ ?,代入表达式(1)计算杨氏模量并求出其测量不确定度。 注意事项: 1.从初始读数到增加每一片砝码,转动读数显微镜的手轮使得叉丝与基线像重合过 程中叉丝移动方向要保持一致 2.整个测量过程确保读数显微镜或者铜刀口位置不发生移动,因此调节好读数显微 镜一定锁紧相应部位以免测量产生转动,增加砝码或减少砝码时要谨慎切莫碰动 铜刀口的位置。倘若发生了它们的位置有一个发生了变化,就必须从头开始测量。 3.使用千分尺和游标卡尺之前先记下相应的零点读数;再则,使用千分尺测量样品 厚度时应注意测量杆与固定砧别卡得太紧以免样品发生形变,使用游标卡尺测量 样品宽度时内量爪也别卡得太紧。 五、数据表格 表1 待测样品及支架两刀口距离测量 支架两刀口距离d度为:cm 千分尺零点读数:mm

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

杨氏模量实验报告汇总

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班 学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

)调节测定仪支架螺丝,使支架竖直,使夹头刚好穿过平台上的圆孔而不会与平台发生摩擦(1 )将杠杆后尖脚置于夹头上,两尖脚置于平台凹槽上(2 )调节光杠杆与望远镜、米尺中部在同一高度上(3)调节望远镜的位置或光杠杆镜面仰角,直至眼睛在望远镜目镜附近能直接(不通过望远镜筒)从4(光杠杆镜面中观察到标尺中部的像)细微调节望远镜方位和仰角调节螺丝,直至望远镜上缺口与准星连线粗略对准光杠杆镜面(5 (6)调节望远镜目镜调焦旋钮,直至在望远镜中能看清叉丝。)调节望远镜的物镜调焦旋钮直至在望远镜中能看清整个镜面。(如果只能看到部分镜面,应调节7(望远镜仰角调节螺丝,直至看到整个镜面)。 8)继续调节望远镜的物镜调焦旋钮,直至在望远镜中能看清标尺中部读数。()如果只有部分标尺清楚,说明只有部分标尺聚焦,应调节望远镜仰角调节螺丝直至视野中标尺读(9 数完全清楚。 四、实验内容和步骤:个底脚螺丝,同时观察砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的32kg(1)用放在平台上的水准尺,直至中间平台处于水平状态为止。 )调节光杠杆镜位置。将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下(2端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本所示。垂直或稍有俯角,如图6-1左右处,松开望远镜固定螺钉,上下移动使得望远2m(3)望远镜调节。将望远镜置于距光杆镜移动望远镜固定架位置,从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,镜和光杠杆镜的镜面基本等高。直至可以看到光杠杆镜中标尺的像。然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远镜里可以看到清晰的标尺刻度为止。n砝,然后每加上1kg砝码时的读数作为开始拉伸的基数(4)观测伸长变化。以钢丝下挂 2kg0n,n,n,n,n,n,n,n这是钢丝拉伸过程中的读数变, 这样依次可以得到码,读取一次数据, 76543210''''''''nnnnnnnn砝码,读取一次数据,依次得到1kg化。紧接着再每次撤掉,这是钢丝收缩过程中50671342的读数变化。注意:加、减砝码时,应轻放轻拿,避免钢丝产生较大幅度振动。加(或减)砝码后,钢丝会有

动态法测杨氏模量实验报告讲解

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

杨氏模量实验报告

钢丝的杨氏模量 【预习重点】 (1)杨氏模量的定义。 (2)利用光杠杆测量微小长度变化的原理和方法。 (3)用逐差法和作图法处理实验数据的方法。 【仪器】 杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。 【原理】 1)杨氏模量 物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。在弹性形变范围内,按照胡克(HookeRobert1635—1703)定律,物体内部的应力正比于应变,其比值 (5—1) 称为杨氏模量。 实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。 2)用静态拉伸法测金属丝的杨氏模量 杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。 用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。待测样品是一根粗细均匀的钢丝。钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。通过调节三角底座螺丝,使整个支架铅直。下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。 3)光杠杆

传统的杨氏弹性模量实验报告

氏弹性模量的测定 实验人: 氏弹性模量是材料弹性性质的一个主要特征量.本实验通过对钢丝氏弹性模量的测量,学习一种测量长度微小变化的方法:光杠杆镜尺法. [目的] 1. 测定金属丝的氏弹性模量. 2. 掌握光杠杆镜尺法测定长度微小变化的原理,学会具体的测量方法. 3. 学习处理实验数据的两种方法:图解法和逐差法. [原理] 1. 金属丝受外拉力作用,会有伸长,且遵从虎克定律,有L L S mg Y ?= 其中,Y:氏弹性模量 mg:外力 S:金属丝横截面积 L:金属丝长度 △L:金属丝伸长量 2. 光杠杆镜尺法测微原理 如图1,该系统利用镜子放大微小变化,从而达到测微效果.结合虎克定律及光杠杆镜尺法,可得氏弹性模量为 图1. 拉伸法测量杨氏弹性模量原理图 标尺 l m sk LDg Y ??= 2

其中,L:金属丝原长 D:镜面到标尺的垂直距离 S:金属丝截面积 K:光杠杆前足到两后足连线的垂直距离 m ?:单个砝码质量 l ?:加/减单个砝码时,标尺读数变化量 LDgSK 均为常量,l m ??/由图解法和逐差法求出 [仪器] 氏模量测定仪(如图M-4-3),调节方法如下: 1. 调节光杠杆与望远镜在同一高度,光杠杆镜面尽可能铅直. 2. 在望远镜外侧寻找光杠杆镜面上标尺的象(如看不到,应调节镜面方位和移动测定仪的位置) 3. 移动望远镜,使其缺口与准星大致对准标尺的像. 4. 调节望远镜目镜,使观察到的十字叉丝清晰. 5. 调节望远镜调焦手轮,先观察到镜子,再观察到标尺,使观察到的标尺读数与十字叉丝均清晰而无视差. [实验步骤] 1. 调节测定仪,使支架铅直. 2. 在金属丝下端先挂一负载(如2千克),使金属丝完全拉直,此负载为初始负载,不计入作用力. 3. 用带有卡具的米尺量出金属丝长度L. 4. 在不同位置,用螺旋测微计测10次金属丝直径d,取平均值. 5. 安装光杠杆,调节望远镜,记录望远镜读数x 0,逐渐增加砝码到9×0.500kg,每次增加0.500kg,记录望远镜读数x i ’,再逐渐减少砝码,记录望远镜读数,则x i =0.5(x i ’+ x i ’’) 6. 用钢皮尺测量光杠杆镜面到标尺的距离D 7. 用游标卡尺测量光杠杆前足到后两足连线的垂直长度K. [注意事项] 1. 调节望远镜时,注意消除视差,即要求标尺读数相对十字叉丝无相对位移.

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)电子版本

大学物理实验-拉伸法测钢丝的杨氏模量(已 批阅)

实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85 实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。在数据处理 中,掌握逐差法和作图法两种数据处理的方法 实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直 接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光 线转过2θ,而且有: D b =≈θθ22tan 故:) 2(D b l L =?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体 重合。

(2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表 面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面 (1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜 处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上 的读数r i ,然后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值 i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=, 262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为

杨氏模量实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054125 杨氏模量实验报告Young's modulus experiment report

杨氏模量实验报告 杨氏模量实验报告1 【实验目的】 1.1.掌握螺旋测微器的使用方法。 2.学会用光杠杆测量微小伸长量。 3.学会用拉伸法金属丝的杨氏模量的方法。 【实验仪器】 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。 1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。这圆形夹头可以在支架的下梁的圆孔内自由移动。支架下方有三个可调支脚。这圆形的气泡水准。使用时应调节支脚。由气泡水准判断支架是否处于垂直状态。这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。 2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。

图1 图2 图3 3、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。这是表明标尺通过物镜成像在分划板平面上。由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。标尺是一般的米尺,但中间刻度为0。 【实验原理】 1、胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为塑性形变。 应力:单位面积上所受到的力(F/S)。 应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 用公式表达为:(1) 2、光杠杆镜尺法测量微小长度的变化 在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为。当钢丝下降DL时,平面镜将转动q角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。由于平面镜转动q角,进入望远镜的光线旋转2q 角。从图中看出望远镜中标尺刻度的变化。

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器 (0-150mm,0.01) 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L,截面积为S,沿长度方向施

力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ???????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】

<一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上; 4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2 以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0 n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0 ‘ ,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微

钢丝杨氏模量实验报告及评分标准#精选.

钢丝杨氏模量实验 总分:100 组卷人:系统管理员 一、单选题共 5 小题共 20 分 1. (4 分)在拉伸法测杨氏模量实验中,采用加减砝码各测一次取平均的方法测量△x是为了 标准答案:C A. 增加测量次数 B. 扩大拉伸测量范围 C. 消除因摩擦和滞后带来的系统误差 D. 消除砝码的误差 2. (4 分)材料相同,粗细长度不同的两根钢丝,它们的杨氏模量是否相同: 标准答案:C A. 细金属丝的杨氏模量值较大 B. 粗金属丝的杨氏模量值较大 C. 相同 D. 不一定 3. (4 分)如果金属丝圆柱形活动夹和平台圆孔间有摩擦力存在,对实验结果将有何影响____ 标准答案:B A. 结果偏小 B. 结果偏大 C. 没有影响 D. 随机 4. (4 分)在量金属的氏模量实验中,常需预加负载,其作用是()。 测丝杨 标准答案:C A. 消除摩擦力 B. 没有作用 C. 拉直金属,避免当做伸 丝长过程测量 D. 消除零点差 误 5. (4 分) 于一定温度下的金属 对丝杨氏模量,说法正确的是()。 标准答案:D A. 只与材料的物理性有关与材料的大小和形状无关 质 B. 与材料的大小有关而与形状无关 C. 与材料的形状有关而与大小无关

D. 氏模量 志着金属材料抵抗 性 形的能力 弹 变 杨 标 二、操作题 共 1 小题 共 80 分 1. (80 分)拉伸法测金属丝的杨氏模量 考题内容: 初始状态: 考察关键点: 要测量的物理量: ★实验考察的隐藏变量 ◆ (6.67 分)底座水平调节 评分规则: 底座水平调节成功,得 6.67 分 底座水平调节失败,得 0.00 分 标准答案:底座水平调节成功 ◆ (6.67 分)平面镜与平台垂直 评分规则: 平面镜调节成功,得 6.67 分 平面镜调节失败,得 0.00 分 标准答案:平面镜调节成功 ◆ (3.33 分)望远镜的调节(十字叉丝线清晰) 评分规则: 望远镜调(十字叉丝线)节成功,得 3.33 分 望远镜(十字叉丝线)调节失败,得 0.00 分 标准答案:望远镜(十字叉丝线)调节成功 ◆ (3.33 分)望远镜的调节(标尺清晰) 评分规则: 望远镜(直尺)调节成功,得 3.33 分 望远镜(直尺)调节失败,得 0.00 分 标准答案:望远镜(直尺)调节成功

杨氏模量_数据处理(1)

《杨氏模量》实验报告数据处理 测量数据: 1.单次直接测量量测量参考值: 金属丝长度:L=37.42cm ; 钢卷尺仪器误差:0.1cm 光杠杆与镜尺组距离:D = 151.5 cm ; 钢卷尺仪器误差:0.1cm 光杠杆常数:b = 84.00 mm ; 卡尺仪器误差:0.02mm 砝码质量: 360g/个砝码 ; 误差: 1g/ 个砝码 2.多次直接测量量测量参考值: 金属丝直径测定: 螺旋测微计零点读数:0.000 mm 151r r l -== , 262r r l -=, 373r r l -=, 484r r l -= 1.杨氏模量E 的测量参考值: 将各测量量代入公式 Pa bl d FLD E 11226221060.11063.0104.81049.014.3515 .13742.08.94360.088?=???????????==---π

由不却定度传递公式: 2222222??? ??+??? ??+??? ??+??? ??+??? ??+??? ??=l u b u d u D u L u F u E u l b d D L F E )(03.031 8.910143N u F =????=- )(11.148.9360.04N F =??= %21.011 .1403.0==F u F cm u L 03.03 1 05.0=?= %080.042.3703.0==L u L cm u D 06.03 1 1.0=?= %040.050.15106.0==D u D mm u b 0 2.031 02.0=?= %024.000.8402.0==b u b (0.630.65)0.029c m A l ?= = )0.058cm B l ?== mm l l u B A l 06.0058.0029.02222=+=?+?= %3.664 .004.0==l u l mm d A 001.04 5)490.0490.0()492.0490.0()489.0490.0()490.0490.0()488.0490.0(2 2222=?-+-+-+-+-=?mm d B 002.03 004 .0==? mm d d u B A d 003.0002.0001.02222=+=?+?= %61.0490.0003.0==d u d 222222)()()2()()()(l l b b d d D D L L F F E u E ?+?+?+?+?+?= %4.6%)3.6(%)024.0(%)22.1(%)040.0(%)080.0(%)21.0(222222=+++++=1111101.0%4.61060.1%4.6?=??=?=E u E Pa 实验结果表示:a E P ?±=1110)1.06.1( %4.6=E u E 683.0=P

钢丝杨氏模量的测定-实验报告

钢丝氏模量的测定 创建人:系统管理员 总分:100 实验目的 本实验采用拉伸法测量氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 实验仪器 MYC-1型金属丝氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 实验原理 在胡克定律成立的围,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,L/l tan ?=≈θθ,其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:

实验容 1.调节仪器 (1)调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽,支脚放在管制器的槽,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数i r ,然后再将砝码逐次减去,记下对应的读数' i r ,取两组对应数据的平均值i r 。 (3)用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3.数据处理 (1)逐差法 (2)作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2(6) 其中)/(2SlM DL M =,在一定的实验条件下,M 是一个常量,若以i r 为纵坐标,i F 为横坐标作图应得一直线,其斜率为M 。由图上得到M 的数据后可由式(7)计算氏模量 )/(2SlM DL E = (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

钢丝杨氏模量的测定-实验报告

钢丝杨氏模量的测定 创建人:系统管理员 总分:100 实验目的 本实验采用拉伸法测量杨氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 实验仪器 MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 实验原理 在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,L/l tan ?=≈θθ,其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:

实验内容 1.调节仪器 (1)调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数i r ,然后再将砝码逐次减去,记下对应的读数' i r ,取两组对应数据的平均值i r 。 (3)用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3.数据处理 (1)逐差法 (2)作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2(6) )/(2SlM DL E = (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

杨氏模量测定实验报告

南昌大学物理实验报告 课程名称: 实验名称: 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:第8周星期六下午1点开始

一、实验目的: 1.掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2.学会如何用对称测量消除系统误差 3.掌握各种长度测量工具的选择和使用。 4.学习用逐差法和作图法处理实验数据

b L ?= ≈θθtg (3)D n D n n ?=-≈1 22tg θ(4) 将(3)式和(4)式联立后得: n D b L ?=?2(5) 式中12n n n -=?,相当于光杠杆镜的长臂端D 的位移。 其中的b D 2叫做光杠杆镜的放大倍数,由于D >>b ,所以n ?>>L ?,从而获得对微小量的线性放大,提高了L ?的测量精度。 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 三、弹性滞后效应 考虑到金属丝受外力作用时存在着弹性滞后效应,也就是说钢丝受到拉伸力作用时,并不能立即伸长到应有的长度()i i i L L L L ?+=0,而只能伸长到i i L L δ-。同样,当钢丝受到的拉伸力一旦减小时,也不能马上缩短到应有的长度i L ,仅缩短到i i L L δ+。因此实验时测出的并不是金属丝应有的伸长或收缩的实际长度。为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减少拉伸力这一对称测量过程,实验中可以采用增加和减少砝码的办法实现。只要在增、减相应重量时,金属丝伸缩量取平均,就可以消除滞后量i L δ的影响。即 []()()[]i 0i i 0i i 0i 2 121L L L L L L L L L L L ?+=+?++-?+=+=δδ减增

相关文档
相关文档 最新文档