文档库 最新最全的文档下载
当前位置:文档库 › 合成孔径雷达的物理原理及其在军事上的应用

合成孔径雷达的物理原理及其在军事上的应用

合成孔径雷达的物理原理及其在军事上的应用
合成孔径雷达的物理原理及其在军事上的应用

合成孔径雷达概述(SAR)

合成孔径雷达概述 1合成孔径雷达简介 (2) 1.1 合成孔径雷达的概念 (2) 1.2 合成孔径雷达的分类 (3) 1.3 合成孔径雷达(SAR)的特点 (4) 2合成孔径雷达的发展历史 (5) 2.1 国外合成孔径雷达的发展历程及现状 (5) 2.1.1 合成孔径雷达发展历程表 (6) 2.1.2 世界各国的SAR系统 (9) 2.2 我国的发展概况 (11) 2.2.1 我国SAR研究历程表 (11) 2.2.2 国内各单位的研究现状 (12) 2.2.2.1 电子科技大学 (12) 2.2.2.2 中科院电子所 (12) 2.2.2.3 国防科技大学 (13) 2.2.2.4 西安电子科技大学 (13) 3 合成孔径雷达的应用 (13) 4 合成孔径雷达的发展趋势 (14) 4.1 多参数SAR系统 (15) 4.2 聚束SAR (15) 4.3极化干涉SAR(POLINSAR) (16) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17) 4.6 性能技术指标不断提高 (17) 4.7 多功能、多模式是未来星载SAR的主要特征 (18) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19) 4.11 军用和民用卫星的界线越来越不明显 (19) 5 与SAR相关技术的研究动态 (20) 5.1 国内外SAR图像相干斑抑制的研究现状 (20) 5.2 合成孔径雷达干扰技术的现状和发展 (20) 5.3 SAR图像目标检测与识别 (22) 5.4 恒虚警技术的研究现状与发展动向 (25) 5.5 SAR图像变化检测方法 (27) 5.6 干涉合成孔径雷达 (31) 5.7 机载合成孔径雷达技术发展动态 (33) 5.8 SAR图像地理编码技术的发展状况 (35) 5.9 星载SAR天线方向图在轨测试的发展状况 (37) 5.10 逆合成孔径雷达的发展动态 (38) 5.11 干涉合成孔径雷达的发展简史与应用 (38)

雷达成像技术(保铮word版)第四章 合成孔径雷达

第四章 合成孔径雷达 合成孔径雷达(Synthetic Aperture Radar ,简称SAR )是成像雷达中应用最 多,也是本书讨论的重点。在前几章对雷达如何获取高的距离分辨率和横向分辨 的基础上,从本章开始用三章的篇幅对合成孔径雷达作较详细的讨论。 首先,结合工程实际介绍合成孔径雷达的原理。在前面的讨论中已经提到, 根据不同的要求,成像算法(特别是横向成像算法)有许多种,本章只介绍最简 单的距离-多普勒算法的原理,目的是由此联系到对合成孔径雷达系统的要求以 及工程实现方面的问题。 合成孔径雷达通常以场景作为观测对象,它与一般雷达有较大不同,我们将 在本章讨论合成孔径雷达有别于一般雷达的一些技术性能和参数。 4.1 条带式合成孔径雷达成像算法的基本原理 4.1所示,设X 轴为场景的中心 线,Q 为线上的某一点目标,载机以 高度H 平行于中心线飞行,离中心线 的最近距离B R 为 B R = (4.1) 当载机位于A 点时,它与Q 点的斜距 为 R = (4.2) 式中t X 为点目标Q 的横坐标。 当分析中心线上各个点目标的回波状况及成像算法时,可以在包括场景中心 线(即X 轴)和载机航线的平面里进行。至于场景里中心线外的情况将在后面 说明,这里暂不讨论。 一般合成孔径雷达发射线性调频(LFM )脉冲,由于载机运动使其到目标的 距离发生变化,任一点目标回波在慢时间域也近似为线性调频,而且包络时延也 几何示意图

随距离变化,即所谓距离徙动。合成孔径雷达成像算法的任务是从载机运动录取得到的快、慢时间域的回波数据,重建场景图像,它是二维匹配滤波问题。 严格考虑距离徙动的成像算法比较复杂,在实际应用中,一般均根据情况采用一些较简单的算法,这些将在第五章里系统介绍。在这里我们主要讨论分辨率较低,距离徙动影响可以忽略的最简单的情况,这时可采用简易的距离-多普勒基本算法。 所谓距离徙动的影响可以忽略不计是指雷达波束扫过某点目标的相干处理时间里,目标斜距变化引起的距离徙动值小于距离分辨单元长度的1/4~1/8,即场景中心线上所有点目标的回波(距离压缩后的)在慢时间域里均位于同一个距离单元。当然,因斜距改变引起的二次型相位变化还是需要考虑的,即系统的脉冲响应函数应考虑二次型相位。这种情况下的成像算法是比较简单的,可将回波信号先在快时间域作脉压匹配滤波,然后再对快时间域的每一个距离单元分别沿慢时间作方位压缩的匹配处理,于是得到场景的二维图像。在上面的图4.1中,我们提出只对中心线上的目标进行讨论,场景的二维图像当然包括场景里中心线以外的目标,这将在下一节里说明。 脉压匹配滤波可以在时域用回波数据与系统函数作卷积处理,也可以在频域作乘积处理,由于乘积的运算量小,同时时频域之间的傅里叶变换有FFT快速算法,频域计算用得更多。此外,由于场景有一定宽度,比发射脉冲宽度宽不少,而沿慢时间录取的数据长度一般也比波束扫过一个点目标的相干积累时间长得多,即时域信号长度比系统匹配函数长得多,这里应将信号分段处理后再加以拼接。 4.2合成孔径雷达回波的多普勒特性 信号有时域表示和频域表示,一般情况直接获取的是时域信号,通过傅里叶变换得到它的频谱。合成孔径雷达信号也是如此,快时间表示的发射信号是在时域生成,而慢时间回波则为载机运动过程中回波的变化序列。通过傅里叶变换,可以得到快时间频谱(距离谱)和慢时间频谱(多普勒谱或方位谱)。 合成孔径雷达信号有它的特殊性,它的回波为众多点目标回波的线性组合,而对一个点目标来说,其快、慢时间回波均为(或近似为)线性调频信号。对于

真实和合成孔径雷达

Real and Synthetic Aperture Radar
Real Aperture Radar (RAR) flight direction
azimuth Synthetic Aperture Radar (SAR) flight direction
azimuth
1

Spatial Resolution (1)
2

距离分辨率 与真实孔径雷达距离向分辨率相同。但由于真实孔径 机载雷达一般用短脉冲来实现距离向分辨率,而合成孔 径雷达通常用带宽(脉冲频率的变化范围)为B的线性调 频脉冲来实现作用距离向的良好分辨率。
δr =
1 c cτ = 2 2B
Spatial Resolution (2)
For Real Aperture Radar (Side-looking Radar)
razimuth ?
λR
l cτ 2 sin θ
rground ? range =
For Synthetic Aperture Radar (SAR)
razimuth ?
l 2 c 2 B sin θ
rground ?range =
3

Rr =
τc
2 cos γ
=
ground Range resolution
pulse length × speed of light 2 cos ( depression angle )
Range Resolution (2)
4

物理在军事的应用

一:水陆两用坦克 水陆两用坦克是一种既能在陆地上行驶,又能在水中航行、作战的坦克。特别是在两栖作战中,水陆两用坦克表现出特有的优越性。这种坦克为什么可以在水中前进呢? 任何水中行驶的物体,必须具有一定的浮力来克服自身的重量,才能不能下沉。又必须有一定的动力推动自己前进,两个条件缺一不可。为了提高坦克在水中的浮力,人们采用薄型钢板制作外壳,车体设计的又轻又长,前部呈般形。所有的拼接部位都焊接起来,防止漏水,使坦克具有良好的密封性,以增加坦克的浮力。 坦克的动力则采用多种多样的方案。有的坦克采用了特制提履带,犹如水车的水斗,通过履带的旋转不断把水排向后方,从而推动坦克前进。有的则在坦克的尾部装上螺旋桨推进器,坦克就象船一样前进。还有的装的是喷水式推进器,通过向后喷水,获得反作用力,推动坦克前进。 这两个基本条件具备后,坦克就可以既在陆地行走又在水中航行了。 二:隐形飞机 如果最早采用隐形技术的B-18型战略轰炸机,人们对它的性能还不清的话,那么,随着F-117型飞机首次在巴拿马战场和海湾战争中的的大量使用,人们对隐形飞机已经不怎么陌生了,我们以B-2为例来研究一下隐形飞机。 B-2是美国诺斯罗·格鲁门公司研制的战略突防隐身轰炸机,主要任务是利用其优异的隐身性能,从高空或低空突破敌方防空系统,对战略目标实施核打击或常规轰炸。该机采用了翼身融合的无尾飞翼构形,从机头至翼尖为成锐角,但上下是拱弧形的固定前缘,前缘为直线,机翼后缘成双W形,使飞机对所有有雷达的波形成镜面反射。飞机结构大量采用先进的复合材料以及蜂窝状雷达吸波结构(RAS)、锯齿状雷达散射结构,机体表面还涂有雷达吸波材料(RAM),S形进气道和V形尾喷管位于机体的上部,使飞机周围的空气形成等离子屏障,成对地装在武器舱的外侧与机翼结构之间的装置可使氯氟硫酸被混在尾气中,以消除发动机的目视尾迹,这样达到“隐身”的效果。 三:火箭 不知道大家有没有注意或留意在发射出的火箭顶端,有一个顶尖的针状物。有人认为这是火箭的雷达装置,起天线作用,其实并不是这么一回事。这个类似于天线的钢针,是空气动力学应用的一项发明。 我们知道空气阻力是影响火箭射程的主要原因之一,为了提高火箭的射程,一般可以增加火箭的级数。可是一般增加了火箭的级数会使火箭的总重量也增加,这就会给发射带来很多问题。科学家经过研究发现若在火箭的顶端安装一个钢针,那么火箭在飞行时,顶端就会形成一个小角度的锥形气流,这股锥形气流能减少空气对火箭的阻力,从而使火箭的射程得以明显增加。

物理与国防

《物理与国防》感想 物理与国防教育课,让我们学到了很多的国防知识,受到了深刻的教育。 一、国防教育介绍,什么是国防 国防,顾名思义即国家的防卫.自古以来,有国就有防.任何一个国家的国防,都是一个十分复杂的系统,它包括的内容十分广泛,国家的国土,资源,人口,民族和社会制度,涉及政治,经济,军事,科技,心理,文化教育和意识形态等一个国家或一个民族赖以生存和发展的各个方面.一个国家安全系数的多少,生产发展的快慢,国际威望的高低,对世界和平事业贡献的大小等,在很大程度上取决于这个国家国防力量的强弱. 二、充分开展国防教育 1、加强国防教育、树立国防观念,是关系到国家强弱和民族兴衰的大事。2、国防教育对经济建设有巨大促进作用。一方面,国防建设不能离开经济建设孤立地进行,它必须以经济建设为基础。另一方面,经济建设没有与之相适应的国防实力作保障,经济建设的发展也是不能持久的。3、国防教育是培养合格党政干部人才必要环节。国防知识是一个包容了从天文到地理,从内政到外交,从自然科学到社会科学,从基础科学到技术科学和应用科学的知识群体,内容丰富,门类齐全。二、着力抓好“七要”,推动党校扎实开展国防教育。 三、为什么要注重国防建设 当时代的滚滚车轮步入21世纪的时候,对和平的企盼已成为全世界各国人民共同的心愿.但卡扎菲领导的利比亚被美国的轰炸又一次把人们从和平的梦中震醒,隆隆的炮火声反复证明:人类的发展史即是一部轰轰烈烈的战争史.自公元前3200年以来,人类共经历大小战争14 550次,和平时期仅有292年,无任何战争的日子仅有26天,战争与和平总是在交相更替.虽然和平与发展已成为当今世界的主流,但战争仍不可避免.因此,世界各国都争相把国防建设,摆到十分突出的位置.在这样的国际环境下,要想国家真正的强大,必须拥有强大的国防实力.在改革开放初期,邓小平就深刻地指出,要始终把国家安全和主权放在第一位.只有国防建设搞好了,国防实力强大了,才能给经济建设创造一个良好的国内外环境,才能真正地一心一意搞经济建设. 国防是为了捍卫国家安全与发展利益而采取的一切防卫措施的总和.它涉及的范围很广泛,凡是国家为增强自身防卫力量,保卫自己的领土主权,在军事,政治,经济,文化等方面所采取的一系列防卫措施都包括在内. 四、加强国防建设的具体内容 国防建设,是国家根本利益需要的综合国防力量的建设.包括了国防物质技术基础建设,国防精神基础建设以及国防武装力量建设等各个方面.概括地说,它是一个大系统,有很强的整体性,涉及各个领域,主要内容有:武装力量建设,国防经济,国防科技,国防教育,国防立法,国防动员,国防理论,国防外交,兵役制度,战场建设,民防体系以及交通通信等诸方面的建设.这些体现了综合国力建设,构成了国防的完整体系. 国防观念,即对国防的看法和态度.是指以群体为标志的主体意识和潜意识,是防卫外来侵略,自觉维护民族和国家利益的行为观念.它是以爱国主义为精髓,以国家防卫为中心的理性思维,是一种无形的,潜在的国防力量,是每个公民为国家安全与发展而构筑的心理堤防,是国防赖以确立的向心力。 在《物理与国防》教育学习之后,我懂得了国防的真正含义,即国家的防务.是指为防备和抵抗侵略,制止武装颠覆,保卫国家主权的统一,领土完整和安全所进行的军事及与军事有关的政治,经济,外交,科技,教育等方面的活动.国防是国家生存与发展的安全保障,自古以来,有国就有防,国无防而不力.作为一个主权国家,最重要的是生存与发展,国防是否巩固,事关国家和民族的兴亡.因此,作为一个当代中学生,更应该以学习国防知识,把自己的人生奋斗目标与国家的发展和民族的存亡联系起来,更努力的学习科学文化知识,为祖国的国防事业作出应有的贡献. 高二(14)班胡齐东

合成孔径雷达成像自聚焦算法的比较

合成孔径雷达成像自聚焦算法的比较 【摘要】本文简要地分析和比较两类合成孔径雷达自聚焦算法的特点,并通过多点目标自聚焦成像对其进行验证,表明结论可靠。 【关键词】自聚焦算法;多点目标;孔径雷达 0 引言 SAR自聚焦算法的任务是首先要对经过处理后的未补偿的SAR信号进行相位误差估计,然后消除其相位误差。SAR自聚焦算法就其本质而言是一个二维估计问题,在公式(2)中的相位误差既是空变的又是不可分离的乘性噪声的事实使问题变得极为棘手。影响成像的几何线性,分辨率、图像对比度和信噪比的主要因素取决于相位误差的性质和大小,基于处理孔径上相位误差形式,表1给出两大类相位误差及其每一类对SAR成像的一般影响。 表1 相位误差的分类 1 几种实用的自聚焦算法的比较 一般来说,自聚焦算法可以划分为两类:基于模式算法和非参数算法。基于模式的自聚焦算法估计相位误差的模式展开系数。低阶模自聚焦仅能估计二阶相位误差,而更复杂的方法还可以估计高阶多项式相位误差。子孔径相关法(MD)和多孔经相关法(MAM)是针对低频相位误差补偿提出的基模自聚焦算法的范例。基于模式算法虽然执行起来相对简单而且算法高效。不过只能相位误差被正确估计的情况下才能保证这样的优越性。 第二类自聚焦算法,即非参数自聚焦算法,典型的有相位梯度自聚焦算法,基于最小熵准则和最大对比度准则的自聚焦方法,这些方法都不需要相位误差的先验知识。特别地,相位梯度自聚焦算法几种改进的算法。其中特征向量法是在PGA框架下运用了极大似然算子取代了原始的相位差算子核,改进的相位梯度自聚焦算法的策略通过选择一组高质量的目标以提供非迭代的PGA解。另一种方法是运用加权最小二乘法以实现相位误差最小化的PGA。适用范围扩大,计算高效。 在一些SAR应用中,相位误差显著依赖位置,空变的自聚焦的常用的方法是将大场景分成更小的子图像,每个子图像的误差近似不变的,因此,传统的空间不变的自聚焦程序可以应用到每个子图像。当重新聚焦时,个别的子图像拼接或镶嵌在一起产生完整的场景图像聚焦图像。 2 性能评价标准 第一个测试是检查在方位域一维的点目标响应。聚焦质量质量指标包括3dB

化学在军事中的应用

化学在军事中的应用 姓名:唐玉霞 学号:110505021 班级:11级化学教育 摘要化学在人类活动中的应用相当广泛。本文从化学在军事中应用的角度,通过实例说明化学在军事活动的应用。 科学技术本着造福人类的宗旨,与人类的社会活动相联系机密。化学作为一门中心科学,其与军事的关系的密不可分的。 一、热兵器中的化学。 热兵器的标志便是火药的应用。传统的热兵器的定义是指利用推进燃料快速燃烧后产生的高压气体推进发射器的射击武器。而现代战争的发展下,直接利用火、化学、激光等携带的能量伤人的,也都是热兵器。 在相当长的时期里,作为热兵器中推进燃料的是黑火药和无烟炸药。军事上黑火药的成分是:75%硝酸钾,10%硫,15木炭。其反应方程式为: 2KNO 3+S+3C==K 2 S+N 2 ↑+3CO 2 ↑ 可见,此反应放出大量气体。同时,由于气体带走碳粉,使得爆炸有大量黑烟,因而称为黑火药。 二、化学武器 化学武器是一种以毒剂的毒害作用杀伤有生力量的大规模杀伤性武器。现代意义的化学武器从20世纪初的第一次世界大战首次登上人类战争的舞台,两次世界大战和此后的历次战争中得到使用,造成了几百万人的中毒伤亡。化学武器已经成为一个庞大的家族,其特有的获取容易、制造简单、使用简便、后果严重、防范困难的特点,是一个很好的武器。化学武器起源于一战时的德国,由哈伯向德国参谋部提议使用氯气借助风向杀伤敌人。效果十分显著,也揭开了化学武器走上战场的序幕。例如;氯气属于窒息性毒气,以刺激呼吸道、肺部,损害肺组织,引起肺水肿,导致呼吸功能破坏的毒剂。除氯气外,窒息性毒剂有光气、双光气、氯化苦等。

三、结构材料 冷兵器时代剑的千锤百炼过程中,少不了各种结构的变化。其间主要就是晶型的转化。而以物理化学原理为背景下的铁碳的相图,更是在现代军工制备坚固耐用的结构材料打下了坚实的基础。除了传统的碳钢,各种特种钢,由于其性能的优越性,也在军工中大放异彩。其中比较著名的是锰钢,其硬度很大。用高锰钢制造钢盔、坦克钢甲、穿甲弹的弹头等。炼制锰钢时,是把含锰达60一70%的软锡矿和铁矿一起混合冶炼而成的。骇人听闻的隐形飞机,其设计上除了独特的外形以外,另外就是表面涂了一层吸波材料。吸波材料常采用具有磁性或介电性特点材料制成,例如铁氧体、碳化硅等。其原理简单描述即是将电磁波的能量转换为材料的机械能、电能、热能等而消耗掉,从而达到吸波的效果。 四、结语 军事中各种高精尖技术的运用常常体现了一个时代的科学发展阶段,目前人类科学最高成就是量子的相关理论,而军事上最具威慑力的武器正是在此背景下的核武器。通过对化学在军事中应用的探讨,可以深化对于化学这一学科的实际应用性理解,同时也清楚认识到,对于现代化的军事活动,化学无疑是非常重要的。 参考资料: [1]网络资料,https://www.wendangku.net/doc/2b11201906.html,/view/2064780.htm [2]网络资料,https://www.wendangku.net/doc/2b11201906.html,/view/2460.htm [3]化学与军事,闫斌,《化学教育》,2003.7 [4]《炸药理论》,金韶华、松全才。 [5]《告别化学武器》,朱建新,科学普及出版社。 [6] 《告别化学武器》,朱建新,科学普及出版社。 [7]《恶魔出瓶》,胡思远,湖南科学技术出版社。 [8]《告别化学武器》,朱建新,科学普及出版社。 [9]《杀伤力巨大的魔王》,郞宗亨,国防科技大学出版社。 [10]《告别化学武器》,朱建新,科学普及出版社。 [11]网络资料,https://www.wendangku.net/doc/2b11201906.html,/view/1061735.htm

合成孔径雷达

合成孔径雷达(SAR) 合成孔径雷达产生的过程 为了形成一幅真实的图像增加两个关键参数:分辨率、识别能力。 合成孔径打开了无限分辨能力的道路 相干成像特性:以幅度和相位的形式收集信号的能力 相干成像的特性可以用来进行孔径合成 民用卫星接收系统SEASA T、SIR-A、SIR-B 美国军用卫星(LACROSSE) 欧洲民用卫星(ERS系列) 合成孔径雷达(SAR)是利用雷达与目标的相对运动将较小的真实天线孔径用数据处理的方法合成一个较大孔径的等效天线孔径的雷达。 特点:全天候、全天时、远距离、和高分辨率成像并且可以在不同频段不同极化下得到目标的高分辨率图像 SAR高分辨率成像的距离高分辨率和方位高分辨率 距离分辨率取决于信号带宽 方位高分辨率取决于载机与固定目标相对运动时产生的具有线性调频性质的多普勒信号带宽 相干斑噪声 机载合成孔径雷达是合成孔径雷达的一种 极化:当一个平面将空间划分为各向同性和半无限的两个均匀介质,我们就可以定义一个电磁波的入射平面,用波矢量K来表征:该平面包含矢量K以及划分这两种介质的平面法线垂直极化(V):无线电波的振动方向是垂直方向与水平极化(H):无线电波的振动方向是水平方向 TE波:电场E与入射面垂直

TH波:电场E属于入射平面 合成孔径雷达的应用 军事上、地质和矿物资源勘探、地形测绘和制图学、海洋应用、水资源、农业和林业 合成孔径雷达在军事领域的应用:战略应用、战术应用、特种应用。 SAR系统的几个发展趋势:多波段、多极化、多视角、多模式、多平台、高分辨率成像、实时成像。 SAR图像相干斑抑制的研究现状 分类:成像时进行多视处理、成像后进行滤波 多视处理就是对同一目标生成多幅独立的像,然后进行平均。 这是最早提出的相干斑噪声去除的方法,这种技术以牺牲空间分辨率为代价来获取对斑点的抑制 成像后的滤波技术成为SAR图像相干噪声抑制技术发展的主流 均值滤波、中值滤波、维纳滤波用来滤去相干斑噪声,这种滤波方法能够在一定程度上减小相干斑噪声的方差 合成孔径雷达理论概述 合成孔径雷达是一种高分辨率成像雷达,高分辨率包含两个方面的含义:方位向的高分辨率和距离向高分辨率。它通过采用合成孔径原理提高雷达的方位分辨率,并依靠脉冲压缩技术提高距离分辨率 由于SAR雷达发射信号(距离向信号)和合成孔径信号(方位信号)均具有线性调频性质,SAR成像的实质就是通过匹配滤波器对距离向和方位向具有线性调频信号的信号进行二维脉冲压缩的过程,也就是依靠脉冲压缩技术提高距离分辨率,通过合成孔径原理提高雷达的方位分辨率的过程 SAR成像处理是先利用距离向匹配滤波器,进行距离脉压,实现距离向高分辨率后,再通过方位向德匹配滤波,最终得到原始目标的高分辨图像。

物理学与高新技术

历史的沉积,时代的前沿 ————物理学与高新技术论文 经过一学期的物理学与高新技术学习,我受益良多。这学科是以大学物理学为基础,阐述物理原理在高新技术中的应用,着重阐明物理学基础理论与高新技术的联系。从时时刻刻让我们接触地面的地心引力,到走路必不可缺的摩擦阻力。从我们所熟悉的牛顿的苹果,到一个个投身于物理事业奋斗终身的安培奥斯特。从刚刚发现并开始研究虽然有错误但成为起点的亚里士多德,到今天一项项物理诺贝尔奖项的颁发,一样样物理研究成果的发明创造。从小学的自然科学学到现在的大学物理,我知道,我和物理这两个字,一直都是分不开的。 一、信息技术 生活中离不开信息,信息普遍存在于自然界和人类社会活动中,它的表现形式远远比物质和能量复杂。信息是一个发展中的动态范畴,它随人类社会的演变而相应的扩大或收缩,总的来看信息所涵盖的范围是不断扩大的,可以断定随人类社会的发展信息范畴将进一步扩大。 而信息的传递,都是依靠着物理原理和物理现象,声音和光的传递,信息作为物质世界的一个基本概念,应该具有严谨的物理基础。通过对物质、能量和信息的分析类比,可以引进序间作为信息的物理坐标。随着信息的物理基础的确立,导致对物理学基础的整体扩充。 二、红外技术 红外技术的内容包含四个主要部分,红外辐射的性质,红外元件、部件的研制、把各种红外元、部件构成系统的光学、电子学和精密机械、红外技术在军事上和国民经济中的应用。红外技术发展的先导是红外探测器的发展。60年代激光的出现极大地影响了红外技术的发展,促使出现新的探测器件和新的辐射传输方式,推动红外技术向更先进的方向发展。红外应用产品种类繁多,应用广泛。红外线自1800年被发现以来,人们对她的研究从来没有停止过,目前已经开发出了众多的应用产品,从医疗、检测、航空到军事等领域,几乎处处都能看到红外的身影。本文选择了红外热像、红外通讯、红外光谱仪、红外传感器等几个比较大的

合成孔径雷达成像

合成孔径雷达第一次作业 姓名:xxx 学号:xxx 一题目: 1.LFM信号分析:(1)仿真LFM信号;(2)观察不同TBP的LFM信号的频谱。(3)观察不同过采样率下的DFT结果,注意频谱混叠情况。 2.脉冲压缩仿真:针对“基带LFM信号”:(1)实现无误差的脉冲压缩;(2)通过频域补0实现时域十倍以上的过采样率,得到光滑的时域波形,通过观察给出指标(IRW,PSLR);(3)阅读资料,按照公式实现3阶(-20dB),6阶(-40 dB)泰勒加权,观察加窗效果,分析指标(IRW,PSLR),并对比MATLAB TAYLORWIN 函数的一致性;(4)在3阶泰勒加权下实现15.30.45.60.90.135度QPE下的脉冲压缩,显示输出波形,观察记录QPE的影响。 3.一维距离向仿真:(1)输入参数:目标参数:RCS=1,分别位于10km,11km,11km+3m,11km+50m处。LFM信号参数:中心频率1.0GHz,脉冲宽度30us,带宽30MHz。 (2)输出:设计采样波门,仿真回波,完成脉冲压缩,检测各峰值位置,判断每个目标是否得以分辨,分析各出现在相应位置及幅度的原因。 二题目分析与解答: 1.问题分析:由基础知识知,决定LFM信号的主要参数有中心频率fc(此处仿真取fc=0),带宽B,脉冲宽度Tp, 调频斜率K,其中K=B/Tp。对LFM信号进行傅里叶变换时,不同的时宽带宽积(TBP)会对频谱有不同的影响。 主要程序段(源程序见附件): %参数设置 Tp=5e-6; B=10e6; K=B/Tp;Fs=2*B; Ts=1/Fs; N=Tp/Ts; TBP=Tp*B %波形产生 t=linspace(-Tp/2,Tp/2,N); St=exp(j*pi*K*t.^2); Phase=pi*K*t.^2; Fre=2*pi*K*t; f=linspace(-Fs/2,Fs/2,N); figure(2) plot(f*1e-6,fftshift(abs(fft(St))),'k'); xlabel('Frequency/MHz'); ylabel('Magnitude'); title('Frequence Response'); legend('TBP=50') fft_St=fftshift(abs(fft(St)));

物理学在军事武器中的应用

应用物理选讲论文 题目《物理学在军事武器中的应用》 学院物理科学与技术学院专业物理学 学号201010800056 姓名陈观寿 交稿日期2012/12/28

物理学在军事武器中的应用 摘要:物理学是一门基础学科,在当今社会,物理学孕育出的新技术已经渗透到生活的各个角落。物理学在军事科学中的应用也均占有不小的比例,而军事武器的不断改善也在一定程度上促进了物理学的发展。如声波武器,核武器都涉及到物理学一些知识。关键字:物理、次生武器、核武器 一、声波武器 我们知道,声波是机械纵波,它可以在固体、液体和气体中传播。人们日常可以听到的声音便是20-20000Hz频率范围内的声波。目前军事领域中应用的主要是次声波部分(即频率低于20Hz的声波)。和可闻声波相比,次声波在介质中传播时,能量衰减缓慢,隐蔽性好,不易为敌人察觉,所以军事上常用次声波接收装置来侦察敌情。另一方面,次声波武器还可直接消灭敌人的有生力量。那么,它的杀伤原理是什么呢?这里要涉及到物理学的一个重要概念——共振。原来,次声武器是利用和人体器官固有频率相近的次声波与人体器官发生共振,导致器官变形、移位、甚至破裂,以达到杀伤目的的。 (一)次声武器大体可分为两类: (l)“神经型”次声武器。次声频率和人脑阿尔法节律(8-12Hz)很接近,所以次声波作用于人体时便要刺激人的大脑,引起共振,对人的心理和意识产生一定影响:轻者感觉不适,注意力下降,情绪不安,导致头昏、恶心;严重时使人神经错乱,癫狂不止,休克昏厥,丧失思维能力。 (2)“器官型”次声武器。当次声波频率和人体内脏器官的固有频率(4 -18Hz)相近时,会引起人的五脏六腑产生强烈共振。轻者肌肉痉挛,全身颤抖,呼吸困难;重者血管破裂,内脏损伤,甚至迅速死亡。 (二)次声武器的优点: ①突袭性。次声波在空气中的传播速度为每秒三百多米,在水中传播更快,每秒可达 1500m左右。次声波是常人听不到、看不见的,故除了传播迅速之外,次声波又具有良好的隐蔽性。 ②作用距离远。根据物理学原理,声波的频率越低,传播时介质对它的吸收就越小,波的传播距离也越远。故高强度的次声武器具有洲际作战能力。 ③穿透力强。传播介质对低频率的声波吸收较小,故次声波具有很强的穿透能力。次声波能穿透几十米厚的钢筋混凝土。因此,无论敌人是在掩体内躲藏,还是乘坐在坦克中,或深海的潜艇里,都难以逃脱次声武器的袭击。 ④次声波在杀伤敌人的同时,不会造成环境污染,不破坏对方的武器装备,可作为战利品,取而用之 据说,第一台次声波发生器是由法国人在1972年发明的,它产生的次声波可以损害5km以外的人。发明者还得出结论:频率为7Hz的次声波可对人体造成致命的打击。有报道称,美军在干预索马里期间已经试用过某些音响或声音武器的样品。这些武器可以使人的内脏发生震动,把人震昏,使人感到恶心,甚至使肠子里的粪便液化,不断腹泻。 超生波武器在军事上的应用由于海水有良好的导电性,对电磁波的吸收能力很强,因而电磁雷达无法探测水下作战目标(如潜水艇)的方位和距离。所谓超声波,是指高频率的机械波(频率大约在20kHz以上)。它具有能流密度大,方

物理学与军事

未来武器的物理学基础 2011-01-27 17:05 一、神奇绝妙的激光武器 (1)战术激光武器 打击距离一般在20公里以内,主要用于对付战术导弹、飞机、坦克等目标。 与常规武器相比,高能激光的弹道是一条笔直的光路,射击时无需根据距离、高度、风向、风速及弹丸初速等因素进行弹道计算;它所发射的“光弹”以光速飞行,比导弹的飞行速度快10万倍,射击运动目标时无需提前量;此外,激光武器射击时,没有普通武器射击时出现的巨大后座力和声音,既提高了射击的命中率,又便于隐蔽。 激光武器发出高能激光束照射目标,使其发生特殊的物理效应,产生极为有效的杀伤破坏力。激光照射目标后,部分能量被目标吸收转化为热能,引起烧蚀效应。与此同时,由于目标的表面材料激剧汽化,蒸汽高速向外膨胀,在极短的时间内给目标以强大的反冲作用,在目标中形成激波,其激波又引起目标材料的断裂或损坏,此即激波效应。而且,由于目标表面材料汽化,还会形成等离子体云,因而造成辐射效应,这比激光直接照射引起的破坏可能更厉害。 发射功率较小的激光轻武器和单兵激光武器称为低能激光武器。国外有一种红宝石袖珍式激光枪,外形和大小与美国制造的派克钢笔相当,它能在距人几米之外烧蚀衣料、烧穿皮肉,而且无声响,在不知不觉之中致人以死命;能在十几米远处,打瞎人眼;在近距离内,可使火药爆炸,使对方夜视仪、红外或激光测距仪等光电设备失效,并能直接破坏原子能电池、高精度光学电子仪器仪表。 (2)战略激光武器 可以攻击几千公里以外的洲际导弹,可以攻击太空中的侦察卫星、通信卫星。 自由电子激光器是高能物理与激光技术相结合的产物,它首先由电子加速器产生高能电子束,高能电子束进入摆动器后,由于受交变磁场的作用而左右摇摆,并在摇摆过程中损失一部分能量,损失的这部分能量就转变成激光辐射,通过光学系统发射出去。 自由电子激光器具有输出功率大(甚至可达数亿瓦)、光束质量好、转换效率高、可调节范围宽(从远红外一直到紫外波长均可连续调节)的特点,特别适于在武器上使用。但是自由电子激光器体积庞大,只适宜安置在地面上,供地基激光武器使用。作战时,强激光束首先射到处于空间高轨道上的中继反射镜上。中继反射镜将激光束反射到处于低轨道上的作战反射镜上。作战反射镜使激光束瞄准目标,实施攻击。通过这样的两次反射,设置在地面上的自由电子激光武器,就可以攻击从世界上任何地方发射的战略导弹。 高基高能激光武器是高能激光武器与航天器相结合的装置,由于它布置在宇宙空间,居高临下,视野广阔,更是如虎添翼。可以用它对敌方的空中目标或地面目标实施闪电般的攻击,把对方的侦察卫星、预警卫星、通信卫星、气象卫星摧毁,把对方的洲际导弹摧毁在助推上升阶段。 适宜在空间使用的氟化氢激光器是利用氟和氢之间的分子链锁反应产生的热量将反应生成的氟化氢分子激励到高能级,从而产生激光。这种激光器排出腐蚀性很强的有毒氟化氢气体,不宜在地面上工作,但在外层空间的真空环境中则

合成孔径雷达(SAR)的点目标仿真(附件带代码程序)

合成孔径雷达(SAR)的点目标仿真(附件带代码程序) 合成孔径雷达(SAR)的点目标仿真 一. SAR原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。SAR回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:,式中表示雷达的距离分辨率,表示雷达发射信号带宽,表示光速。同样,SAR回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:,式中表示雷达的方位分辨率,表示雷达方位向多谱勒带宽,表示方位向SAR平台速度。 二. SAR的成像模式和空间几何关系 根据SAR波束照射的方式,SAR的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图2.1。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 图2.1:SAR典型的成像模式 这里分析SAR点目标回波时,只讨论正侧式Stripmap SAR,正侧式表示SAR波束中心和SAR平台运动方向垂直,如图2.2,选取直角坐标系XYZ为参考坐标系,XOY平面为地平面;SAR平台距地平面高h,沿X轴正向以速度V匀速飞行;P点为SAR平台的位置矢量,设其坐标为(x,y,z);T点为目标的位置矢量,设其坐标为;由几何关系,目标与SAR平台的斜距为: (2.1) 由图可知:;令,其中为平台速度,s为慢时间变量(slow time),假设,其中表示SAR平台的x 坐标为的时刻;再令,表示目标与SAR的垂直斜距,重写2.1式为: (2.2) 就表示任意时刻时,目标与雷达的斜距。一般情况下,,于是2.2式可近似写为: (2.3) 可见,斜距是的函数,不同的目标,也不一样,但当目标距SAR较远时,在观测带内,可近似认为不变,即。

物理在军事上的应用

物理在军事上的应用-------结题报告 【课题背景】 物理学是一门基础学科,在现代社会中,由物理学孕育出的新技术已渗透到生活的各个角落。进入20世纪以来,最尖端的科学技术的发明,与军事力量的提升都离不开物理学的研究,因此,物理学的研究显得尤为重要。在当前的国际形势下,只有利用现有的物理知识,掌握高端技术,才能维护国家安全,为国家的发展建立一个强有力的后盾。【学生研究成果】 一、石墨炸弹 石墨炸弹又名软炸弹(soft bomb),因其不以杀伤敌方兵员为目的而得名。又因其对供电系统的强大破坏力而被称为断电炸弹(blackout bomb)。石墨炸弹是选用经过特殊处理的碳丝制成,每根碳丝的直径相当小,仅有几千分之一厘米,因此,可在高空中长时间漂浮。由于碳丝经过流体能量研磨加工制成,且又经过化学清洗,因此,极大地提高了碳丝的传导性能。碳丝没有粘性,却能附在一切物体表面。它通过爆炸或火药引爆散布在敌方阵地,破坏敌方防空和发电设备。碳丝可进人电子设备内部、冷却管道和控制系统的黑匣子。碳丝弹头对包括停在跑道上的飞机、电子设备、发电厂的电网等所有东西都产生破坏作用。 石墨炸弹的破坏原理如下 (1)激光制导的炸弹炸开、旋转并释放出100-200个小的罐体,每个约有可乐罐大小。 (2)每个小罐均带有一个小降落伞,打开后使得小罐减速并保持垂直。 (3)小型的爆炸装置起爆,使小罐底部弹开,释放出石墨纤维线团。 (4)石墨纤维在空中展开,互相交织,形成网状。 (5)由于石黑纤维有强导电性,当其搭在供电线路上时即产生短路造成供电设施崩溃。 blu-114/b石墨炸弹中施放出的碳素纤维较海湾战争中使用的同类武器更加纤细,纤维直径只有百分之几毫米。当石墨炸弹在开启、引爆后,无数碳素纤维线团使飘然展开,千丝万缕,如丝如絮,像一团团飘浮的白云。一旦搭落在裸露的高压电力传输线上或变电站(所)变压器及其它电力传输设备上,就会使高压电极之间产生短路,由于强大的短路电流通过石墨纤维使其汽化,产生电弧,并使导电的石墨纤维涂复在电力设备上,加剧了短路的破坏效果。在电场极强的区域,将会发生放电现象,即由电子迅速地形成离子通道导电并产生电弧。由此产生的高温会使放电的两极局部熔化。电弧和因短路过载而过热的供电设备也会引起失火,造成破坏。使遭受攻击的供电网瘫痪,引起大范围停电。 三、纳米武器 “麻雀”卫星。美国于1995年提出了纳米卫星的概念。这种卫星比麻雀略大,重量不足10千克,各种部件全部用纳米材料制造,采用最先进的微机电一体化集成技术整合,具有可重组性和再生性,成本低,质量好,可靠性强。一枚小型火箭一次就可以发射数百颗纳米卫星。若在太阳同步轨道上等间隔地布置648颗功能不同的纳米卫星,就可以保证在任何时刻对地球上任何一点进行连续监视,即使少数卫星失灵,整个卫星网络的工作也不会受影响。 “蚊子”导弹。由于纳米器件比半导体器件工作速度快得多,可以大大提高武器控制系统的信息传输、存储和处理能力,可以制造出全新原理的智能化微型导航系统,使制导武器的隐蔽性、机动性和生存能力发生质的变化。利用纳米技术制造的形如蚊子的微型导弹,可以起到神奇的战斗效能。纳米导弹直接受电波遥控,可以神不知鬼不觉地潜入目标内部,其威力足以炸毁敌方火炮、坦克、飞机、指挥部和弹药库。 “e—玻璃”战车首辆以塑料/玻璃纤维为车身的装甲车辆———“先进复合材料装甲平台”(acavp)日前在英国亮相。其车体由一种被称为“e—玻璃”的复合材料制成。与普通装甲车辆相比,其重量减轻,且防护水平更高。应用复合材料可使战车重量减轻25%,更适于空运,而且雷达信号反射也大大减弱。该车体前部和侧面加装有被动装甲,定型后主要将作为侦察车使用。

物理与军事

2003伊拉克战争中美国的新武器3 伊拉克当地时间3月20日凌晨5时30分左右,美国正式向伊拉克发起攻击。此次伊拉克战争,美国要达到解除伊拉克武装、更迭伊拉克政权等目的。与之形成对照的是,美军动用的兵力要比海湾战争少得多。美军凭什么来以少胜多呢? 今天的光明日报发表文章,援引中国军事专家薛翔的分析对此作了解读。 中国军事专家根据美军的作战目标、装备技术基础、基本作战思想,以及伊拉克军力和战场环境等因素,就美军的作战手段特别是兵器运用进行了分析。 专家分析说,此次伊拉克战争,由于面对的作战对手、地理环境、战场态势都极为复杂和特殊,美军除了使用在近年局部战争中常用的卫星、航母、飞机、坦克,特别是B-2隐身战略轰炸机等新一代飞机和各类精确制导武器外,很可能将伊拉克作为新武器试验场,有针对性地使用一些新功能的“奇兵利器”。 ——智能化武器 为减少人员伤亡,美军会大量运用机器人和无人机。美军早在海湾战争中就使用了机器人。在阿富汗反恐怖战争的“蟒蛇行动”中,美军运用了“赫尔姆斯、教授、小东西和费斯特”等几种机器人,这些机器人每个4万美元,可配备12台摄像机、一个枪榴弹发射器和一把12发子弹的手枪,装备有全球定位系统,通过电子地图,两个或者两个以上的机器“战士”能够“看到”彼此的行动。无人机主要用于执行空中侦察、突击浅近纵深地面目标等任务。美军用于侦察的无人机种类较多,其中最先进的“全球鹰”高空长航时无人机,续航时间24~42小时,待机速度635千米/小时,航程26000千米,任务半径可达5556千米。任务载荷有光电/红外图像侦察传感器、合成孔径雷达和LR-100电子情报搜集系统。美军的攻击型无人机近年发展迅速,在阿富汗反恐怖战争中,美军使用“捕食者”无人机携带“海尔法”导弹,攻击地面目标,首开无人机攻击地面目标的先河。此次伊拉克战争,美军的无人机会挂载激光制导炸弹等其他精确制导武器,用于对地攻击,特别是对城区目标的打击。

物理学在现代军事中的应用

物理学现代军事技术 科学技术是第一生产力。现代科技已渗入我们生活的各个部分,国家的武器装备象征着国家军事力量的强弱,反应一个国家国防能力的实力,物理知识在现代军事技术中的广泛应用,特别是智能化武器的应用大大增强了军队的作战实力,使现代战争不再是过去简单的战争,而是科学技术的大比拼。现代军事科技主要运用的是经典物理学原理,现在我们以现代战争与各种武器的应用来分析,物理学在军事中的发挥的作用。 经典物理学在军事技术中的运用及武器举例 1:GPS全球定位系统:GPS是英文Global Positioning System的简称,而其中文简称为“球位系”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的。GPS在军事中有广泛的应用,现代战争中各种导弹主要依靠GPS定位系统进行制导从而达到准确摧毁目标的目的。例如洲际导弹的发射,洲际导弹主要靠多级火箭推动弹头前进,发射后,达到一定高度按预定轨道飞行,并不断加速,当导弹达到射程所需要的倾角和速度时,弹头与弹体分离,弹头靠惯性力并在重力的作用下,按椭圆轨道继续飞行,当弹头达到弹道最高点后,便开始下降命中目标。期间主要依靠GPS的“指引”从而击中目标。 2:热成像系统:一般的夜视器材都是利用目标的反射光线成像的。热像仪与它们不同,它既不依靠夜天光,也无须主动携带红外光源,而是靠接收目标自身的红外辐射(一切物体,只

要其温度高于绝对零度,就会有红外辐射)来工作的,所显示的图像反映了目标与周围环境之间热辐射(温度)的差异,亦即利用热对比度成像,因而是热图像。具有军事意义的目标(如飞机、坦克,士兵等)一般都比周围环境温度高,因此也就成了热像仪最好的观察对象,从而能够对夜晚下的军事目标进行有效打击。 3:声纳:笼统的说,海水中声波是唯一能远距离传播的能量载体,像电磁波、光波入水几米、十几米就衰减的没有了。 而声纳是先用声源(声纳的换能器)发出声波,声波照射到水中的物物体(鱼类、潜艇等)后反射回来,通过不同的物体反射声信号的强度和频谱信息是不一样的这一特征,声纳的接收设备接收在接到这些包含丰富内容的信息后经过数据处理,再与数据库里面的数据比照,就能判断照射的物体是什么,甚至能判别其航速,航向。 机载声纳安装在直升机上,执行任务时,飞机飞到指定海面离海面十几米的低空处,把换能器吊放到海水中一定深度,发射机制造出一个高频交流信号,输送给换能器。 4:物理战:物理战就是运用物理技术,人为制造海啸、地震、暴雨、浓雾、泥石流等,即借助自然力达到某种军事目的。 如利用雾:低去层和雷电影响航空兵的行动,利用高空热温层扩大冲击波的破坏范围。 利用地球物理技术,进行人工降雨时,向云中播撒一种化学药刘,使降下的雨有酸性,腐蚀对方雷达、坦克、大炮和枪械等技术设备。 利用火箭作为运载装,把氧利昂或氟的氧化物送到25~20公里高度之间的低浓度臭氧层,使之出现一个暂时的洞穴,让太阳紫外线辐射直接射到地面,以杀伤对方集结地域暴露人员和物体。有的向大气层中发射一些吸热或吸光的物质,使敌区气温发生剧烈变化,减弱对方部队的战斗力。还有控制闪电在电离层中产生低电磁波,影响对方人员的大脑和行动能力等,如1993年美军在意大利伏尔特河岸制造5公里长

相关文档