文档库 最新最全的文档下载
当前位置:文档库 › 基于蚁群优化的多弹协同目标分配算法_张邦楚

基于蚁群优化的多弹协同目标分配算法_张邦楚

基于蚁群优化的多弹协同目标分配算法_张邦楚
基于蚁群优化的多弹协同目标分配算法_张邦楚

鲁棒优化及相关问题的研究

鲁棒优化及相关问题的研究 鲁棒优化研究带不确定性的优化问题,是不确定优化的一个分支.在鲁棒优化中,主要关注由不可控参数引起的不确定性,且仅知道不 可控参数在某个不确定集中取值.由于对实际问题有效的建模和求解,鲁棒优化已发展成为处理不确定优化问题重要且十分普遍的工具.基于鲁棒性这个概念,本文围绕鲁棒优化探讨了无穷多目标优化、不确定向量优化和不确定互补问题中相关的一些重要课题.主要内容如下:1.基于对强鲁棒性、一致鲁棒性和严格鲁棒性的细致分析,通过设置调整变量建立了一种新的鲁棒性,称为松弛鲁棒性.其对应的松弛 鲁棒模型包含了相关文献中出现的具有松弛意义的大部分模型,例如偏离鲁棒模型、可靠鲁棒模型、软鲁棒模型以及随机方法中的期望值模型和风险规避模型.这个统一的模型表明:对不确定性的处理方式 取决于决策者对不确定性掌握的信息、对这些信息的态度以及可用的数学方法.另外,提出了鲁棒性测度并研究了它的一些基本性质,如平移同变性、单调性、正齐次性和凸性.2.在基于分量比较的序结构上,对无穷多目标优化问题引入了Pareto有效性和Geoffrion真有效性,并借此表明了无穷多目标优化与不确定/鲁棒优化的密切关系.针对 一般的不确定优化问题,利用推广的ε-约束方法得到了 Pareto鲁棒解的生成方法.通过一族锥刻画了Geoffrion真有效性,并揭示了Pareto有效性与Geoffrion真有效性的本质区别:Pareto有效性需要对其它的成员补偿都有界,而Geoffrion真有效性要求对其它的成员补偿一致有界.最后,将Geoffrion真有效性应用到鲁棒对应上,得到

了不确定型选择理论中著名的Hurwicz准则.3.遵循鲁棒标量优化中的研究方法,对不确定向量优化问题,首先建立了硬性意义下的鲁棒对应模型.然后,出于对这个鲁棒模型一个缺点的修正,利用Pareto 有效性的思想将其松弛,得到了紧性意义下的鲁棒对应模型.不同于文献中大量使用的集方法,这两个鲁棒模型属于鲁棒多目标/向量优化研究中的向量方法.与基于集方法得到的鲁棒模型进行了深刻地比较,展示出它们特殊的地位以及向量方法更大的潜力.4.对带模糊参数的互补问题,利用可能性理论中的可能性测度和必要性测度去除模糊,提出了两类确定性的模型,分别称为可能性满意模型和必要性满意模型.从不同的角度进行了分析,得到了它们的解具有的一些重要特征.随后,比较了几种受不同类型的不确定性影响的互补问题及相应的处理方法,包括对模糊映射的模糊互补问题、对不确定集的鲁棒互补问题和对随机不确定性的随机互补问题.最后,将这两类模型应用到模糊优化、模糊博弈和带模糊互补约束的数学规划问题上.

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法 关键字:布谷鸟搜索、元启发式算法、多目标、最优化 摘要:在工程设计方面,很多问题都是典型的多目标问题,而且,都是复杂的非线性问题。现在我们研究的优化算法就是为了解决多目标化的问题,使得与单一目标问题的解决有明显的区别,计算结果和函数值有可能会增加多目标问题的特性。此时,元启发式算法开始显示出自己在解决多目标优化问题中的优越性。在本篇文章中,我们构造了一个新的用于解决多目标优化问题的算法——布谷鸟搜索算法。我们通过一系列的多目标检验函数对其的有效性已经做出来检验,发现它可以应用于解决结构设计等问题中去,例如:光路设计、制动器设计等。另外,我么还对该算法的主要特性和应用做了相关的分析。 1.简介 在设计问题中经常会考虑到很多多重的复杂问题,而且这些问题往往都具有很高的非线性性。在实际中,不同的目标之间往往会有分歧和冲突,有时候,实际的最优化解决方案往往不存在,而一些折中的和近似的方案往往也可以使用。除了这些挑战性和复杂性以外,设计问题还会受到不同设计目标的约束,而且还会被设计代码、设计标准、材料适应性、和可用资源的选择,以及

设计花费等所限制,甚至是关于单一目标的全局最优问题也是如此,如果设计函数有着高度的非线性性,那么全局最优解是很难达到的,而且,很多现实世界中的问题经常是NP-hard的,这就意味着没有一个行之有效的算法可以解决我们提出的问题,因此,对于一个已经提出的问题,启发式算法和科学技术与具体的学科交叉知识经常被用于其中,用来作为解决问题的向导。 另一方面,元启发算法在解决此类优化问题方面是非常有效的,而且已经在很多刊物和书籍中得以运用,与单一目标的优化问题相反的是,多目标优化问题具有典型的复杂性和困难性,在单一目标的优化问题中我们必须去找出一个最优化的解决方法,此方法在问题的解决中存在着一个单一的点,并且在此问题中不包括那些多重的、平均优化的点,对于一个多目标的优化问题,存在着名为Pareto-front的多重的复杂的优化问题,为了了解我们所不熟悉的Pareto-front问题,我们需要收集并整理很多不同的方法,从而,此计算结果将会随着近似解的变化、问题的复杂度和解决方法的多样性而有所变化甚至增加。在理论上,此类解决方法应包括问题并且应相对的有一致无分歧的分布情况,然而,还没有科学的方法可以证明这种解决方法可以在实际中得以应用。 从问题的出发点我们可以得知,算法可以在单一目标优化问题中运行的很好,但是却不能在多目标的优化问题中直接的运用,除非是在特殊的环境与条件下才可以应用。例如,使用一些

浅析多目标优化问题

浅析多目标优化问题 【摘要】本文介绍了多目标优化问题的问题定义。通过对多目标优化算法、评估方法和测试用例的研究,分析了多目标优化问题所面临的挑战和困难。 【关键词】多目标优化问题;多目标优化算法;评估方法;测试用例 多目标优化问题MOPs (Multiobjective Optimization Problems)是工程实践和科学研究中的主要问题形式之一,广泛存在于优化控制、机械设计、数据挖掘、移动网络规划和逻辑电路设计等问题中。MOPs有多个目标,且各目标相互冲突。对于MOPs,通常存在一个折衷的解集(即Pareto最优解集),解集中的各个解在多目标之间进行权衡。获取具有良好收敛性及分布性的解集是求解MOPs的关键。 1 问题定义 最小化MOPs的一般描述如下: 2 多目标优化算法 目前,大量算法用于求解MOPs。通常,可以将求解MOPs的算法分为两类。 第一类算法,将MOPs转化为单目标优化问题。算法为每个目标设置权值,通过加权的方式将多目标转化为单目标。经过改变权值大小,多次求解MOPs 可以得到多个最优解,构成非支配解集[1]。 第二类算法,直接求解MOPs。这类算法主要依靠进化算法。进化算法这种面向种群的全局搜索法,对于直接得到非支配解集是非常有效的。基于进化算法的多目标优化算法被称为多目标进化算法。根据其特性,多目标进化算法可以划分为两代[2]。 (1)第一代算法:以适应度共享机制为分布性策略,并利用Pareto支配关系设计适应度函数。代表算法如下。VEGA将种群划分为若干子种群,每个子种群相对于一个目标进行优化,最终将子种群合并。MOGA根据解的支配关系,为每个解分配等级,算法按照等级为解设置适应度函数。NSGA采用非支配排序的思想为每个解分配虚拟适应度值,在进化过程中,算法根据虚拟适应度值采用比例选择法选择下一代。NPGA根据支配关系采用锦标赛选择法,当解的支配关系相同时,算法使用小生境技术选择最优的解进入下一代。 (2)第二代算法:以精英解保留机制为特征,并提出了多种较好的分布性策略。代表算法如下。NSGA-II降低了非支配排序的复杂度,并提出了基于拥挤距离的分布性策略。SPEA2提出了新的适应度分配策略和基于环境选择的分布性策略。PESA-II根据网络超格选择个体并使用了基于拥挤系数的分布性策略。

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

基于蚁群算法的多目标优化

基于蚁群算法的多目标优化 池元成;蔡国飙 【期刊名称】《计算机工程》 【年(卷),期】2009(035)015 【摘要】Aiming at multi-objective optimization problem, this paper proposes an Ant Colony Algorithm(ACA) for solving Multi-objective Optimization Problem(MOPACA). An improved pheromone updating process based on continuous space is described. Two moving strategies are used in the searching process to ensure better solutions. Convergence property of the algorithm is analyzed. Preliminary simulation results of two benchmark functions show the feasibility of the algorithm.%针对多目标优化问题,提出一种用于求解多目标优化问题的蚁群算法.该算法定义连续空间内求解多目标优化问题的蚁群算法的信息素更新方式,根据信息素的概率转移和随机选择转移策略指导蚂蚁进行搜索,保证获得的Pareto前沿的均匀性以及Pareto解集的多样性.对算法的收敛性进行分析,利用2个测试函数验证算法的有效性. 【总页数】3页(168-169,172) 【关键词】蚁群算法;多目标优化;收敛性分析 【作者】池元成;蔡国飙 【作者单位】北京航空航天大学宇航学院,北京100083;北京航空航天大学宇航学院,北京100083 【正文语种】中文

动态鲁棒进化优化方法研究

动态鲁棒进化优化方法研究 现实生活中的许多优化问题,往往受到生产工况、运行环境等动态因素的影响,形成动态优化问题。解决该类问题的常用方法是跟踪最优解方法。 它在探测到优化问题发生改变时,重新触发寻优过程,从而快速、准确地找到适应于新优化模型的最优解。跟踪最优解方法虽然可以相对有效的解决动态优化问题,但是,当动态优化问题具有复杂的目标函数或较大的搜索空间时,耗时的进化求解过程,往往使在有限时间内获得问题的最优解存在困难。 另外,某些实际动态优化问题中,当动态因素发生变化时,就去执行寻优获得的新最优解,往往需要调整众多相关人员或资源,导致较大的最优解切换成本。基于此,本论文给出了一种解决动态优化问题的动态鲁棒优化方法。 其核心思想是面向连续变化环境下的动态优化问题,找到用户可以接受的一组基于时间的鲁棒最优解序列。当环境发生变化时,根据用户可接受程度,直接采用相邻前一环境下的鲁棒解作为当前环境下的较优解,而不是重新寻找新环境下的最优解。 这可以有效降低新环境下优化问题的寻优代价,满足生产实际中有限资源调配的需求。面向动态单目标优化问题,已有动态鲁棒优化方法中给出生存时间和平均适应度两种鲁棒性指标。 在此基础上,构建了兼顾上述两种鲁棒性能指标的两阶段多目标进化优化模型,采用基于非支配排序的遗传算法,获得问题的鲁棒最优解序列。第一阶段多目标进化优化方法用于获得每个动态环境下,兼顾上述两方面性能的所有Pareto 解;第二阶段中的进化个体由第一阶段获得的Pareto解依环境变化时刻动态组合而成,考虑解序列的平均生存时间和平均适应度,采用多目标进化优化方法获

得实际可实施的动态鲁棒最优解集,并将其应用于解决改进的移动峰问题。 面向动态多目标优化问题,首次给出了时间尺度上的多目标鲁棒性概念,定 义了基于时间的鲁棒Pareto最优解,给出了时间鲁棒性和性能鲁棒性两个性能 度量指标。鲁棒Pareto最优解应兼顾这两方面性能,由此构建了动态鲁棒多目标优化模型。 进而,采用基于分解的多目标进化算法,求解其鲁棒Pareto最优解集。进一步,在求解动态鲁棒多目标优化问题时,兼顾个体的性能鲁棒性和时间鲁棒性,构建了动态鲁棒多目标约束优化模型。 考虑到个体的鲁棒性评价中,需要同时考量Pareto解在当前和未来相邻动 态环境下的适应值。为有效估计未来相邻环境下某一个体的适应值,建立了基于已评价历史信息的适应值时间序列,并采用移动平均预测、自回归预测和最近邻域预测,通过加权方式构成集成预测模型。 决策者从Pareto解集中找到最符合他们需求的解是多目标优化的最终目的。为提高进化效率,在每个动态环境下,没有必要获得全部Pareto最优解,仅需要 把寻优过程集中在决策者感兴趣的区域。 于是,将决策者的偏好信息融入到搜索过程中,引导种群趋向于决策者感兴 趣的区域;另外,在鲁棒性能评价中,将决策者的偏好信息转化为目标稳定性阈值,用于指导鲁棒个体选择。在上述偏好信息的共同作用下,采用基于分解的动态鲁棒多目标进化优化方法,获得满足决策者偏好的鲁棒最优解集。 采用传统的跟踪最优解法或动态鲁棒优化方法,在解决环境变化复杂的动态多目标优化问题时,都存在一定局限。为此,根据搜集的动态环境历史信息构建环境变化序列,用于预测未来环境变化程度。

多目标优化算法与求解策略

多目标优化算法与求解策略 2多目标优化综述 2.1多目标优化的基本概念 多目标优化问题(Multi-objective Optimization Problem,MOP)起源于许多实际复杂系统的设计、建模和规划问题,这些系统所在的领域包括工业制造、城市运输、资本预算、森林管理、水库管理、新城市的布局和美化、能量分配等等。几乎每个重要的现实生活中的决策问题都要在考虑不同的约束的同时处理若干相互冲突的目标,这些问题都涉及多个目标的优化,这些目标并不是独立存在的,它们往往是祸合在一起的互相竞争的目标,每个目标具有不同的物理意义和量纲。它们的竞争性和复杂性使得对其优化变得困难。 多目标最优化是近20多年来迅速发展起来的应用数学的一门新兴学科。它研究向量目标函数满足一定约束条件时在某种意义下的最优化问题。由于现实世界的大量问题,都可归结为含有多个目标的最优化问题,自70年代以来,对于多目标最优化的研究,在国内和国际上都引起了人们极大的关注和重视。特别是近10多年来,理论探索不断深入,应用范围日益广泛,研究队伍迅速壮大,显示出勃勃生机。同时,随着对社会经济和工程设计中大型复杂系统研究的深入,多目标最优化的理论和方法也不断地受到严峻挑战并得到快速发展。近几年来,将遗传算法(Genetic Algorithm,GA)应用于多目标优化问题成为研究热点,这种算法通常称作多目标优化进化算法或多目标优化遗传算法。由于遗传算法的基本特点是多方向和全局搜索,这使得带有潜在解的种群能够一代一代地维持下来。从种群到种群的方法对于搜索Pareto解来说是十分有益的。 一般说来,科学研究与工程实践中许多优化问题大都是多目标优化问题。多目标优化问题中各目标之间通过决策变量相互制约,对其中一个目标优化必须以其它目标作为代价,而且各目标的单位又往往不一致,因此很难客观地评价多目标问题解的优劣性。与单目标优化问题的本质区别在于,多目标优化问题的解不是唯一的,而是存在一个最优解集合,集合中

仿真的多目标优化(蚁群算法在旅行商问题中的应用)

(多目标优化模型)

蚁群算法在旅行商问题中的应用 摘要 本文将对蚁群算法的仿真学原理进行概要介绍和对蚁群算法产生、发展、优化进行介绍以及阐述蚁群算法的几点重要基本规则,并对蚁群算法的优缺点进行讨论。蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能多目标优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用。 关键字:蚁群算法;旅行商问题;仿真;多目标优化

一、问题重述 旅行商问题(TSP)是一个经典的组合优化问题。TSP可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton 回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个N P完全问题。随着问题规模的增大,人们对复杂事物和复杂系统建立数学模型并进行求解的能力是有限的,目标函数和约束条件往往不能以明确的函数关系表达,或因函数带有随机参、变量,导致基于数学模型的优化方法在应用于实际生产时,有其局限性甚至不适用。基于仿真的优化(Simulation Based Optimization,SBO)方法正是在这样的背景下发展起来的。本文将使用一种近似算法或启发式算法—蚁族算法。 1、蚁群算法的提出 蚁群算法(Ant Colony Optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 2、蚁群算法的仿生学原理 蚁群算法最初是通过对蚂蚁群落的观察,受蚁群行为特征启发而得出的。蚂蚁是一种群居昆虫,在觅食、清理巢穴征启发而得出的。蚂蚁是一种群居昆虫,在觅食、等活动中,彼此依赖、相互协作共同完成特定的任务。等活动中,彼此依赖、相互协作共同完成特定的任务。就个体来讲,单个蚂蚁的智力和体力是极其有限的,体来讲,单个蚂蚁的智力和体力是极其有限的,服务于整个群落的生存与发展;就群体来讲,蚁群在行为上的分工协作、群落的生存与发展;就群体来讲,蚁群在行为上的分工协作、在完成任务过程中所体现的自组织特征等反应出蚁群具有较高的智能和自我管理能力,具有很高层次组织性,高的智能和自我管理能力,具有很高层次组织性,这使得蚁群能够完成一些复杂的任务。群能够完成一些复杂的任务。 蚁群的行为是整体协作,相互分工,蚁群的行为是整体协作,相互分工,以一个整体去解决一些对单个蚂蚁看上去是不可能完成的任务。些对单个蚂蚁看上去是不可能完成的任务。就目前来讲,蚁群至少有三个方面的行为特征对算法研究有很好的启发意义,分别是觅食行为、任务分配、死蚁堆积阁。蚁群的觅食行为指蚂蚁从巢穴出发寻找食物并且将食物搬回巢穴的行为.当蚂蚁出外寻找食物时,会在自己走过的路径上释放一种称为信息家的物质,径上释放一种称为信息家的物质,后续的蚂蚁一般更愿意走那些信息素强度更高的路径。这样,那些信息素强度更高的路径。这样,较短路径上单位时间内通过的蚂蚁数目较多,留下的信息素也较多(浓度更高) 通过的蚂蚁数目较多,留下的信息素也较多(浓度更高),对蚂蚁产生了更强的吸引,使得更多的蚂蚁走较短的路径。妈蚁产生了更强的吸引,使得更多的蚂蚁走较短的路径。这就形成了一个正反馈机制,就形成了一个正反馈机制,使得最终所有的蚂蚁都走蚁穴到食物源的最短路径. 食物源的最短路径. 3、蚁群算法实现的重要规则 (1)范围 蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范

多目标蚁群算法及其实现

多目标蚁群算法及其实现 李首帅(2012101020019) 指导老师:张勇 【摘要】多目标优化问题对于现阶段来说,是十分热门的。本文将对多目标规划当中的旅行商问题,通过基于MATLAB的蚁群算法来解决,对多目标问题进行局部优化。 【关键词】旅行商问题;蚁群算法;MATLAB 一、背景介绍 旅行商问题是物流领域当中的典型问题,它的求解十分重要。蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法,属于随机搜索算法。M. Dorigo等人充分利用了蚁群搜索食物的过程与旅行商问题(TSP)之间的相似性,通过人工模拟蚁群搜索食物的行为(即蚂蚁个体之间通过间接通讯与相互协作最终找到从蚁穴到食物源的最短路径)来求解TSP问题。为区别于真实蚁群,称算法中的蚂蚁为“人工蚂蚁”。人们经过大量研究发现,蚂蚁个体之间是通过一种称之为信息素(pheromone)的物质进行信息传递,从而能相互协作,完成复杂的任务。蚁群之所以表现出复杂有序的行为,个体之间的信息交流与相互协作起着重要的作用。蚂蚁在运动过程中,能够在它所经过的路径上留下该种物质,而且能够感知这种物质的存在及其强度,并以此指导自己的运动方向。蚂蚁倾向于朝着该物质强度高的方向移动。因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的。 二、蚁群算法原理介绍 1.蚁群在路径上释放信息素; 2.碰到还没走过的路口,就随机挑选一条路走。同时释放与路径长度有关的信息素; 3.信息素浓度与路长成反比; 4.最优路径上的信息浓度越来越大; 5.最终蚁群找到最优路径。 其实自然界中,蚁群这种寻找路径的过程表现是一种正反馈的过程,与人工蚁群的优化算法很相近。所以我们简单功能的工作单元视为蚂蚁,则上述的搜寻路径过程可以用来解释人工蚁群搜寻过程。 人工蚁群和自然界蚁群各具特点。人工蚁群具有一定的记忆能力。它能够记忆已经访问过的节点;另外,人工蚁群在选择下一条路径的时候并不是完全盲目的,而是按一定的算法规律有意识地寻找最短路径。而自然界蚁群不具有记忆的能力,它们的选路凭借外激素,或者

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权与法、极大极小法、理想点法。评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。 在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合

多目标优化进化算法比较综述

龙源期刊网 https://www.wendangku.net/doc/2f11627942.html, 多目标优化进化算法比较综述 作者:刘玲源 来源:《决策与信息·下旬刊》2013年第07期 摘要多目标优化是最优化领域的一个重要研究方向,本文简要介绍了多目标优化的模型和几种多目标优化的进化算法,并对算法进行了简要比较。 关键词多目标优化粒子群遗传算法蚁群算法人工免疫系统 中图分类号:TP391 文献标识码:A 一、背景 多目标优化(Multiobjective OptimizaTionProblem,MOP)是最优化的一个重要分支,多目标问题中的各目标往往是有着冲突性的,其解不唯一,如何获得最优解成为多目标优化的一个难点,目前还没有绝对成熟与实用性好的理论。近年来,粒子群算法、遗传算法、蚁群算法、人工免疫系统、等现代技术也被应用到多目标优化中,使多目标优化方法取得很大进步。本文将其中四种多目标优化的进化算法进行一个简单的介绍和比较。 二、不同算法介绍 (一)多目标遗传算法。 假定各目标的期望目标值与优先顺序已给定,从优先级最高的子目标向量开始比较两目标向量的优劣性,从目标未满足的子目标元素部分开始每一级子目标向量的优劣性比较,最后一级子目标向量中的各目标分量要全部参与比较。给定一个不可实现的期望目标向量时,向量比较退化至原始的Pareto排序,所有目标元素都必须参与比较。算法运行过程中,适应值图景可由不断改变的期望目标值改变,种群可由此被引导并集中至某一特定折中区域。当前种群中(基于Pareto最优概念)优于该解的其他解的个数决定种群中每一个向量解的排序。 (二)人工免疫系统。 人工免疫算法是自然免疫系统在进化计算中的一个应用,将抗体定义为解,抗原定义为优化问题,抗原个数即为优化子目标的个数。免疫算法具有保持个体多样性、搜索效率高、群体优化、避免过早收敛等优点。其通用的框架是:将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并采取某种机制对记忆集进行不断更新,进而获得分布均匀的Pareto最优解。 (三)多目标PSO约束算法。

09第九章 多目标优化算法

第九章多目标优化算法习题与答案 1. 填空题 (1)多目标优化问题由于存在目标,使得同时优化的对象增多。由于目标之间往往相互冲突,某一目标性能的提高会引起其他目标性能的,因此只能通过的方法使所有目标尽可能达到最优。 (2)多目标优化问题需要求解一个由不同程度折中的组成的解集,并且需要保证解集的和,这就导致多目标优化问题的求解难度远远大于单目标优化问题。 解释: 本题考查多目标优化算法的基础知识。 具体内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: (1)多个,降低,权衡折中 (2)最优解,收敛性,均匀性 2.如何理解多目标优化问题? 解释: 本题考查多目标优化问题的形式和实质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 多目标优化问题由于存在多个目标,优化对象增多,且目标之间往往是相互冲突的,某一目标性能的提高会引起其他目标性能的降低,因此只能通过权衡折中的方法使所有目标尽可能达到最优。不同于单目标优化只需求得一个最优解,多目标优化需要求解一个由不同程度折中的最优解组成的解集,且需同时保证解集的收敛性和均匀性。例如,购买汽车时考虑到汽车性能和价格两个方面,往往

当性能较好时性能优良且价格昂贵,而性能较差时价格低廉,人们总是想得到价格便宜同时性能又好的汽车,但这两方面往往不能同时兼优,只能在某一方面有所偏重,这就形成了一个以汽车性能(比如百米加速时间)和价格为两个冲突目标的多目标优化问题。 3. 试举例说明Pareto 支配关系具有传递性。 解释: 本题考查Pareto 支配关系的性质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 假设两目标最小优化的三个个体,123=(2,2)=(3,3)=(4,4)C C C ,,,则1 2C C , 2 3C C ,又因为1 3C C ,所以Pareto 支配关系具有传递性。 4. 考虑一个具有两个目标最小化问题,20个个体的进化群体,进行Pareto 非支配排序分层。20个个体定义如下:C 1=(9,1),C 2=(7,2),C 3= (5,4),C 4=(4,5),C 5=(3,6),C 6=(2,7),C 7=(1,9),C 8=(10,1),C 9=(8,5),C 10=(7,6),C 11=(5,7),C 12=(4,8),C 13=(3,9),C 14=(10,5),C 15=(9,6),C 16=(8,7),C 17=(7,9),C 18=(10,6),C 19=(9,7),C 20=(8,9) 解释: 本题考查基于Pareto 支配的排序方法。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 由于{}18C C ;{}2349,,C C C C ;{}234510,,,C C C C C ;{}345611,,,C C C C C ; {} 45612 ,,C C C C ; {} 56713 ,,C C C C ; {} 12348914 ,,,,,C C C C C C C ;{} 1234591015 ,,,,,,C C C C C C C C ; {} 234569101116 ,,,,,,,C C C C C C C C C ;

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

相关文档
相关文档 最新文档