文档库 最新最全的文档下载
当前位置:文档库 › Copper Corrosion Inhibitor Review

Copper Corrosion Inhibitor Review

Copper Corrosion Inhibitor Review
Copper Corrosion Inhibitor Review

Int. J. Electrochem. Sci., 3 (2008) 1 - 28

https://www.wendangku.net/doc/2f11680240.html, Review

Copper Corrosion Inhibitors. A review

M. M. Antonijevic* and M. B. Petrovic

University of Belgrade, Technical Faculty Bor 19210 Bor, P. Box 50, VJ 12, Serbia

*E-mail: mantonijevic@tf.bor.ac.yu

Received: 5 October 2007/ Accepted: 25 October 2007 / Online published: 20 November 2007

The literature dealing with the electrochemical corrosion of copper and possibility of its prevention using inhibitors is examined. Inorganic compounds are investigated as well, but organic compounds and their derivatives in much greater numbers. Researches are directed to influence of compounds structure, concentration, method of application as well as media that inhibitor is used in on inhibition efficiency. Moreover, action mechanisms are studied. The attempts to find models, which can enable prediction of possibilities of newly synthesized compounds to act as corrosion inhibitors, combining theory and practical investigations of substances with similar structure are also significant.

Keywords: Copper, corrosion, inhibitors

1. INTRODUCTION

Copper is metal that has a wide range of applications due to its good properties. It is used in electronics, for production of wires, sheets, tubes, and also to form alloys. Copper is resistant toward the influence of atmosphere and many chemicals, however, it is known that in aggressive media it is susceptible to corrosion. The use of copper corrosion inhibitors in such conditions is necessary since no protective passive layer can be expected. The possibility of the copper corrosion prevention has attracted many researchers so until now numerous possible inhibitors have been investigated. Amongst them there are inorganic inhibitors [1], but in much greater numbers there are organic compounds and their derivatives such as azoles [2-49], amines [50-56], amino acids [57, 58] and many others. It is noticed that presence of heteroatoms such as nitrogen, sulphur, phosphorous in the organic compound molecule improves its action as copper corrosion inhibitor. This is explained by the presence of vacant d orbitals in copper atom that form coordinative bonds with atoms able to donate electrons. Interaction with rings containing conjugated bonds, electrons, is also present. Based on these results more and more compounds containing numerous heteroatoms and functional groups are developed synthesized since it is noticed they are responsible for good properties regarding corrosion inhibition because they

enable chemisorption. Also molecular weight is larger due to its beneficial effect on physical adsorption.

There are attempts to combine theory and practical experience from investigations of some substances having similar structure in order to find models that would enable prediction of possibilities of newly synthesized compounds to act as corrosion inhibitors.

These are the reasons for espying the need to make up a review that would sum the results published by now and serve as a guidance for the future research.

2. INORGANIC COPPER CORROSION INHIBITORS

The use of inorganic inhibitors as an alternative to organic compounds is based on the possibility of degradation of organic compounds with time and temperature. Three different inorganic inhibitors are investigated: chromate CrO42-, molybdate MoO42- and tetraborate B4O72- in concentration of 0,033M in solution containing 850g/l LiBr and has pH 6,9. Chromate is generally accapted as efficient corrosion inhibitor that can passivate metals by forming a monoatomic or polyatomic oxide film at the electrode surface, but it is also known that it can promote corrosion acting as a cathodic reactive. Possible process for chromates is the reduction or decomposition of the inhibitor on the metal surface, followed by precipitation. Chromates are reduced to Cr(III)hydroxide or oxyhidrixide on the metal surface that results in corrosion current density decrease. However, the main disadvantage is the toxicity of chromium (VI) oxidation state. This is the reason for search for less toxic alternatives.The logical alternative can be analogue of hexavalent chromium the molybdate species that is an environmentaly friendly inhibitor. Nevertheless, molybdate and tetraborate showed no significant inhibition. The corrosion resistance is not improved because the film formation is not favorised in the electrolyte containing very aggressive anions such as bromides. Inhibion efficiency increases in the following order: molibdate (1.56%)< tetraborate (51.0%)< chromate (78.6%). [1]

3. THE ORGANIC COPPER CORROSION INHIBITORS

3.1. Azoles

Azoles are organic compounds containing nitrogen atoms with free electron pairs that are potential sites for bonding with copper and that enable inhibiting action. Also, there is a possibility of introduction of other heteroatoms and groups in molecules of these compounds so there is a wide range of derivatives that exhibit good inhibition characteristics.

El-Sayed M.Sherif [2-5] investigated the influence of 2-amino-5-ethylthio-1,3,4-thiadiazole (AETD) on copper corrosion in aerated HCl solution [2] as well as the influence of 2-amino-5-ethylthio-1,3,4-thiadiazole (AETD) [3], 2-amino-5-ethyl-1,3,4-thiadiazole (AETDA) [4] and 5-(phenyl)-4H-1,2,4-triazole-3-thiole (PTAT) [5] in NaCl solution. It is expected that these compounds show high inhibition efficiency since they are heterocyclic compounds containing more donor atoms, besides that they are non-toxic and cheap. AETD, AETDA and PTAT proved to be good mixed type copper corrosion inhibitors and the inhibition efficiency increased with concentration [2-5], exposure

period [2,4,5] and oxygen content [3,4]. AETD, AETDA and PTAT molecules strongly adsorb on copper forming complexes with copper ions and prevent forming of Cu chloride and oxychloride complexes. The obtained values of inhibition efficiency are presented in Table 1.

Table 1. The results of the study of the efficiency of copper corrosion inhibition by AETD, AETDA and PTAT solution AETD concetration IE (%) references 1.0mM

40.00 5.0mM 59.00 0,5M HCl ?after 12h exposure 10.0mM 77.00 [2] 1.0mM 83.00 3% NaCl 5.0mm

94.00 [3] IE (%) Method; 3% NaCl solution AETDA concentration immediately after 10 days 1?10-3 M 60.00 60.00-62.00 Weight loss 5?10-3M 97.00 97.00-100.00 deaerated aerated oxygenated solution Potenciodynamic polarization; 5?10-3M AETDA 41.00 71.40

87.40 [4] surface coverage PTAT concetration of 1500ppm; 3.5% NaCl after immersion after 100h steady solution 0.87 0.97 stirred solution 0.71 1.00 [5]

In his work Gy.Vastag [6] investigated thiazole derivatives: 5-benzylidene-2,4-dioxotetrahydro-1,3-thiazole (BDT); 5-(4’-isopropylbenzylidene)-2,4-dioxotetrahydro-1,3-thiazole (IPBDT); 5-(3’-thenylidene)-2,4-dioxotetrahydro-1,3-thiazole (TDT) and 5-(3’,4’-dimetoxybenzylidene)-2,4-dioxotetrahydro-1,3-thiazole (MBDT) as copper corrosion inhibitors in 0.1M sodium sulphate solution, pH=2.94. Results are shown in table 2. The best protection is achieved by IPBDT as expected based on the structural analyses i.e. the presence of isopropyl group. It is shown that the investigated thiazole derivatives (especially IPBDT) have potential to replace toxic inhibitors (such as triazoles) that are used in closed systems.

Table 2. The efficiency of inhibition in the presence of thiazole derivatives [6] inhibitor

method IPBDT BDT TDT MBDT weight loss 89.00 86.00 65.00 73.00 IE (%) EIS 93.00 86.00 80.00 71.00

F.Zucchi et al. [7] studied the inhibiting action of tetrazole derivatives in 0.1M NaCl solution. Following compounds are tested: tetrazole (T), 5-mercapto-1-methyl-tetrazole (5Mc-1Me-T), 5-mercapto(Na salt)-1-methyl-tetrazole (5NaMc-1Me-T), 5-mercapto-1-acetic acid (Na salt)-tetrazole (5Mc-1Ac-T), 5-mercapto-1-phenyl-tetrazole (5Mc-1Ph-T), 5-phenyl-tetrazole (5Ph-T) and 5-amino-

tetrazole (5NH2-T) in the range of pH from 4 to 8 and at temperatures of 40 and 80°C. Recorded data are presented in table 3. All the inhibitors except 5Mc-1Ac-T that promotes which stimulates corrosion show an inhibition efficiency (IE) between 50 and 99%. IE increases with increasing pH and concentration while the temperature has a different influence on various derivatives. The best protective characteristics are shown by 5Mc-1Ph-T and 5Ph-T. IE decreases in the following order: 5Ph-T>5Mc-1Ph-T>5Mc-1Me-T>5NH2-T>5NaMc-1Me-T>T. The prefilming treatment is efficient only with 5Mc-1Ph-T, while at longer exposure time only 5Ph-T prevents corrosion attack. The inhibiting action is explained by adsorption of the inhibitor on the copper surface and formation of complex with copper.

Table 3. Tetrazole derivatives inhibition efficiency (temperature of 40°C, pH of the inhibitor solution without adjustments) [7]

inhibitor concentration IE%

T

10-3M in solution 53.50

exposure in 10-3M solution for 1h and measured after 1h in NaCl 36.80

5Ph-T

10-3M in solution 99.40

exposure in 10-3M solution for 1h and measured after 1h in NaCl 1.30

5Mc-1Ph-T

10-3M in solution 98.40

exposure in 10-3M solution for 1h and measured after 1h in NaCl 93.00

5Mc-1Me-T

10-3M in solution 93.40

exposure in 10-3M solution for 1h and measured after 1h in NaCl 25.90

5NH2-T

10-3M in solution 85.30

exposure in 10-3M solution for 1h and measured after 1h in NaCl -4.10

5NaMc-1Me-

10-3M in solution 66.20

T exposure in 10-3M solution for 1h and measured after 1h in NaCl 28.00

5-Mc-1Ac-T

10-3M in solution -110.00

exposure in 10-3M solution for 1h and measured after 1h in NaCl -25.70

The influence of 1-phenyl-5-mercapto-1,2,3,4-tetrazole (PMT) on the corrosion resistance of Cu in 0.1M HNO3 is also studied. The action effect of PMT is compared with the influence action of other organic compounds of this type the same family such as 1,2,3,4-tetrazole (TTZ), 5-amino-1,2,3,4-tetrazole (AT) and 1-phenyl-1,2,3,4-tetrazole (PT). The results are shown in table 4. They behave as mixed type inhibitors. The mechanism of action is chemisorption on the copper surface that follows Langmuir isotherm. Inhibition efficiency increases in the following order: TTZ

E.Sz cs [9] in his research investigated the inhibitor 5-mercapto-1phenyl-tetrazole (5-MPhTT) in 1mM H2SO4 solution. The results show reveal that the anodic current density and mass loss are two times twice less lower in the presence of 5-MPhTT. The investigated concentration is 0.5mM. Measuremens are conducted in three intervals where the first is in blank solution, the second in the solution containing inhibitor while the third is again in the blank solution. The mass change is observed in the first interval while in the 2. and the 3. mass didn’t change. The inhibition efficiencies for the second and the third interval are 99.93% and 99.8% respectively. It is concluded that inhibitor

forms a protective film chemisorbed on the surface. The structure of the protective film is further investigated by X.R.Ye [10] and the following conclusion is reached. The film contains a layer of inert, insoluble and long-lasting polymeric Cu(I) complex. These films are probably built over Cu2O layer through surface reaction of PMT and Cu(I) ions. The copper surface treated with PMTA can be described as composite structure Cu-PMTA/Cu2O/Cu. Each molecule of PMTA bridges two or more Cu(I) ions via N and S atoms. The hydrophobic backbone on PMTA ligand in Cu-PMTA prevents contact between hydrated corrosive ions and the metal surface and thus inhibit substrate corrosion. The optimum conditions for PMTA treatment are: 0.005mol/l PMTA solution, pH=3, temperature 20-50°C and 30min of treatment time. It is noticed that the films of coordination compounds formed by reaction of PMTA with copper surface are more efficient in corrrosion inhibition (under the influence of atmosphere, sulphide and chloride media) than those formed with TTA (tetrazole), BTA (benzotriazole), HBTA (hydroxybenzotriazole), MBT (2-mercaptobenzothiazole), MBI (2-mercaptobenzoimidazole), 2-AP (2-aminopyrimidine), IBM (imidazole) and chromates.

Table 4. The efficiency of inhibition in the presence of 10-3M tetrazole [8]

inhibitor method IE%

TTZ

weight loss after 72h exposure to 0.1M HNO331.50

polarization 29.80

AT

weight loss after 72h exposure to 0.1M HNO356.40

polarization 59.60

PT

weight loss after 72h exposure to 0.1M HNO394.50

polarization 93.70

PMT

weight loss after 72h exposure to 0.1M HNO397.50

polarization 95.40

J.C.Marconato [11] investigated the effect of 2-mercaptobenzothiazole in the ethanol solution. The solution contains 10-2M HClO4 in ethanol. When MBT is added the inhibition of anodic copper dissolution and cathodic reaction of hydrogen evolution is observed. The concentration of MBT of 0.001M lead to reduction of current density 4 times that is associated with formation of complex between metal ions and inhibitor. MBT is oxidized to 2,2’-dithiobis(benzothiazole) and/or 2,2’-thiobis(benzothiazole) and forms a complex involving its ionized thiol form and Cu(II) ions. The characteristics of adsorption and the influence of MBT and tetrazole (TTA) on the growth of oxide film on copper in 0.1M NaOH are also investigated [12]. The inhibition efficiency is strongly dependent on the structure and chemical properties of the species formed under the specific experimental conditions. MBT contains three atoms available for coordination i.e. N and S atoms in the ring and S atom of the thiocarbonyl group. The S atom of the thiocarbonyl group (C=S) that is ionized in alkaline medium can react with Cu and form thick polymeric film. The surface coverage is 0.89 which is the highest value recorded among all the investigated compounds. TTA does not act as a copper corrosion inhibitor in 0.1M NaOH.

The effect of 3-benzylidene amino 1,2,4-triazole phosphonate (BATP), 3-cinnamyledene amino 1,2,4-triazole phosphonate (CATP), 3-salicylalidene amino 1,2,4-triazole phosphonate (SATP), 3-para nitro benzylidene amino 1,2,4-triazole phosphonate (PBATP) in the neutral environment and its

interference with biocides is studied. The synthesized triazo phosphonates are used as inhibitors together with molybdate and cetyl trimethyl ammonium bromide (CTAB) as biocide. SATP is the most efficient due to the presence of electron releasing character of OH group, PBATP is the least effective due to the coplanarity of p-NO 2 group with the phenyl ring which imparts maximum electron withdrawal. Molybdate act as corrosion inhibitors in neutral and alkaline solutions. There is synergism between molybdate and inhibitor which may be related either to interaction between the inhibitor compounds or to interaction between the inhibitor and ions present in the aqueous media. The reason for selecting CTAB as biocide is that CTAB is not only the cationic surfactant but is also a quaternary ammonium salt with a long hydrocarbon chain whose homologues are used as inhibitors and biocides. The halides are the most effective derivatives since they increase inhibiting tendency of the positive quaternary ammonium ions through a synergistic effect. Inhibitor and biocide are added to the system at the same time as well with the 24h time difference in order to evaluate interference between them. The most effective treatment is the application of 15ppmCTAB+4ppmSATP+5ppmMo. Maximum efficiency is noticed for the compounds with the methoxy phenyl substituents, since the basicity of the coordinating atoms are increased by electron donating groups. The electron withdrawing groups such as p-nitro group retards this electron transfer process, which results in decreased inhibition efficiency. Regarding the protective films structure the following can be said: there is P-O-Cu bond, polymeric 5- and 6-membered copper-inhibitor ring complex is formed on the copper surface via reaction between the triazole ring and the metal surface, and in addition the CTAB-Cu 2+ complex can be deposited as a layer and as a part of the protective film. [13] Table 5. The results of the treatment with triazo phosphonates [13] inhibitor media concentration IE (%)

71.25 +Mo 5ppm 72.50 73.12 BATP lake water +CTAB 15ppm 81.25 4ppm

73.12 +Mo 5ppm 74.37 inhibitor added at the same time

75.62 CATP lake water +CTAB 15ppm inhibitor added after 24h 82.50 4ppm

75.00 +Mo 5ppm 76.25 inhibitor added at the same time 78.12 SATP lake water +CTAB 15ppm inhibitor added after 24h 83.75

62.50 +Mo 5ppm 65.62 inhibitor added at the same time 71.25 PBATP lake water +CTAB 15ppm inhibitor added after 24h 76.25 CTAB lake water 15ppm 77.50 Mo

lake water 5ppm 50.40 El-Sayed M.Sherif [14,15] investigated the effect of 3-amino-1,2,4-triazole (ATA) on the copper corrosion in 0.5M HCl [14] and in 3.5% NaCl [15]. It is found that ATA strongly adsorbs on the Cu surface in chloride solution, forms a complex with Cu + and inhibits copper corrosion by

preventing the formation of CuCl 2- through which Cu dissolution occurs. The maximum inhibition efficiency in the HCl solution in the presence of 5?10-4M ATA is achieved after 48h and it is ~60% that increases to ~67% and ~72% when the concentration is 1?10-3M and 5?10-3M ATA, in the NaCl solution in the presence of 1mM it is 94.4%, and after 50h it is 96.1%. The effect is long-term and the maximum inhibition efficiency after 24days is 83% for 0.5mM ATA, and increases to 90% in the presence of 1.0mM ATA.

In the paper published by https://www.wendangku.net/doc/2f11680240.html,litha et al. [16] the influence of derivatives of 1,2,4-triazole and surfactants in the aqueous solution containing potassium hydrogen phthalate and hydrochloric acid (pH

2) is examined. The inhibitors are 3-amino 1,2,4-triazole (ATA), 3-amino mercapto 1,2,4-triazole (AMT), 3-amino 5-methylthio 1,2,4-triazole (AMTT) and cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). The performance can be ranged as ATA

medium concentration EI (%) weight loss EI (%) potentiodynamic polarisation synergism parameter 100ppm 62.50 63.08 +CTAB 10ppm 89.71 90.00 1.42 ATA

+SDS 2500ppm 92.36 93.08 1.72 100ppm 68.91 70.00 +CTAB 10ppm 91.17 92.31 1.50 AMT

+SDS 2500ppm 92.48 94.31 1.70 100ppm 78.40 79.23 +CTAB 10ppm 91.50 94.62 1.48 AMTT

KH phthalate +HCl pH=2 +SDS 2500ppm 93.32 96.15 1.74 CTAB

10ppm 61.22 61.54 SDS 2500ppm 66.35 67.69

The efficiency of two newly developed triazole type organic compounds: bis [4-amino-5-hydroxy-1,2,4-triazol-3-yl]methane (D 1) and bis[4-amino-5-hydroxy-1,2,4-triazol-3-yl]butane (D 2) as copper corrosion inhibitors in 4.0M HNO 3 solution at 25°C is investigated. It is noticed that they act predominantly as cathodic inhibitors with long-term effectiveness whereat the inhibition efficiency is over 99%. D 1 is more efficient than D 2 and that is attributed to the screening effect of the –CH 2- chain of compound D 2, the efficiency increases with concentration and the mechanism is different at lower and at higher concentration. The adherent film of low solubility is formed which prevents the components of solution to reach the metal and ensures optimum protection. [17]

The most commonly used copper corrosion inhibitor of azole type is benzotriazole. There are numerous investigations of inhibitive action of BTA on copper corrosion in various media such as solutions containing chloride ions [18-22], nearly neutral solutions [23,24], strongly acidic [21,25-27]

and strongly alkaline media [12] and atmosphere [28,29]. Besides the common applications it is shown that BTA is the only inhibitor that provides effective protection of copper archeological artifacts during preservation process [24,29], although it is not the most efficient it exhibit some protection of electrodeposited copper powder [28]. However, it is noticed that BTA action is weaker in highly acidic and highly alkaline media as well as in media containing aggressive ions, so the investigation of its derivatives action is also conducted.

Benzotriazole is an organic compound consisting of benzene and triazole ring, which formula is C6H5N3. The presence of nitrogen atoms in triazole ring enables bonding with copper and is a basis for inhibitive effect of BTA. Generally about BTA action it can be said that it is anodic [21,23,30,31] copper corrosion inhibitor which action mechanism includes chemisorption [12,23,31-34], rearly physisorption [27,35] on the copper surface that follows Langmuire isotherm [12,23,26,27,32,35] followed by the formation of complex Cu(I)BTA[12,18-20,22,23,25,26,32,36-38]. Coordination between BTA molecule and Cu electrode surface occurs via nitrogen atom of triazole ring [12,23,27,32,38]. BTA molecules can be oriented parallel [12,23] or vertical [33,34] regarding surface. The orientation of inhibitor molecule is important because of the possibility of formation of stronger bond if the orientation is parallel due to interaction of π electrons of the ring with vacant d orbitals of copper. [12]

The mechanism of complex formation is proposed and described by the following reactions [18]:

Cu(s) + BTAH(aq) = Cu:BTAH(ads) + H+(aq)

where Cu:BTAH(ads)stands for BTAH adsorbed on Cu surface. In the presence of oxidants or by anodic polarization it can be oxidised to protective complex:

Cu:BTAH ads = Cu(I)BTA(s) + H+(aq) + e-

From this reaction it can be seen that increase of BTA concentration shifts the reaction towards formation of larger amount of protective complex Cu(I)BTA, that is confirmed in numerous experiments [12,18,22-24,27,29,30,35-38]. Also it can be observed that pH increase favours complex formation. [12]

Based on the characteristics of BTA itself the inhibition efficiency in the specific media can be explained. BTA can be found in three forms dependently on pH value of solution [36]. In strongly acidic media it has protonated form BTAH2+, in weakly acidic, neutral and weakly alkaline media its form is BTAH, while in strongly alkaline media it is BTA-. Considering that Cu surface is positively charged in the solution it can easily be concluded which form is more, and which is less favorable. Tromans [37] constructed the E-pH diagrams for systems containing Cu and BTA that provide an indication when the protective action can be expected, and when not, dependently on pH, potential and inhibitor concentration. The action mechanism is adsorption on Cu surface that is an exothermic process so it is obvious that temperature increase has an adverse effect on the inhibition efficiency [23,33,34].

Int. J. Electrochem. Sci., Vol. 3, 20089 The behavior of BTA derivatives is very similar. The introduction of the substituent groups has no effect on the mechanism of the inhibitive action while it has influence on inhibition efficiency [23,27,30,32,35,39].

P.Yu [23] and B.H.Loo [32] investigated influence of benzotriazole (BTA) and tolytriazole (TTA) on copper corrosion inhibition in deionized water [23] and in chloride solutions [32]. TTA has three isomers with the methyl group substituted in 4-, 5- or 6-position on the benzene ring. Both compounds exhibit inhibiting action, but TTA is more efficient. It can be concluded that the introduction of nonpolar methyl group increases the film hydrophobicity hence improving the copper corrosion prevention. A.Frignani [30] evaluated the effect of the introduction of alkyl chains of various lengths on the efficacy of the copper corrosion inhibition in 0.1M Na2SO4 and 0.1M NaCl solutions, pH=2.5. 1,2,3-benzotriazole (BTAH) and 5-alkyl-derivatives of benzotriazole, methyl-benzotriazole (C1-BTAH), butyl-benzotriazole (C4-BTAH), hexyl-benzotriazole (C6-BTAH), octyl-benzotriazole (C8-BTAH) and dodecyl-benzotriazole (C12-BTAH) are used. In Na2SO4solution the inhibition efficiency increases with introduction of alkyl groups from BTAH to C6-BTAH while C8-BTAH has almost the same effect as C6-, and C12-BTAH does not have remarkable influence because of low sollubility. More aggressive media, such as NaCl solution, hinders the action of the less effective inhibitors thus only C4-BTAH and C6-BTAH act as highly effective inhibitors while C6-BTAH is the most efficient. It can be concluded that introduction of the alkyl chain in the 5- position of benzotriazole improves the action of the base molecule mostly towards the anodic reaction. Positive effects are more significant as the chain length increases up to 6 C atoms.

A.Arancibia [35] conducted a research of the effect of BTA and its derivatives 5-methyl BTA and 5-chloro BTA on the copper corrosion inhibition in aerated 0.1M HCl solution. BTA and 5-methyl BTA act as cathodic inhibitors and their action is associated with adsorption of BTAH2+on Cu. 5-chloro BTA dependently on concentration has mixed, and at higher concentration anodic action mechanism associated with passivation and CuBTA formation. Chloro in 5-position enables formation of the partially protonated species BTAH while nitrogen is responsible for bonding with copper. It is noticed that the interaction between inhibitor and metal surface enhances with substituents in 5- position of inhibitor molecule, while electron acceptor groups have better effect that electron donor.

V.Otieno-Alego [38] studied the inhibiting action of 4- and 5-carboxybenzotriazole (4- and 5-CBT) and BTAH on copper corrosion in 0.1M Na2SO4 solutions (pH 0 and 4) as well as in Na2S?9H2O solution. It is noticed that the inhibition efficiency is lower in pH=4 solution compared to that in pH=0 solution, but it increases with exposure time. The optimum concentration is approximately 7,5?10-4M, and in mixture of 4- and 5-CBT the component having the inhibiting properties is 5-CBT. The mechanism of action is the same as for BTAH and includes adsorption and coordination with copper through N atom of triazole ring. It is found that the introduction of the electron withdrawing group (-COOH) in 4- position decreases the strength of coordination while in the 5- position the electrophilic effect is less effective and leads to stronger chemisorption and better corrosion inhibition. J.Bartley [27] conducted a research on the series of alkyl esters (methyl, butyl, hexyl and octyl) synthesised from the mixture of 4-CBTAH and 5-CBTAH in aerated pH~0 solution. It is observed that the inhibition efficiency increases with hydrocarbon chain length. This is attributed to increased physisorption of the alkyl chain as more methyl groups are introduced and chemisorption through

azole ring N. In order to obtain the same degree of surface coverage concentration of inhibitor required becomes progressively less as the molecule is larger due to more efficient surface blocking. Based on the presented data it can be said that esterification of BATH particularly with the introduction of the longer hydrocarbon chains is beneficial. The same results were reached by N.Huynh et al. [40] investigated the inhibition action of coatings formed dipping copper in solutions of alkyl esters (methyl, butyl, hexyl and octyl) of carboxybenzotriazole (mixture of 4- and 5-CBTAH, and separately 4- and 5-CBTAH-OE) in 0.5M Na2SO4 solutions with pH 0 and 8. The inhibition efficiency depends on type of solvent used in the coating solution (water, alcohol, acetone), temperature (30-100°C) and period of immersion (5min-6h). Pretreatment by immersing copper in hot (70°C) aqueous solution (1?10-4M) for aproximately 2-3h gave a film with the highest degree of corrosion protection. Film formed in aqueous solutions of inhibitors can be stable in acidic solution (pH~0) for up to three days, and in near-neutral sulphate solution (pH~8) for up to 10 days. In both acidic and neutral solution the inhibition efficiencies of the protective film increase with the length of the alkyl ester chain in the order: methyl

Guo-Ding Zhou [20] investigated the effect of 1-(2,3-dicarboxypropyl)benzotriazole (BT-250) which is a derivative of BTA but is less efficient as copper corrosion inhibitor in NaCl solution. Da-quan Zhang [41] investigated the effect of a novel corrosion inhibitor bis-(1-benzotriazolymethylene)-(2,5-thiadiazoly)-disulfide (BBTD) on copper corrosion in 3% NaCl and 0.5M HCl solutions. BBTD contains two BTA moieties and one thiadiazole moiety. It is found that BBTD is a good inhibitor for copper in both neutral and acidic solution, but it has greater influence in 3% NaCl then in 0.5M HCl solution. This can be attributed to the stability of cuprous oxide in neutral solution. BBTD adsorbs on the Cu surface and forms protective complex with Cu(I) ion. The complex is identified as BBTD-Cu(I) and protects copper surface from aggressive Cl-ions. BBTD is more efficient then BTA under this conditions, that can be seen based on data from table 7. M.A.Elmorsi et al. [42] investigated copper corrosion inhibition in aerated 0.5M H2SO4solution in the presence of two classes of heterocyclic compounds, namely phenylazo-pyrazolones (PAP) or hydroxy quinoline and bromobenzyl-carboxy-1,2,3 triazole (BCT) derivatives. Inhibition efficiency (IE) of BCT is 75-97%, and IE of PAP 90-97% while there is no regular change of IE with inhibitor concentration. The influence of temperature was investigated in the range form 300 to 343K and negative influence of high temperature is observed. Influence of PAP is attributed to adsorption, followed by Cu-chelates precipitation on copper surface via the interaction of C=O and N=N groups of the inhibitor molecule with the Cu ions of polarized surface. Effect of BCT can be a result of -complex formation between adsorbed triazole ring of inhibitor and Cu ions. Both PAP and BCT are cathodic inhibitors with significant difference in adsorption degree or protective Cu-complex formation.

The existence of a synergistic effect on copper corrosion inhibition in sulphuric acid solution in the presence of BTA and iodide ions is observed by D-Q.Zhang [25] and Y-C.Wu [43]. Synergistic effect is assumed to be a result of initial contact adsorption of iodide anions on copper, followed by a decrease in positive in the metal that facilitates the adsorption of protonated BTA on Cu surface [25] or Cu(IBTA) complex polymer film formation [43]. R.F.V.Villamil [26] also noticed synergistic effect on

inhibition of copper corrosion in sulphuric acid solution in the presence of BTA and sodium dodecylsulfate (SDS).

When considering the data presented above, the following conclusion is imposed, the introduction of substituent groups into the BTA molecule leads to improvement of its inhibition properties and protective action. Withal, the synergistic action of BTA with some compounds or ions, that significantly improves BTA efficiency, is perceived to be of great importance. The results of the research are summarised in table 7. Table 7. The values of the inhibition efficiency obtained by using BTAH and its derivatives inhibitor concentration media IE % references BTAH 10ppm 84.48 TTA 10ppm Deionized water 95.48 [23] BTAH 10-5M 83.30 C1-BTAH

10-5M 83.30 C4-BTAH 10-5M 97.30 C6-BTAH 10-5M 99.30 C8-BTAH saturated solution 0.1M Na 2SO 4; pH 2.5; exposure time 3h 99.00 [30] BTAH 10-2M 90.80 5-methyl-BTAH 10-2M 97.87 5-chloro-BTAH

10-2M 0.1M HCl 99.79 [35] 4-CBT 7?10-4M 20.00 5-CBT

7?10-4M 70.00 BTAH 7?10-4M 0.1M Na 2SO 4; pH 0; 3 days 40.00 4-CBT 5?10-4M 10.00 5-CBT 5?10-4M 0.1M Na 2SO 4; pH 4; 10 days 55.00 [39] BTAH

10-4M 58.00 CBTAH-ME 10-4M 57.00 CBTAH-BU 10-4M 67.50 CBTAH-HE 10-4M 85.00 CBTAH-OE

10-4M pH 0 98.00 [27] 0.5M Na 2SO 4 pH 0 45.10 BTAH

10-4M 0.5M Na 2SO 4 pH 8 63.40 0.5M Na 2SO 4 pH 0 30.20 CBTAH-ME

10-4M 0.5M Na 2SO 4 pH 8 60.20 0.5M Na 2SO 4 pH 0 58.20 CBTAH-BU

10-4M 0.5M Na 2SO 4 pH 8 76.20 0.5M Na 2SO 4 pH 0 63.60 CBTAH-HE

10-4M 0.5M Na 2SO 4 pH 8 86.80 0.5M Na 2SO 4 pH 0 95.10 CBTAH-OE

10-4M 0.5M Na 2SO 4 pH 8 99.00 0.5M Na 2SO 4 pH 0 94.80 4-CBTAH-OE

10-4M 0.5M Na 2SO 4 pH 8 99.10 0.5M Na 2SO 4 pH 0 95.10 5-CBTAH-OE

10-4M 0.5M Na 2SO 4 pH 8 99.10 [40] BTAH 0.1M atmosphere 99.00 [29] BTAH 10-3M 0.5M HCl 26.20 [21] BTAH 0.1M 1M HCl; pH0 99.73 [38] BTAH 10-3M 58.20 BTAH + KJ 5?10-4M+5?10-4M 0.5M H 2SO 4 67.60 [25] BBTD

10-3M 3% NaCl 87.60 BBTD 10-3M 0.5M HCl 79.20 [41]

Another azole type compound that also received plenty of attention is imidazole as well as its derivatives. Imidazole is a planar, aromatic heterocyclic organic compound containing two nitrogen atoms that form fivemembered ring. One of the nitrogen atoms is a pyrole type, and the other of pyridine type. Based on the structure it can be seen that imidazole molecule has two places convinient for bonding with surface: N atom with lone sp2 electron pair and aromatic ring. It is favourable due to its non-toxicity and high inhibition efficiency.

Action mechanism is the same as for other azole compounds, adsorption of molecules on copper surface and formation of protective complex with copper. The efficiency increases with concetration increase, while the temperature increase has a negative effect. Introduction of groups influences the efficiency but not the inhibition mechanism. Following groups showed to be especially favourable phenyl group, mercapto group, presence of more heteroatoms as potential centres for bonding with copper as well as benzene ring.

They are revealed to be efficient copper corrosion inhibitors in various media such as: nitric acid [44], sulphuric acid [25,45], hydrochloric acid [21,46], sodium chloride [47], atmosphere [48], sodium hydroxide [12].

Synergism has become one of the most important effects in the inhibition processes and it serves as the basis for all modern corrosion inhibitor formulations. D-Q.Zhang [25] investigated the influence of 2-mercapto benzimidazole (MBI) and KI on copper corrosion in 0.5M sulphuric acid. The results indicate that MBI and KI have a synergistic effect to prevent copper corrosion. This effect is atributed to formation of couprous iodide (CuI2) complex that is relatively stable and cuprous ions can react with protonated MBI and form (Cu+MBI) film that is the best protection against corrosion. Based on that the inhibitor film (Cu+MBI) formation may be acomplished through the following steps: Cu + I- (CuI)ads + e-

(CuI)ads + I- CuI2- + e-

CuI2- + p-MBI+ (CuMBI) + 2I- + p+

Iodide is not incorporated into the MBI inhibitive film on the copper surface. Synergistic effect is a result of initial contact adsorption of iodide anions on copper, followed by a decrease in the positive in the metal that improves the adsorption of protonated MBI on Cu surface. Organic molecule MBI has better inhibition effect on copper corrosion in comparison to BTAH in aerated sulphuric acid solution, it is about 20% more efficient.

The coordination property of imidazole derivatives with metals is used to construct higher-ordered hierarchical mesostructures in large scale [49]. In this order 4,5-diphenylimidazole (DPI) is used. Different characteristics can be obtained by changing the assembly conditions. The mesostructures can endow the copper surface with superhydrophobic property and significantly inhibit copper corrosion. The stucture is influenced by the solvent, time and concentration of DPI. It is shown that complex formed by the coordination of DPI with Cu plays a decisive role in providing a centre of layer nucleation and growth.

Int. J. Electrochem. Sci., Vol. 3, 2008 13Table 8. The results of imidazole application as the copper corrosion inhibitior inhibitor media concentration IE% references 1-(p-tolyl)-4-methylimidazole

0.05M 86.00 1-phenyl-4-methylimidazole 0.50M 94.30 4-methyl-5-hydroxymethylimidazole 0.30M 65.40 Imidazole 0.5M H 2SO 4 0.50M 44.00 [45] MBI 1mM 74.20 MBI + KJ 0.5M H 2SO 4 0.75mM+0.25mM 95.30 [25] MBI

0.5M HCl 1mM 91.60 [21] IM (imidazole) 10-3M 33.00 TMI (1-(p-tolyl-4-methylimidazole)) 10-3M 54.00 MMI (2-mercapto-1-methylimidazole) 1M HCl 10-3M 87.50 [46] Imidazole 10-4M 49.79 4-methylimidazole 10-4M 63.31 4-methyl-5-imidazolecarbaldehyde

3?10-4M 71.24 ethyl-4-methyl-imidazolecarboxylate 10-3M 80.50 4-methyl-1(4-methoxyphenyl)imidazole

2?10-4M 83.95 1-(p-tolyl)-4-methylimidazole 7?10-4M 93.03 1-phenyl-4-methylimidazole 3% NaCl 5?10-3M 94.31 [47] imidazole

1M HNO 3 0.1M 94.93 [44] BIMD (benzimidazole) 2.0mM 82.00 MBIMD (mercaptobenzimidazole) 2.0mM 74.00 IMD (imidazole) 0.1M NaOH 2.0mM 46.00 [12]

3.2. Amines

Copper corrosion inhibition in de-aerated, aerated, and oxygenated HCl [50] and NaCl [51] solutions by N-phenyl-1,4-phenylenediamine (NPPD) is investigated. The NPPD adsorbs on the copper surface whereat Cu undergoes oxidation to Cu + and form insoluble complex Cu +-NPPD on the surface. The efficiency increases with time and inhibitor concentration. The inhibition efficiency (IE) values are shown in table and reveal that NPPD is a good copper corrosion inhibitor in HCl though the IE is somewhat lower than in NaCl solution. The results are presented in table 9. Table 9. Copper corrosion inhibition efficiency in the presence of 10mM NPPD in 0.5M HCl solution [50] deaerated aerated oxygenated

IE(%), polarization curves 81.70 83.75 68.42 IE(%), Nyquist plots 79.80 73.60 83.00

The behavior of secondary amines as copper corrosion inhibitors in acid media, 0.5M hydrochloric acid and 0.5M sulphuric acid, is studied. [52] The homologous series of aromatic secondary amines with various substituents is investigated. All the investigated compounds contain amino group that has the ability of adsorption and co-ordination with metal as well as the polar and unsaturated bonds such as heterocyclic ring with oxygen (furan) substituted in 5- position and aromatic ring with methyl group in p-position. The nonsubstituted secondary amine (N-(2-furfuryl)-p-toluidine)

is the least efficient while the substitution of a hydrogen atom (-Cl, -Br, -NO2, -CH3) in the 5-position by either the electrophilic -Cl, -Br, -NO2, or the nucleophilic CH3substituent increases protective effect. In hydrochloric acid all the substituted secondary amines have good inhibiting characteristics while in sulphuric acid only the halide substituted ones show significant inhibition efficiencies as can be seen in table 10.

Table 10. The efficiency of copper corrosion inhibition in the presence of secondary amines [52]

Inhibitor 0.01M N-2-furfuryl-p-

toluidine

N-5-chloro-2-

furfuryl-p-toluidine

N-5-bromo-2-

furfuryl-p-toluidine

N-5-nitro-2-

furfuryl-p-toluidine

N-5-methyl-2-

furfuryl-p-toluidine

IE%, 0.5M

HCl 36.00 78.00 62.00 84.00 86.00

IE%, 0.5M

H2SO4

/ 81.00 84.00 31.00 /

Schiff bases are condensation products of an amine and a ketone or aldehyde, with R2C=NR’as their general formula. They contain heteroatoms and electrons that enable bonding with copper.

H.Ma [53] investigated copper corrosion inhibition in 0.5M NaCl and NaBr solutions by three Schiff bases N,N’-o-phenylen-bis(3-methoxysalicylidenimine) (V-o-Ph-V), N,N’-p-phenylen-bis (3- methoxysalicylidenimine) (V-p-Ph-V) and N-[(2-hydroxy-3-methoxyphenyl) methylene]-histidine (V-His). The inhibition efficiency is strongly dependent on the geometric structure and it decreases in the following order: V-o-Ph-V(around 90%); V-p-Ph-V(around 80%); V-His(around 40%). The inhibition action is a result of adsorption on the copper surface followed by complexation with Cu(I) or Cu(II) ions forming a blocking barrier to copper corrosion. It is noticed that these compounds strongy inhibit copper corrosion in chloride solutions of variuos pH values and they are environmentaly friendly. V-o-Ph-V is a compound with a planar structure and there are large conjugate bonds among the three aromatic rings and the two –CH=N- groups so it is inferred that it adsobs rapidly on the copper surface and forms a thin protective layer via the formation of a N-Cu coordinate bond or electron interactions. Cu(I)-(V-o-Ph-V) chelate forms, and afterwards also Cu(II)-(V-o-Ph-V). A crystal of the chelate precipitates on the surface from the solution resulting in a thick protective film and the anodic dissolution is inhibited. Long immersion and high concentration favoure the inhibition effect.

Cu+V-o-Ph-V Cu-(V-o-pH-V)ads

Cu(I)+V-o-Ph-V Cu(I)-(V-o-Ph-V)ads

CuX2-+V-o-Ph-V Cu(I)-(V-o-Ph-V)ads+2H++2X-

V-p-Ph-V is also a planar compound with a big conjugate bond. The difference is in the arrangement of –C=N- groups. V-His is a non-planar compound so no big conjugate bond can be formed. All the three Schiff bases can form chelates with Cu(I) or Cu(II), but Cu complexes with V-p-Ph-V and V-His are less compact. V-o-Ph-V and V-p-Ph-V in the halide solutions change the Cu dissolution mechanism or hinder the diffusion of dissolved oxygen towards Cu surface, they behave as mixed inhibitors but cathodic reaction is more influenced.

Maryam Ehteshamzadeh et al. [54,55] investigated the effect of novel the new series of Schiff base molecules on copper corrosion. The effect of N,N’-ethylen-bis(salicylidenimine) (S1), N,N’-isopropylen-bis(salicylidenimine) (S2) and N,N’-ortho-phenylen acetyl acetone imine (2-hydroxy benzophenone imine) (S3) on copper corrosion during treatment with 1M HCl solution is investigated

[54]. It is shown that they are good inhibitors with inhibition efficiency up to 92%. The differences in the efficiency among molecules are correlated with their structure. S2 may assume a coplanar conformation which would provide optimal interaction of aromatic electrons with the metal surface and thus show an advantage over S1 and S3. They act as cathodic inhibitors. They obay Langmuir isotherm while the adsorption energies indicate mixture of physical and chemical adsorption. The inhibitive action of Schiff bases N,N’-ethylen-bis(salicylidenimine) (S-E-S) and N,N’-ortho-phenylen-bis(salicylidenimine) (S-o-ph-S) self-assembled films on copper surface in chloride (0.88M NaCl) and acid (0.5M H 2SO 4) solutions is investigated [55]. It is found that S-o-ph-S is more efficient then S-E-S. When the concentration is increased the inhibition efficiency increases but that kind of application is not economical in industrial conditions, however film modification with propanethiol and 1-dodecanethiol significantly improves corrosion resistance at lower concentrations. C 12H 25SH SAMs are better then C 3H 7SH SAMs. Synergetic parameter obtained in the presence of 25ppm Schiff bases and 5mM dodecanethiol is 1.92 for S-o-ph-S and 5.6 for S-E-S. Results are presented in table 11. Table 11. Copper corrosion inhibition efficiency in the presence of Schiff bases [55] inhibitor concentration, ppm media method exposure time, min IE,% 25 0.88M NaCl EIS 30 87.00 300 0.88M NaCl

EIS 30 96.00 25 0.5M H 2SO 4 EIS 30 65.00 300 0.5M H 2SO 4 EIS 30 92.00 S-E-S 300 0.5M H 2SO 4 polarization 30 78.00 25 0.88M NaCl EIS 30 88.00 300 0.88M NaCl EIS 30 99.00 25 0.5M H 2SO 4

EIS 30 69.00 300 0.5M H 2SO 4 EIS 30 96.00 S-o-ph-S 300 0.88M NaCl polarization 30 92.00

A.A.El Warraky [56] investigated the influence of ethylene diamine (EDA) on Cu in 0.01M HCl pH= 1.8-2 with and without presence of Na 2S additive. Inhibitor is added after the sample was immersed for 2h in the different Na 2S additive concentrations. In the presence of 2ppm Na 2S pits appeare because CuHS film is unable to protect Cu surface from attack. In the presence of higher concentrations there is no pitting. Complete surface coverage with strongly adsorbed HS - is achieved at concentration of 10ppm Na 2S, that points out that S 2- ions concentration increase facilitates HS - adsorption on copper surface that prevents pitting corrosion occurrance. The addition of various concentrations of ethylene diamine (EDA) increase promote the corrosion rate of copper due to autocatalytic dissolution process at the Cu surface. However there is a synergistic effect between EDA and Na 2S resulting from HS - adsorption on Cu that facilitates EDA adsorption. It is noticed that different organic inhibitors become protonated in acid solution:

EDA+H + EDAH +

Adsorption of (EDAH)+ is facilitated in the presence of adsorbed HS- thus the inhibitor film can be copper hydrogen sulphide EDA complex (CuHSEDA).

3.3. Amino acids

Amino acids form a class of non-toxic organic compounds that are completely soluble in aqueous media and produced with high purity at low cost. These properties would justify their use as corrosion inhibitors.

J.B.Matos [57] studied the effect of cysteine (Cys) on the anodic dissolution of copper in sulfuric acid, at room temperature using electrochemical methods. Cys (HSCH2CHNH2COOH) contains three dissociable protons, and in aqueous solutions ionization depends upon pH. Acording to the copper dissolution mechanism proposed for sulfate media in the absence of cys the main species present on the copper surface at low overpotentials is the intermediate Cu(I)ads. This indicates that the inhibitory effect of cys originates from this intermediate and suggests that film formed at higher cys concentrations (0.001 and 0.01mol/l) is Cu(I)-cys complex. Film has inhibition effect since current density is aproximately 20 times lower in the presence of cys. At low cys concentration, cys is adsorbed on surface but complex can not be formed. Influence of cys is not significant at higher overpotentials where the main species present on copper surface is Cu(II)ads. G.Moretti [58] investigated possibility to use tryptophan (Trp) as a copper corrosion inhibitor in 0.5M sulfuric acid in the 20-50°C temperature range. Trp has good inhibiting effect in the short-term tests and at the highest concentrations. Temperature increase has a negative effect on its efficiency.

Table 12. Inhibition efficiency values in the presence of 0.01M tryptophan at different temperatures calculated from potenciodynamicpolarization curves [58]

T(°C) 20 30 40 50

IE(%) 86.90 93.40 77.90 84.90

Trp adsorbs on copper surface maintaining a certain contact angle with the metal surface and it can be physisorption or chemisorption and obays Bockris-Swinkels’ isotherm where x=2 that means that Trp is at least in short time adsorbed on copper surface by displacing two water molecules. In the presence of inhibitor copper dissolution mechanism is changed so Cu is primarely oxidized to Cu+ and is able to form slightly soluble [Cu-Trp n]+ads complex as the main product of electrooxidation in the presence of a “clean” surface (Cu/Cu2O system). This complex lowers the Cu+ concentration making the successive oxidation to Cu2+negligible. In the presence of inhibitor this may participate in the intermediate formation [Cu+(ads)] depending on the chemical stability and oxidative property of the adsorbed [Cu-Trp n]+ads complex:

Cu+ads+nTrp [CuTrp n]+ads

The inhibition sustaines until the compex is adsorbed. Even if Trp suffers a certain photodegradation process at least for those Trp molecules present in the solution, the molecules of

inhibitor adsorb well on active sites of the metal and/or the passivation layer at 20°C that is proved by inhibition percentage (IP) that is 80% for the solutions kept in dark as well as those kept in light.

3.4. Triphenylmethane derivatives

Two nitrogen containing organic compounds which are triphenylmethane ((C6H5)3CH) derivatives, fuchsin basic FB(rosaniline chloride)(C20H19N3?HCl) and fuchsin acid sodium salt FA (C20H17N3O9S3Na2), are tested as new copper corrosion inhibitors. [33,34] These compounds are thought to be good candidates due to the presence of chloride ion in FB and the polar or charged nature of the more complex FA surfactant molecule. Investigation is performed in sulphuric acid [33] and hydrochloric acid [34] solutions at various concentrations and temperatures in the presence of different inhibitor concentrations. FB is more efficient than FA that can be attributed to different molecular structures. The Frumkin isotherm gives the best fit while inhibitor ocupies more then one active spot. The inhibition mechanism of FB and FA can be explained by the Cu(inhibitor)ads reaction intermediates:

Cu+inhibitor Cu(inhibitor)ads Cu n++ne-+inhibitor

inhibitor aqu+ H2O ads inhibitor ads+ H2O aqu

At first, when there is not enough Cu(inhibitor)ads to cover Cu surface, because the inhibitor concentration is low or because the adsorption rate is slow, metal dissolution takes place at sites on the Cu surface free of Cu(inhibitor)ads. With a high inhibitor concentration a compact and coherent inhibitor overlayer is formed on the copper, which reduces chemical attacks on the metal. FB addition introduces chloride ions that are primarely adsorbed so afterwards by synergetic effect FB cations are electrostaticaly adsorbed on the Cu surface covered with primarily chemisorbed chloride ions. The inhibition action of FA in an H2SO4 acid solution may result from the blocking effect due to physical adsorption of the negatively charged C20H17N3O9S32- to the positively charged copper surface by the electrostatic attraction force. Temperature negatively effects inhibition efficiency. Comparison of these results with those obtained using BTA under the same conditions reveals that in sulphuric acid solution BTA is the most efficient, while in hydrochloric acid solution FB is the most efficient and the inhibition efficiency of BTA is close.

3.5. Thiole group compounds

H.Baeza [59] studied copper corrosion inhibition by 1,3,4-thiadiazole-2,5-dithiol (bismuthiol) in 0.5M HCl at 25°C. The efficiency is increased as the inhibitor concentration is increased reaching maximum value of 84,1% at 80?10-5M. The inhibitor is chemisorbed on the copper surface obaying Langmuir isotherm, and since the peaks corresponding to the formation of complexes bismuthiol-Cu(I) and bismuthiol-Cu(II) are observed, it is concluded that inhibition mechanism originates from these complexes on metal surface.

Y.S.Tan [60] studied the effect of self-assembled monolayers (SAM) of a series of substituted benzenethiol (BT) X-C6H4-SH (where X=meta-NH23-aminobenzenethiol 3-A-BT,ortho-NH22-aminobenzenethiol 2-A-BT,para-NH24-aminobenzenethiol 4-A-BT, para-NHCOCH34-acetamidobenzenethiol 4-AA-BT,para-F4-fluorobenzenethiol 4-F-BT, para-CH34-methylbenzenethiol 4-M-BT and para-CH(CH3)24-isopropylbenzenethiol 4-IP-BT) molecules. SAMs are prepeared by adsorption from 5mM solution in ethanol, during 1h at room temperature, onto a fresh copper surface. The hydrophilic mercapto group (-SH) in the BT molecule has a strong affinity for copper and the inhibitor molecules anchor on the copper surface via the thiolate bond, while the hydrophobic benzene ring with different substituents constitutes the ultra thin protective monolayer. The formation of the benzenethiolate-Cu complex requires the loss of the –SH hydrogen though it is not yet determined whether this proton is lost as H2 or H2O:

X-C6H4-SH + Cu0 X-C6H4-S—Cu+ + 1/2H2

X-C6H4-SH + Cu0 +oxidant X-C6H4-S—Cu+ + 1/2H2O

The loss of the –SH hydrogen is enchanced by the electron withdrawing groups though according to the results it can be inferred that any substitution in the BT benzene ring regardeless of whether electron-donating or electron-withdrawing, improves the corrosion inhibiting properties of the chemisorbed films. Self-assembled monolayers of benzenethiols chemisorbed on Cu surface are good copper corrosion inhibitors in 0.5M sulphuric acid. The structure of the inhibitors influences their inhibition efficiency and is strongly affected by the type and the position of the substituent functional group on BT. The results indicate that the inhibition efficiencies (IE) of the para substituted BT molecules increase in the following order: –CH(CH3)2>–CH3>–F> –NHCOCH3>–NH2. The effect of the ring position of the substituent on IE is ortho > meta > para, relative to the –SH position. These results are important in providing the rationale for the selection and the molecular design of inhibitors against Cu corrosion in aqueous media.

Table 13. The effect of benzenethiol SAMs on copper corrosion in 0.5M sulphuric acid [60] inhibitor BT 4-IP-BT 4-M-BT 4-F-BT 4-AA-BT 4-A-BT 3-A-BT 2-A-BT

IE%,polarization curves 74.39 86.47 82.53 80.53 66.01 53.51 60.25 72.30

IE%, EIS 74.10 90.60 89.10 87.10 82.60 76.80 78.00 80.40

The inhibition of copper corrosion in 1.5% NaCl solution is studied at 25, 35 and 45°C using three inhibitors: thiosemicarbazide (inh 1), phenyl isothiocyanate (inh 2) and their condensation product 1-phenyl-2,5-dithiohydrazodicarbonamide (inh 3). [61] It is concluded that all the three compounds are efficient corrosion inhibitors whereat the inhibition efficiencies follow the sequence: inh3>inh1>inh2. The enhanced effectiveness of the inh 3 can be correlated with the structure and size of molecule, inh 3 has four nitrogen atoms, two sulphur atoms and delocalised e electron density acting as active centres and the largest surface area. Mechanism of inhibition is proposed as adsorption only in case of inh 2; inh 1 at lower concentrations inhibits corrosion through adsorption

while at higher concentrations Cu(I) complex is formed that gradualy oxidises into Cu(II) complex. Complex films are responsible for corrosion inhibition. Inh 3 follows both the mechanisms simultaneously. It can be noticed that inhibition efficiency increases with temperature. Table 14. Inhibitive action of thiosemicarbazide (inh 1), phenyl isothiocyanate (inh 2) and 1-phenyl-2,5-dithio hydrazodicarbonamide (inh 3) on copper corrosion in 1.5% NaCl [61] IE (%) Inhibitor

concentration (ppm) Method 25°C 35°C 45°C weight loss 72.00 76.00 84.00 Inh 1

100 polarization 69.00 74.00 83.00 weight loss 62.00 66.00 70.00 Inh 2

100 polarization 60.00 63.00 67.00 weight loss 82.00 88.00 93.00 Inh 3 100 polarization 80.00 85.00 92.00

3.6. Phosphates as copper corrosion inhibitors

Copper corrosion by-product release to potable water is a complex function of pipe age, water quality, stagnation time and phosphate inhibitor type. Phosphates can be phosphoric acid, combination of orthophosphoric acid and zink orthophosphate, polyphosphate or blend of orthophosphoric acid and polyphosphate. It is noticed [62] that dosing of 1mg/l orthophosphate led to reductions in copper release ranging from 43-90% when compared to the same condition without inhibitor regardless of pipe age, water quality or stagnation period. Ortophosphate and hexametaphosphate have beneficial effects on copper release, but ortophosphate leads to greater reductions in copper release when compared to hexametaphosphate. Shiyin Li [63] investigated the adverse effect of organic matter on orthophosphate corrosion inhibition for copper pipe in simulated soft water. Sodium alginate and fulvic acid are selected to simulate extracellular polymeric substance produced by bacteria and natural organic matter in potable water. It is observed that organic matter markedly influence orthophosphate corrosion inhibition efficiency for copper pipes of various age (1mg/l as P), sodium alginate of low concentrations increases Cu dissolution but it decreases at concentration of 16mg/l, fulvic acid in concentration of 16mg/l strongly influences soluble Cu release (release increases and more from new pipes), at higher pH copper dissolution decreases.

Two kinds of phosphates, triethyl phosphate (TEP) and triphenyl phosphate (TPP), are used to form self-assembled monolayers, in 1?10-3M ethanolic solution, for the inhibition of the copper corrosion in 0.2M NaCl solution. [64] The results showed that their inhibition ability first increases with increasing immersion time in ethanolic solutions of the corresponding compounds. However, when the immersion time is increased over some critical point, the inhibition effect decreases. The best effect is achieved after 12h immersion whereat the surface coverage is 93.80% for TEP, and 96.50% for TPP. Therefore, for the same immersion time the inhibition effect of TPP monolayer is more pronounced than that of TEP monolayer. The influence, on copper corrosion in 0.2M NaCl aqueous solution, of self-assembled monolayers (SAMs) of triethyl phosphate (TEP – (C 2H 5O)3PO) and mixed SAMs of TEP with cetyltrimethyl ammonium bromide (CTAB – (CH 3(CH 2)15(CH 3)3N +Br -)) formed on copper surface is studied. [65] Films are formed from 1?10-3M TEP ethanol solution, and

1?10-3M CTAB aqueous solution. It is noticed that inhibition efficiency (IE) increases with an increase in the immersion time of copper in TEP-containing solution. When the TEP film is modified with CTAB, the efficiency improves markedly. External magnetic field improves the inhibition effect of SAMs and the inhibition efficiency increases with the increase in the field strength. TEP molecule reacts with copper surface via oxygen atom at the end of molecule.

Table 15. The results of the investigation of TEP self-assembled layers [65]

Inhibitor exposure time (h) magnetic field strength (mT) IE (%)

TEP 1 0 81.00

TEP 20 0 95.00

TEP 1 160 97.60

TEP + CTAB 1 + 24 0 99.40

Inositol hexaphosphate (IP6) also known as phytic acid and its salts, is suggested to be used as an environmentally friendly reagent to prevent metal surface from corrosion through a self-assembled monolayers (SAMs) method. [66] It is cheap and available as naturally polyphosphorylated carbohydrate widely occurring in beans, brown rice, corn, sesame seeds, wheat bran. For monolayer formation 10-2M IP6aqueous solution was used. Polarization is conducted in 0.1M KCl solution at room temperature. Monolayers on the copper surface improve its corrosion resistance, but the efficiency is only 41.20% due to water co-adsorption.

3.7. Other organic compounds

The effect of potassium ethyl xanthate on the anodic dissolution of copper in 1.0M NaCl acidic solutions pH=1-3 is investigated. [67] Increasing the concentration and pH of the solution increases inhibition efficiency (IE) therefore in pH=3 solution in the presence of 5?10-3M KEtX IE is 83%. Inhibitor action can be related to formation of an adherent and compact film of the Cu(I) complex on the copper surface:

EtX-(aq) + Cu0 Cu(I)EtX(ad) + e-

Cu(I)EtX(ad) represents the surface dipol formed by chemisorption of EtX- ion on Cu electrode or growth of multilayer Cu(I)EtX film. Considering that the first step in copper dissolution in presence of inhibitor is formation of CuCl2- the process may follow the steps presented below:

Cu + 2Cl- CuCl2- + e-

CuCl2-+ EtX- Cu(I)EtX + 2Cl-

Soluble CuCl2- can either diffuse to the bulk solution or react with EtX- to form a protective film. The restrained inhibition efficiency is probably caused by the formation of an untight Cu(I)EtX

铜铟镓硒(CIGS)薄膜太阳能电池研究

铜铟镓硒(CIGS)薄膜太阳能电池研究 【摘要】:铜铟镓硒Cu(InGa)Se_2(CIGS)薄膜太阳能电池,具有转换效率高、成本低、稳定性好等特点,是最有发展前景的薄膜太阳能电池之一。到目前为止,基于三步共蒸发工艺制备的CIGS薄膜太阳能电池的效率已达19.99%,是所有薄膜太阳能电池中最高的。尽管这种制备方法有很多优点,制备成分均匀的大面积电池却具有难以克服的困难,不能满足大规模产业化的要求。在CIGS薄膜太阳能电池产业化进程中,克服其层间的附着力差,制备符合化学计量比具有黄铜矿结构的多晶薄膜吸收层是必须解决的两个最重要的工艺技术。本论文主要研究一种工艺简单、可控、适合产业化需要的技术工艺,即溅射制备合金预制膜后硒化的制备方法。研究采用的溅射系统,是本中心自行设计研制的三靶共溅设备,阴极大小为3英寸,衬底基座可以旋转,以保证制备薄膜的均匀。首先,在碱石灰玻璃衬底上制备厚度约1微米的钼电极,在溅射过程中通过改变工作气压,使Mo电极具有类似层状结构,消除了内应力的影响。通过扫描电镜分析,薄膜表面具有鱼鳞状结构,从而增加了Mo电极和CIGS吸收层之间的接触面积。Mo电极和玻璃衬底之间,及其和CIGS吸收层之间的附着力得到显著提高。然后,在沉积有Mo电极的玻璃衬底上,通过共溅射的方法制备约700纳米厚度的Cu(InGa)预制层薄膜,靶材采用CuIn和CuGa合金靶。硒化采用低温和高温过程依次进行的2步方法,采用固态硒源,硒化室是一个半密封的石墨盒。通过在高温区保温30分钟,制备出了性能优异的CIGS

吸收层薄膜,具有(112)晶面择优取向,显示明显的黄铜矿单一结构。薄膜表面平整,晶粒大小均匀、排列紧密,晶粒大小达到3到5微米。用化学水浴法,制备厚度约70纳米的CdS过渡层。分别采用醋酸镉和硫尿作为镉源和硫源。研究了ZnS薄膜的制备工艺,对无镉电池的制备做了初步探索。最后用射频磁控溅射的方法,研究了常温下制备透明导电材料IT0和ZnO的制备工艺,研究了溅射功率和溅射气压对薄膜性能的影响。所制备的透明导电薄膜在可见光谱范围内,透过率到达80%到90%,方块电阻达到15Ω/□以下。在CIGS薄膜太阳能中,作为上电极材料,具有广泛的应用前景。通过大量的实验,优化了背电极Mo、吸收层CIGS、过渡层CdS(ZnS)、本征氧化锌i-ZnO和搀杂氧化锌n-ZnO(或者ITO)的制备工艺。最后,制备出了结构为Glass/Mo/CIGS/CdS/i-ZnO/n-ZnO/A1的CIGS电池器件。对器件的性能做了测试分析,在没有减反射层的情况下,转化效率达到7.8%。该研究采用的CIGS薄膜太阳能电池的制备工艺简单、过程容易控制、设备和材料费用低,没有采用剧毒的气源,适合大规模产业化的要求,为以后进一步的研究开发做了技术储备。【关键词】:CIGS薄膜太阳能电池TCO磁控溅射合金靶固态硒源硒化 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2009

施工组织设计(方案)审核意见记录表

施工组织设计(方案)审核意见记录表 工程名称项目经理 存在问题: 1、脚手架方案中应增加脚手架布置概况,脚手架附图(平面图、立面图、节点图)以及脚手架计算书。并按照新规范2011进行编制。立杆间距均应按照新规范设置,审批程序经过架业公司审批后报公司审批。 2、编制人应填写新红头文件里的技术负责人。 3、特殊工种人员证件应清晰可见,使用有效期。 4、所有方案中的工程概况除了各单位名称还应包括建筑高度等概况。 5、应急预案应填写人员名单以及联系方式。 6、模板方案中应增加平面布置图、梁底节点图等。 处理意见: 年月日项目部签收:

工程名称厦门华强文化科技产业基地项目经理杨静 存在问题: 1脚手架方案应首先由脚手架分包单位编制,经过分包单位内部审批盖章后报总公司审批。 2、脚手架方案中应增加脚手架布置概况,脚手架附图(平面图、立面图、节点图)以及脚手架计算书。并按照新规范2011进行编制。立杆间距均应按照新规范设置,审批程序经过架业公司审批后报公司审批。 3、编制人应填写新红头文件里的技术负责人。目前项目组织机构红头文件未下。 4、所有方案中的工程概况过于简单,除了各单位名称还应包括建筑高度等概况。 5、方案中脚手架立杆宽度应大于基础宽度。 6、模板方案中应增加平面布置图、梁底节点图等。 7、脚手架的计算应根据实际搭设高度计算。此方案计算未见建筑高度。 处理意见: 安徽鲁班建设集团安全部 年月日 项目部签收:

工程名称厦门华强文化科技产业基地项目经理杨静 存在问题: 1模板方案概况中过于简单,应增加楼层高度。 2、模板方案未见基本的梁柱节点处理构造图。 3、模板方案中应增加平面布置图,布置图内应包括支撑体系基本的构造尺寸。 4、编制人应填写新文件的技术负责人等。 处理意见: 安徽鲁班建设集团安全部 年月日项目部签收:

活动方案之规划评审会工作方案

规划评审会工作方案 【篇一:规划评审会】 水城县野钟特色经果产业示范园区 规划评审会 为确保水城县野钟特色经果产业示范园区规划设计科学合理、具有 可操作性,6月27日,县委副书记吴君隆同志召集规划编制单位、 县直有关部门、园区涉及的乡镇负责人召开规划评审会。会上,县 委副书记吴君隆同志首先强调了规划评审会的意义,要求各单位要 高度重视园区规划评审工作。接下来,按会议议程,规划编制单位 围绕园区规划目标、思路、园区自然资源优势、投资和效益分析等 方面进行了汇报。各单位根据各自的业务对园区规划存在的问题提 出了修改意见和建议。 最后,县委副书记吴君隆同志作总结要求。一方面,要求各单位积 极配合规划方进一步完善规划,确保规划通过即将进行的省市评审;另一方面,要求规划方结合园区基本情况进一步明确规划思路和主 导产业,进一步深度分析园区现状和布局,结合园区旅游资源和旅 游规划,突出园区特色。 【篇二:新项目规划设计方案评审关注要点详解】 新项目规划设计方案评审要点 一、前言 1.商业综合体的规划设计工作分哪几个阶段? 商业综合体的规划设计工作分为概念方案阶段、方案设计阶段(含方 案深化设计)、初步设计阶段,施工图设计阶段、实施阶段和营运 阶段。 2.商管公司参与规划设计工作主要集中在哪两个阶段及工作内容? 商管公司作为商业产品的使用者和管理者,参与规划的目的和任务 就在于对项目从使用功能的实现和后期运营效果的预期上实施专业 把控,我们参与新项目规划的能力和水平将影响商业品质。 二、商业项目业态定位和设计研讨工作要点 1.对商业项目进行整体业态定位是打造商业项目雏形的关键。商 业定位准确是保证商业项目在开业之后保值增值的必要条件。 2.此阶段商管公司的任务及准备工作内容

商业综合体规划设计方案及对策评审要点解析

商业综合体规划设计方案评审要点解析 商业综合体的规划设计工作分为概念方案阶段、方案设计阶段(含方案深化设计)、初步设计阶段,施工图设计阶段、实施阶段和营运阶段。商管公司作为商业产品的使用者和管理者,参与规划的目的和任务就在于对项目从使用功能的实现和后期运营效果的预期上实施专业把控,其参与新项目规划的能力和水平将影响商业品质。 商业项目业态定位和设计研讨阶段工作要点 (1)对商业项目进行整体业态定位是打造商业项目雏形的关键。商业定位准确是保证商业项目在开业之后保值增值的必要条件。 (2)此阶段商管公司的任务及准备工作内容:商业项目业态定位和设计要点研讨、建筑方案(含方案深化)设计评审、空调冷热源论证、各专项设计评审等。其中各专项设计评审中的每一项又各自大致按照方案及方案深化设计、初步设计、施工图设计等阶段来完成。在每个阶段,商管公司作为物业的使用者和管理者,都需要进行专题市场调研工作,获得相关的信息依据,经过研究分析后,对规划设计方案进行评审并形成意见和建议,完成须由商管公司主导的专项设计成果,提交规划院,然后经过一次或多次联合评审会签由规划院将各方意见达成一致,形成阶段性设计成果。本文将重点从这三个阶段就商管公司参与规划设计任务、准备工作以及从管理专业角度所需重点关注的事项进行详细解读,以期能够给参与这项工作的人们提供参考和思路,使我们今后在参与规划设计工作时能够有的放矢,提高工作效率。 (3)评审关注的事项:业态定位、步行街布局、交通组织、停车位、停靠站和公交车站、管理用房、消防疏散通道、变形缝。 【关注点1】业态定位 根据市场调研结果,综合城市发展和商业发展状况、商业项目所在区域的发展趋势、所属商圈的地位和未来竞争态势等情况进行定性分析研究,确定项目的商业定位、业态组合、业态布局,进而对项目的总体建筑规模体量、项目内外交通环境组织、主要业态(含步行街)类型的布局及面积配置、零售业态经营档次和组合方式、以及大系统划分方式等要素予以确认。 【关注点2】步行街布局 (1)步行街应合理布局、与主力店有机结合并成为连接各主力店客流动线的枢纽,使各主力店的客流通过步行街实现交汇和共享;目前根据不同的建筑体量,步行街与主力店布局较为理想的方式有:步行街在整体被主力店围合下向各主力店之间穿插、步行街对主力店全包围。为确保步行街商铺整体连贯性,步行街各层与主力店的开口数量应适当,并且通过在适当位置开口使步行街没有明显的“冷段”和“死角”;

实施方案审查意见

实施方案审查意见 建设项目设计方案审查意见【1】 行使依据《中华人民共和国城乡规划法》、《北京市城乡规划条例》及相关法律、法规、规章的规定和城乡规划的要求办理主体市规划委大兴分局 受理条件1、申报单位填写完整的并加盖单位印章的《建设项目规划许可及其他事项申报表》; 2、建设项目选址意见书(含正本、附件和附图)或者建设项目规划条件(含附件和附图)复印件1份; 3、建设计划行政主管部门(发改委、建委)有效期内的项目可研批复或项目核准或备案复印件1份(中央和部队在京项目为市建设主管部门的批复文件); 4、建设单位需提供关于项目的申请函文件(须包含文号、签发人、单位印章等基本公文要素)原件; 5、具有资质的设计单位(依法应当进行招投标的建设项目为中标设计单位)按照要求绘制的规划设计方案图1套(按A4规格折叠并预留装订线装盒;图纸包括:图纸目录、设计说明、总平面图、各层平面图、各向立面图、剖面图、各主要部位平面图;设计说明中应有抗震8度和无障碍设施设计说明; 总平面图应标明比例尺、指北针、各项经济指标(如绿地率、容积率和建筑密度等)、拟建建筑外轮廓尺寸、层数及现状建筑的间距尺寸等,住宅还要标注《套型结构比例明细表》;图签中须有三人

以上签名;图纸须加盖有效期内的年度图纸报审专用章、注册建筑师章,住宅项目还需加盖建筑节能设计专用章;另附相同总平面图2份。 6、其他法律、法规、规章规定要求提供的相关资料。 收费依据和标准不收费 法定期限30个工作日(其中:审查、决定时限为受理之日内20个工作日。制证和送达为10个工作日。) 承诺期限30个工作日(其中:审查、决定时限为受理之日内20个工作日。制证和送达为10个工作日。) 办理部门市规划委大兴分局建设工程管理科 办理地点大兴区兴政街23号 联系电话010-6**24 建议实施方案(征求意见稿)【2】 “郑州社会学兴趣小组”——是一个由郑州网友自发创办的学习/学术交流小圈子,旨在联络本地的社会学业余爱好者,进行共同学习、话题讨论、学术交流和社会调研等活动。小组运作初步设想如下: 【学习班】每个加入“郑州社会学兴趣小组”的成员必须参加“学习班”,并顺利完成为期3个月的学习(之后方可参加调研),以掌握好有关社会调研的基本知识和理论。 学习班成员平时主要通过小组提供的学习资料和自学指导各自进行自己的学习,并按要求阶段性地向小组提交学习报告(或在线下活动时交流学习心得);学习班3个月一期,长期、持续、举办。

铜铟镓硒薄膜太阳能电池的现状及未来

铜铟镓硒薄膜太阳能电池的现状及未来学术界和产业界普遍认为太阳能电池的发展已经进入了第三代。第一代为单晶硅太阳能电池,第二代为多晶硅、非晶硅等太阳能电池,第三代太阳能电池就是铜铟镓硒CIGS(CIS中掺入Ga)等化合物薄膜 太阳能电池及薄膜Si系太阳能电池。 铜铟镓硒薄膜太阳能电池是多元化合物薄膜电池的重要一员,由于其优越的综合性能,已成为全球光伏领域研究热点之一。本文阐述了铜铟镓硒薄膜太阳能电池的特性和竞争优势;介绍了国内外在铜铟 镓硒薄膜太阳能电池领域的研究现状;最后探讨了铜铟镓硒薄膜太阳 能电池的应用展望。 关键词:太阳能电池;薄膜;铜铟镓硒;展望 近几年,世界各国加速发展各种可再生能源替代传统的化石能源,以解决日益加剧的温室效应、环境污染和能源枯竭等全球危机。作为理想的清洁能源,太阳能永不枯竭,正成为当今世界最具发展潜力的产业之一。目前,太阳能电池市场主要产品是单晶硅和多晶硅太阳能电池,占市场总额的80%以上。由于晶硅电池的高成本和生产过程的高污染,成本更低、生产过程更加环保的薄膜太阳能电池得到快速发展。现阶段,有市场前景的薄膜太阳能电池有3种,分别是非晶硅、碲化镉(CdTe)和铜铟镓硒(CuInGaSe2,一般简称CIGS)薄膜太阳能电池。作为直接带隙化合物半导体,铜铟镓硒吸收层吸收系数高达

105cm-1,转化效率是所有薄膜太阳能电池中最高的,已成为全球光伏领域研究热点之一,即将成为新一代有竞争力的商业化薄膜太阳能电池。 1、铜铟镓硒薄膜太阳能电池的特性和竞争优势 太阳能电池的材料一般要求主要包括:半导体材料的禁带宽度适中;光电转化效率比较高;材料制备过程和电池使用过程中,不存在环境污染;材料适合规模化、工业化生产,且性能稳定。经过数十年电子工业的研究发展,作为半导体材料硅的提炼、掺杂和加工等技术已经非常成熟,所以,现在的商品太阳能电池主要硅基的。但是,硅是间接带隙半导体材料,在保证电池一定转化效率前提下,其吸收层厚度一般要求150~300微米以上,理论极限效率为29%,按目前技术路线,提升效率的难度已经非常巨大。同时考虑到加工过程近40%的材料损耗,材料成本是硅太阳能电池的最主要构成。另外,其材料生产过程的高温提炼、高温扩散导致其制备过程能耗高,这使其能量偿还周期长,整体成本高。尽管经过近几年的规模化发展,市场价格得到大幅下降,其每瓦成本仍高于2美元。如果再考虑到其制备过程的高污染,更增加了其环境治理社会成本,这些都严重制约了其竞争优势。相比较,薄膜太阳能电池具有较大的成本下降空间,同时它能够以多种方式嵌入屋顶和墙壁,非常适合光电一体化建筑和大型并网电站项目。在这种情况下,薄膜太阳能电池引起了人们的重视,近几年成了科技工作者的研究重点。从全球范围来看,光伏产业近期仍将以

中国铜铟镓硒(CIGS)薄膜太阳能电池未来发展趋势报告

2010-2012年中国铜铟镓硒(CIGS)薄膜太阳能电池市场全景调查及未来发展趋势报告 报告简介 报告目录、图表部份 目录 第一章铜铟镓硒(CIGS)薄膜太阳能电池概述 1 第一节太阳能电池的分类 1 一、硅系太阳能电池 1 二、多元化合物薄膜太阳能电池 3 三、聚合物多层修饰电极型太阳能电池 3 四、纳米晶化学太阳能电池 5 第二节铜铟硒(CIS)薄膜太阳能电池介绍7 一、CIS太阳电池的结构7 二、CIS太阳电池的特点7 三、生产高效CIS太阳电池的难点8 第三节铜铟镓硒(CIGS)薄膜太阳能电池介绍8 一、CIGS太阳能电池基本概念8 二、CIGS太阳电池的结构9 三、CIGS薄膜太阳电池的优势9 四、CIGS薄膜三种制备技术的特点10 第二章2008-2009年世界CIGS薄膜太阳能电池产业发展状况分析12 第一节2008-2009年世界薄膜太阳能电池的发展分析12 一、全球薄膜太阳能电池产业迅速发展12 二、三种薄膜太阳能电池进入规模生产12 三、薄膜太阳能电池企业纷纷布局14 第二节2008-2009年世界CIGS薄膜太阳能发展概况14

二、全球CIGS电池发展现状16 三、全球铜铟镓硒太阳能电池领导厂商发展概况19 第三节2009-2012年世界CIGS薄膜太阳能电池产业发展趋势分析21 第三章2008-2009年世界主要国家CIGS薄膜太阳能电池发展分析23 第一节2008-2009年世界CIGS薄膜太阳能企业发展动态23 一、IBM与TOK将共同开发新型CIGS太阳能电池23 二、德国SOLIBRO开始提供CIGS太阳能电池23 三、IBM涂布法CIGS太阳能电池转换效率突破12.8%24 四、VEECO公司CIGS薄膜太阳能电池设备获得订单24 五、亚化宣布进军CIGS薄膜太阳能领域25 第二节2008-2009年美国CIGS薄膜太阳能电池发展分析25 一、美国化合物太阳能电池专利权人分析25 二、美国CIGS化合物太阳能电池研发状况26 三、美国CIGS化合物太阳能电池厂商商业化动向27 四、2008年美国CIGS电池转换效率再创历史新高28 第三节2008-2009年日本CIGS薄膜太阳能研发状况28 一、日本研制成功CIGS太阳电池新制法28 二、日本采用CIGS太阳电池技术成功试制图像传感器29 三、日本量产型CIGS型太阳电池模块光电转换率实现15.9% 30 四、日本柔性CIGS太阳能电池单元转换率达全球之首31 第四章2008-2009年国外CIGS太阳电池主要生产企业运营透析32 第一节美国GLOBAL SOLAR ENERGY INC.(GSE)32 一、公司概况32 二、2008年GSE美国CGIS太阳能电池生产厂投产32 三、世界最大CIGS薄膜太阳能电池阵在GSE投入使用32 第二节日本的HONDA SOLTEC CO.,LTD 33 一、公司概况33 二、本田SOLTEC开发出CIGS型太阳能电池33

专家评审意见

深圳市宝安区防洪(潮)排涝工程规划评审会评审意见 xx水务局于 2007年1月23日 ~24日在银湖会议中心八角亭会议室主持召开《宝安区防洪(潮)排涝工程规划》(以下简称“规划”)评审会。市发改局、市财政局、市规划局、市国土局、市环保局、宝安区政府、区规划分局、区水务局、区环保局等单位的代表出席了会议,会议邀请了广东省及本市相关专业的九位专家组成专家评审组。(名单附后) 1、“规划”做了大量的资料收集、调查和整理工作,对宝安区的洪(潮)涝状况进行了较全面的分析研究。“规划”内容全面,依据充分,资料翔实,指导思想和技术路线正确,规范、标准、法律、法规的运用合理,设计原则和任务明确,与相关城市规划基本协调一致,规划深度基本满足相关规定的要求,请根据本次的评审意见,协调相关规划,经过补充、修改完善以后可以供展开下阶段工作的参照依据。 2、洪(潮)涝灾害给宝安地区的经济、社会发展和人民生命财产已造成了很大的危害和严重的影响,从根本上治理洪(潮)涝灾害已刻不容缓,这是弘扬“以人为本”、“和谐社会”、“和谐深圳”最基 本的出发点和落脚点,是经济社会全面协调可持续发展的基础,应全力推进这项工作的展开。 3、治理洪(潮)涝灾害坚持全面规划、综合治理、加强管理的规划原则是正确的,要做好全流域治理,系统布局、统筹兼顾,要坚持因地制宜,讲求实效,突出重点,近远期结合的基本原则。近期应先解决流域中比较紧迫,与百姓密切相关的工程项目,使老百姓早日摆脱水涝之苦。 4、根据《深圳市防洪(潮)规划修编报告(2002

~2010年)》提出宝安地区城市防洪标准为100年一遇的洪水标准,防潮标准为200年一遇潮位是合理和正确的。 排涝标准按: 有调蓄能力时,10年一遇24小时设计暴雨1天排完的标准;无调蓄能力时,按市政室外排水暴雨重现期1 ~3年的标准是合适和可行的。建议采用P=2设计标准。 鉴于计算所得50年与100年一遇的水位差和相遇洪水时的淹没范围均不大,因而工程所有设防标准建议均按标准值一步到位,不再分期。 5、对于茅洲河、观澜河及西部沿海流域的各主要支流防洪标准,以及防洪体系相结合的河道治理标准,按照支流保护对象的重要性,不降低现有支流堤防标准以及洪灾经济损失的定量对比分析等因素提出的设防标准基本上是合理和可行的。 6、根据地理特征分列茅洲河流域、观澜河流域和西部沿海三大水系的水文资料,推算所得两岸潮位、洪峰流量等计算方法基本合理 的。 7、关于防洪(潮)排涝工程规划: 7- 1、对防洪排涝提出的泄、蓄、渗三种方式即通过大力清除河道内违法建筑和其它河道障碍以及河道清淤加大河道泄洪能力。充分挖掘现有水库、利用有条件的地形兴建水库,保留现有河道已有的鱼塘、低洼地兴建滞洪区或人工湿地等实施滞洪、削减洪峰、以及结合城区内雨水利用及城市建设等,修复下垫面,增大地面下渗能力,增加地面地下滞蓄能力的措施和理念是合理和行之有效的好方法。应予以肯定。 7-

培养计划专家评审意见表修订稿

培养计划专家评审意见 表 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

(二)人才培养方案专家评审意见表 南京工程学院人才培养方案专业指导委员会评审意见表组织评审单位名称:南京工程学院 (部门盖章)

是否进行了实践性教学体系设计其合理性如何 实践性教学体系设计全面、丰富,课程设计面较宽,体现了本专业注重理论知识与实践应用的合理配置,并注重强化学生动手能力的培养。 从培养方案能否看出明显的专业特色该专业应具有的特色是什么 从课程设计和实践教学环节看,能体现本专业的特色,机械工程、机械制造、机械设计、控制工程等多门学科知识交融,适用范围很广。 本专业是机械设计与制造及其自动化,强调现代设计方法,特色在于机械基础理论知识扎实,各种实用的软件知识掌握的较好,适应面广。对机械工程学院而言,因具有扎实的基础理论,因此在各类机械行业中适应性强。 结论性意见: 本培养方案的目标定位准确,培养要求全面,理论课程体系设计合理,实践教学体系设计全面、实用性较强,符合工程应用型人才的培养方向。 存在的问题及建议(可另加附页): 1、适当减少公共基础课程的学时,增加专业主干课程的教学学时,以使学生具 有较宽厚、扎实的专业技能。 2、建议增加“控制工程”实践性环节。 3、建议在四年级开设本专业有关国家标准选修课。 专业教学委员会主任(签字): 2007年 6月 20日

专业人才培养方案评审人员名单 姓名最终学历职称工作单位(校外专家填写)所学专业评审专家签字备注序 号 1 汤文成博士教授东南大学机械学院机械制造 2 楼佩煌硕士教授/副院长南京航空航天大学机电学院机械电子 3 韩向东硕士教授南京财经大学管理科学与工程学院机械/工业工程 4 顾宗平大学本科高工南汽装备公司汽车拖拉机设计 5 熊宁硕士高工/总经理南京压缩机股份有限公司机械制造 6 姜卫忠研究生教授级高工南京扬子检修安装有限责任公司化工机械、工商管理 7 黄振仁大学本科教授南京工业大学过程装备与控制工程(原化 工机械) 8 吴中江硕士教授南京工程学院计算机 9 翟俊霞博士后副教授南京工程学院化工过程机械 10 汪木兰硕士副教授南京工程学院/自动化学院数控技术 11 李建启硕士教授南京工程学院流体传动

关于编制铜铟镓硒薄膜太阳能电池项目可行性研究报告编制说明

铜铟镓硒薄膜太阳能电池项目可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.wendangku.net/doc/2f11680240.html, 高级工程师:高建

关于编制铜铟镓硒薄膜太阳能电池项目可 行性研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为铜铟镓硒薄膜太阳能电池形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (8) 2.1项目提出背景 (8) 2.2本次建设项目发起缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1促进我国铜铟镓硒薄膜太阳能电池产业快速发展的需要 (9) 2.3.2加快当地高新技术产业发展的重要举措 (9) 2.3.3满足我国的工业发展需求的需要 (9) 2.3.4符合现行产业政策及清洁生产要求 (9) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.6增加就业带动相关产业链发展的需要 (10) 2.3.7促进项目建设地经济发展进程的的需要 (11) 2.4项目可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (11) 2.4.3技术可行性 (12) 2.4.4管理可行性 (12) 2.4.5财务可行性 (13) 2.5铜铟镓硒薄膜太阳能电池项目发展概况 (13)

新一中建筑设计方案专家评审意见

新一中建筑设计方案专家评审意见吉安市新一中建筑设计方案专家评审意见 2009年11月5日~吉安市行政中心筹建办公室在吉安市公共资源中心组织召开了吉安市新一中建筑设计方案专家评审会~参加会议的有南昌大学、江西省住房和城乡建设厅、江西省教育厅、江西浩风建筑工程设计事务所等省专家以及吉安市规划处、吉安市路灯管理处等市专家~与会专家会前对吉安市新一中校址进行了现场踏勘~认真审阅了设计文件~观看了规划、建筑设计单位方案介绍演示光盘~经认真充分的讨论与研究~形成专家评审意见如下: 方案一 优点: 1、功能分区明确。 2、交通组织合理~实行人车分流。 3、建设规模合理。 4、建筑平行、垂直城市道路布臵~规整易于处理街道景观。 5、中轴线突出~教学区布臵合理。 6、结构布臵合理。 缺点: 1、学生宿舍区分为东、西两块~不合适~不利于学生流线~东侧学生宿舍区使用运动场横穿校园不便。 2、建筑朝向偏西。 3、主入口位臵距离城市支路太近~门前无聚散场地~主出入口小于次出入口。 4、教学楼基本都是四层~可以设计五层~减少用地。

5、舞蹈教室开间小。 6、色彩单调且太深。 方案二 优点: 1、保证了城市道路的贯通。 2、功能分区明确。 3、建筑有一定特色。 缺点: 1、城市道路横穿校园将校园一分为二~对校园环境、学生安全有一定影响。 2、未能很好解决城市交通与校园交通矛盾问题~出入口不好且太多~下穿还是上跨城市道路未交待清楚~投资大。 3、功能分区不合理~造成交通联系不便。 4、水系太大~交通不便~桥梁多~投资大。 5、建筑东西朝向不合适。 6、建设规模大~教学楼每层面积过大,学生宿舍偏多。 7、有些建筑形体不好~不适用~如艺术楼体量太大且结构不合理。 方案三 优点: 1、功能分区明确~规划结构布臵合理。 2、中轴线处理可以~清楚。 3、山体保留多~与城市景观很好地衔接。 4、校前区有较大的广场易于人流聚散。 5、建筑风格统一协调。 缺点:

方案设计专家评审意见

专家评审意见 道路工程:经审,本方案设计认真用心,图文清楚,叙述详尽,图纸、表格齐全,且有 对比性方案。符合有关技术规范要求,满足方案设计的需要。可作下一步设计的依据。建议:(1)按发展情况和周边情况,建议采用2.5m+3.5m+3.5m+2.5m的横断面方案。 (2)建议路面采用沥青混凝土结构,以顺从周边道路的相匹配。 交通工程:设计单位提供的春晖五街道路工程技术文件的内容和深度基本上符合相关文 件方案设计文件编制要求。道路的线路走向、功能定位。设计所采用的主要技术标准恰当,横断面布置合理。对于本工程道路的交通工程设计,提出的几类建议: (1)由于本工程道路为住宅小区道路,道路红线仅为12m,道路横断面布置2.5m人行道+7m机动车道+2.5m人行道可行。车行道可设为机、非混路。行车速度按20m/h为好。 (2)由于车行道只有7m,且为机、非混行,可不设路缘带,道路交通标线只设行人横道线、车行道中心线、停止线及相应的交通标志、标线即可。必要时,可设置单位杆指路标志。 (3)为确保交通安全,建议在B线桩号BK0+040小区车库出入口对面人行道上增设直径为100cm的反光镜。小区车库出入口处设停车让行标志。 (4)为便于施工,建议绘制标志、标线平面布置图。 排水工程:本方案设计文本文件齐全,设计依据基本上齐全,设计方案基本合理。设计 深度达到要求。意见和建议: (1)给水:给水管D300太大,建议复核用水量,最好为D200,并成环状。补给水工程量。 (2)补充给水、排水汇水面积。计算所需管径。 (3)现有市政接出井的标高是否为现测?应核实。接出处尽量减少夹角,以使水流顺畅。照明工程: (1)本工程照明电源由红光路与春晖二街路口路灯配电房备用开关引出。 (2)保护接地,设重复接地保护装置,线路头尾各设一组接地板。接地电阻应小于10Ω。 沿线路敷设一根直径12的镀锌圆钢作接地干线。 (3)线路电线,应改为YJV22----1KV(4X16mm2)电缆。 (4)灯杆设置距侧石应大于0.75m。 工程估算:该估算编制依据及编制深度基本符合国家、省及市有关规定及要求。问题及 建议: (1)建议增加技术经济指标,道路、交通、给排水、电力电气、照明及绿化各单位价。(2)“其他工程费用”中不发生的费用不计。如建设单位管理费,工程设计咨询费等。(3)绿化工程中朱蕉、红继木、黄连翘、龙船花等应按m2单位计。不是m计算。 (4)根据现在实际情况,检查是否漏项。

规划设计方案专家评审要素

规划设计方案专家评审要素 一、规划方案预审主要内容: (1)规划控制指标: 1规划控制指标是否满足设计要点要求:用地面积、用地性质、容积率、建筑密度、建筑高度、绿地率 2、建筑退让是否满足设计要点要求:退让城市道路红线、退让绿化保护线、退让河道保护线、退让高压线、退让用地边界等 3、建筑间距:必须满足《南京市城市规划实施细则(2007版)》的要求 (2)规划配套指标 1、基层社区中心和居住社区中心:用地面积、建设内容和建筑规模设置应符合《南京新建地区公共设施配套标准规划指引》和设计要点要求 2、托儿所、幼儿园:应按服务范围均匀分布,用地面积和建筑面积应满足规范和设计要点要求 3、小学、中学和九年一贯制学校:用地面积和建筑面积应满足规范和设计要点要求,其体育用地、绿化用地以及田径场、篮球场、排球场等配套设施应满足《南京新建地区公共设施配套标准规划指引》要求 4、机动车及非机动车停车泊位:按《南京市建筑物配建停车设施设置标准与准则》配置,应以地下停车为主,地面停车泊位数一般不应超过总泊位数的20% (3)规划设计要点提出的规划引导要求及其他相关要求 二、专家评审主要内容 1、区域分析及项目定位 2、总平布局及功能分区

3、道路系统及交通组织 4、空间形态 5、日照分析 6、小区出入口设计 7、绿化环境景观设计 8、建筑单体设计 9、竖向设计 10、建筑朝向、采光和通风 11、建筑风格 12、住宅群体组合 13、建筑体型 14、建筑节能设计 15、建筑立面 16、建筑色彩 17、无障碍设计 18、建筑单元组合 19、管线综合规划 20、沿街商业:应与住宅分开设置,并统一设计雨篷和广告位 21、消防设计:满足相关防火规范要求,其中商业建筑应按江苏省《商业建筑设计防火规范》进行设计,满足总平布局、防火间距、消防车道、防火防烟分区、疏散宽度、疏散距离等消防要求 22、基层社区中心和居住社区中心:应有独立用地,其内容和建筑规模设置应符合《南京新建地区公共设施配套标准规划指引》 23、托儿所、幼儿园:应按服务范围均匀分布,且独立设置于阳光充足、接近公共绿地、便于家长接送的地段,应有独立的院落、独立的出

铜铟镓硒(CIGS)薄膜太阳能电池-陈群

CIGS太阳能薄膜电池结构和组件生产工艺 陈群 CIGS目前是最具潜力的高效率、低成本的太阳能薄膜电池,具有如下优点:最高太阳能薄膜电池转换效率;薄膜电池的低成本制作;长期稳定的工作性能;易大规模商业化生产等。如图1所示,完整的CIGS电池结构包括:1-5毫米厚的钠钙玻璃基底;约1微米厚的钼金属背面电极;约2微米厚的铜铟镓硒(硫)光吸收层;约50纳米厚的硫化镉缓冲层;约50纳米厚的氧化锌和约1微米厚的铝杂氧化锌窗口层;约100纳米厚氟化镁光学增透层;约2微米厚镍铝正面电极。 图1 CIGS电池结构 CIGS电池组件在电池制备过程中形成串联,方式如下图2所示。其中P1使用激光刻划,防止相邻电池钼金属电极接触形成短路。P2使用机械探针刻划,使真空溅射的铝掺杂氧化锌与钼金属电极相连形成串联。P3使用机械探针刻划,防止相邻铝杂氧化锌电极接触形成短路。 图2 CIGS电池串联方式 图3概括了CIGS电池组件的生产流程:1、清洗钠钙玻璃基底;2、真空溅镀钼金属背面电极;3、激光刻蚀钼金属形成P1划线;4、制备CIGS光吸收层; 5、化学浴沉积CdS缓冲层; 6、真空溅镀一薄层氧化锌; 7、探针机械切割形成

P2划线;8、真空溅镀一层铝杂氧化锌;9、探针机械切割ZnO,CdS和CIGS形成P3划线;10、并联连接各个电池模块;11、封装电池形成组件。 图3 CIGS电池组件的生产流程 CIGS电池组件成套生产线仪器设备的信息请参考centrotherm公司:https://www.wendangku.net/doc/2f11680240.html,/startseite/bomuzujian/chanpin1/ctscx.html

(附件19)投标方案评审意见汇总表.doc

附件19 【项目名称】投标方案评审意见汇总表 序号概念设计创意总体规划平面设计立面设计环境设计综合特色平均分 数 方案一 方案二 方案三 方案四 方案五 ··· 评估 注:标▲者为优点,标○为缺点。 中海发展(北京)有限公司 设计部 年月日抄报:中海集团设计研究部 美文欣赏

1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。清风落叶舞秋韵,枝头硕果醉秋容。秋天是甘美的酒,秋天是壮丽的诗,秋天是动人的歌。 2、人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了快乐。聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之间,散发浓香,珍藏一生! 3、春天来了,我要把心灵放回萦绕柔肠的远方。让心灵长出北归大雁的翅膀,乘着吹动彩云的熏风,捧着湿润江南的霡霂,唱着荡漾晨舟的渔歌,沾着充盈夜窗的芬芳,回到久别的家乡。我翻开解冻的泥土,挖出埋藏在这里的梦,让她沐浴灿烂的阳光,期待她慢慢长出枝蔓,结下向往已久的真爱的果实。 4、好好享受生活吧,每个人都是幸福的。人生山一程,水一程,轻握一份懂得,将牵挂折叠,将幸福尽收,带着明媚,温暖前行,只要心是温润的,再遥远的路也会走的安然,回眸处,愿阳光时时明媚,愿生活处处晴好。 5、漂然月色,时光随风远逝,悄然又到雨季,花,依旧美;心,依旧静。月的柔情,夜懂;心的清澈,雨懂;你的深情,我懂。人生没有绝美,曾经习惯漂浮的你我,曾几何时,向往一种平实的安定,风雨共度,淡然在心,凡尘远路,彼此守护着心的旅程。沧桑不是自然,而是经历;幸福不是状态,而是感受。 6、疏疏篱落,酒意消,惆怅多。阑珊灯火,映照旧阁。红粉朱唇,腔板欲与谁歌?画脸粉色,凝眸着世间因果;未央歌舞,轮回着缘起缘落。舞袖舒广青衣薄,何似院落寂寞。风起,谁人轻叩我柴扉小门,执我之手,听我戏说? 7、经年,未染流殇漠漠清殇。流年为祭。琴瑟曲中倦红妆,霓裳舞中残娇靥。冗长红尘中,一曲浅吟轻诵描绘半世薄凉寂寞,清殇如水。寂寞琉璃,荒城繁心。流逝的痕迹深深印骨。如烟流年中,一抹曼妙娇羞舞尽半世清冷傲然,花祭唯美。邂逅的情劫,淡淡刻心。那些碎时光,用来祭奠流年,可好? 8、缘分不是擦肩而过,而是彼此拥抱。你踮起脚尖,彼此的心就会贴得更近。生活总不完美,总有辛酸的泪,总有失足的悔,总有幽深的怨,总有抱憾的恨。生活亦很完美,总让我们泪中带笑,悔中顿悟,怨中藏喜,恨中生爱。 9、海浪在沙滩上一层一层地漫涌上来,又一层一层地徐徐退去。我与你一起在海水中尽情的戏嬉,海浪翻滚,碧海蓝天,一同感受海的胸怀,一同去领略海的温情。这无边的海,就如同我们俩无尽的爱,重重的将我们包裹。 10、寂寞的严冬里,到处是单调的枯黄色。四处一片萧瑟,连往日明净的小河也失去了光彩,黯然无神地躲在冰面下恹恹欲睡。有母女俩,在散发着丝丝暖意的阳光下,母亲在为女儿梳头。她温和的把头发理顺。又轻柔的一缕缕编织着麻花辫。她脸上写满笑意,似乎满心的慈爱永远装不下,溢到嘴边。流到眼角,纺织进长长的。麻花辫。阳光亲吻着长发,像散上了金粉,闪着飘忽的光辉。

专家审查意见

S211蓬寨线蓬莱至烟栖路口段路面大修工程 施工图设计审查意见 2013年9月29日,山东省交通运输厅公路局邀请有关专家(名单附后)在济南召开了S211蓬寨线蓬莱至烟栖路口段路面大修工程施工图设计审查会,专家组听取了设计单位山东省公路设计咨询有限公司的汇报和烟台市公路管理局关于本项目的具体情况介绍,认真审阅了设计文件和基础资料,并进行了深入讨论。评审认为,施工图设计基本执行了山东省交通运输厅公路局鲁路计[2013]65号《关于S211蓬寨线蓬莱至烟栖路口段路面大修工程建设方案的批复》,资料数据翔实,施工图设计文件基本满足《公路工程基本建设项目设计文件编制办法》,经修改完善后,可作为下一阶段工作的依据。主要评审意见如下: 一、总体设计 大修工程起点位于蓬莱市开发区矫格庄村北,桩号K8+200;终点止于栖霞市丰粟村,桩号K51+,与烟栖路相接。路线全长43.34公里。 1、技术标准 K8+200-K30+540段维持一级公路标准,设计车速80公里/小时,路基宽25.5米,路面宽22-24米。 K30+540-K51+段维持二级公路标准,设计车速60公里/小时。K30+540-K44+700段路基宽12.0米,路面宽10.5米; K44+700-K48+140及K49+220-K51+段路基宽11.5米,路面宽10.0米;K48+140-K49+220寨里大街段路面宽18米。 拆除重建涵洞设计汽车荷载等级采用公路-I级,维修利用桥涵维持原

设计荷载等级。 2、工程规模 本项目大修里程43.34公里,一级公路段长22.34公里,罩面千平方米,中央分隔带增设波形梁护栏34300米。二级公路段长21.0公里,铺筑沥青路面千平方米;浆砌边沟4498.6米;维修加固小桥3座、涵洞30道,拆除重建涵洞5道,新增涵洞2道;增设路侧波形梁护栏7006米。 审查认为技术标准适当、工程规模符合建设方案批复。 二、路线 1、路线平、纵断面设计 本项目沿老路大修,平面线形拟合老路中心线。纵断面线形K8+200-K30+540一级公路段抬高罩面层厚度,起终点及桥梁两端铣刨顺接。 K30+540-K51+二级公路加铺路段纵断面线形按抬高路面结构层厚度进行设计,计15.665公里;挖除重铺路段基本维持原路标高,对具备一定抬高条件的路段适当抬高(一般为10-20cm),计5.335公里。路线平、纵指标均满足规范要求。 2、安全设施 K8+200-K30+540一级公路段:(1)罩面后标线按照《公路交通标志和标线设置规范》(JTG D82-2009)重新施划;(2)K12+200-K30+540段中央分隔带增设Am级单柱单面波形梁护栏;(3)K8+200-K12+200段路中心原有Am级单柱双面组合型波形梁护栏加高5cm;(4)道路左侧增设里程碑、百米桩。 K30+540-K51+二级公路段:(1)标志、标线按照《公路交通标志和标

初步设计方案文件评审意见

110kv变电站工程等工程 初步设计评审意见 受**委托,**监理有限公司于2018年5月17日(星期四)在**召开了**110kv变电站工程**双回送电线路工程。经过充分讨论,形成评审意见如下: 一、**110kv变电站工程 1、电气一次 ⑴结合最终规模,补充完善设备导体的选择; ⑵建议污秽统一按d级考虑,并直接说明各电压等级爬距; ⑶核实土壤电阻率、建议取消离子缓释剂,采用接地井; ⑷补充完善绝缘配合内容; ⑸主接线核实110kV避雷器参数; ⑹核实出线方式,建议全部采用电缆出线; ⑺建议取消二层楼,将35kV配电装置与10kV配电装

置共室布置,减小建筑体积; ⑻各平面示意电缆沟尺寸; ⑼核实10kV避雷器配置; ⑽核实110kV接线,主要是接地刀配置; ⑾注意报告及图纸中的笔误。 2、电气二次 ⑴核实高频开关电源模块数量,前后描述不一致。 ⑵4.1总的要求4)两网由间隔层网络和站控层网络组成,应改为两网由站控层网络和过程层网络组成。 ⑶4.4.3自动装置核实备自投是否为网采网跳模式,应为模拟量直采,电缆直跳。实现功能应为分段备投,无进线备投功能。 ⑷补充母线过程层设备配置。 ⑸补充互感器二次参数选择相关内容。 ⑹建议4.5电能量计量系统与5.5电能量计量系统内容合并。 ⑺主变高中低压侧配置0.5级电能表。明确所用变低压

侧配置0.5级电能表。 ⑻一体化电源系统原理图中高频充电模块数量与说明不符,核实。 ⑼建议取消35kV、10kV母线PT合并单元、智能终端。 ⑽电度表屏中电度表改为0.5级。 ⑾低周低压减载装置型号及规范栏应改为接入110kV 母线电压,不应接入35kV、10kV母线电压。 3、调度自动化及系统通信 ⑴主设备配置方案问题不大,但目前仅是可研阶段深度,达不到初步设计深度,应按照初步设计深度要求进行深化设计。 ⑵系统通信部分需深化设计(包含通信系统现状、规划要求、其他专业通道组织、设备参数要求、光缆纤芯的技术参数要求、时钟、同步系统方案等)。 ⑶补充继电保护和自动化通道组织方案。 4、土建部分 ⑴主要经济技术指标内容不全,请按相应规范补充主

铜铟镓硒(CIGS)太阳能薄膜电池项目可行性研究报告

铜铟镓硒(CIGS )太阳能薄膜电池项目 可行性研究报告

第一章总论 一、项目背景 (一)项目名称:铜铟镓硒(CIGS太阳能薄膜电池 (二)项目承担单位:某某浩德集团有限公司 (三)项目主管单位:国家高新技术开发区管理委员会 (四)项目拟建地区和地点:国家高新技术开发区新能源产业园 (五)可行性研究报告研究范围 1、太阳能光伏产业和技术发展趋势研究 2、市场需求及产品销售预测 3、项目建设的必要性、建设条件及选址 4、CIGS太阳能薄膜电池的技术方案和工程方案 5、环境保护方案 6、节能措施 7、投资估算及资金筹措 &财务及经济效益分析 (六)可行性研究报告编制依据 2007 年1、国务院颁布的《当前优先发展的高技术产业化重点领域指南( 度)》 2、《建设项目经济评价方法和参数》(第三版) 3、技术提供方德国centroherm公司提供的经济技术参数 4、国内外太阳能光伏产业发展状况

5、国家有关法律法规和财税政策 (七)研究工作概况 1、项目建设的必要性 (1)太阳能电池是太阳能光伏产业中技术含量高、经济体量最高的核心组件,成长性好,市场空间巨大,投资引进技术先进的太阳能电池项目将推动光伏产业的快速发展,有利于节能减排目标的实现,有利于能源结构的调整,有利于区域经济结构的优化。 未来数年光伏行业的复合增长率将高达30%以上。至2020 年全球光伏发电装机容量将达到300GW整个产业的年产值将超过3000亿美元,至2040年光伏发电将达到全球发电总量的15-20%。 该项目的引进与建设将有力促进城市圈“两型社会”的建设。加快太阳能光伏产业的发展,有望改变我国城乡的民用能源结构。大力引进、发展和生产包括CIGS模组片产品系列在内的新能源项目既具有良好的发展前景,又符合国家、省、市产业发展政策,国家发改委、科技部、商务部、知识产权局发布的《当前优先发展的高技术产业化重点领域指南(2007)》将开发生产高效率低成本的太阳能光伏电池、新型太阳能电池及制造设备确定为重点项目。既有很好的经济效益,又有良好的社会效益。本项目建设将有力促进城市圈“两型社会”的建设和发展。 (2)德国centrotherm公司开发生产的CIGS薄膜太阳能电池是目前世界上光电转化率最高的第三代太阳能电池,并提供交钥匙工程服务,包销生产初期所有产品。该项目的引进将填补国内空白,带动我国太阳能电池的升级换代,推动区域高新技术产业结构优化,并具有良好经济回报。 Centrotherm公司开发的CIGS太阳能薄膜电池技术水平在世界处于领先,规模化生产技术成熟,生产成本低、原材料消耗少、单位产品能耗低、用途广泛,产品具有强劲的市场竞争力,经济性能优良将为投资者带来丰厚的回报。

相关文档
相关文档 最新文档